Continuous Games

Econ 400

University of Notre Dame
Another way of thinking about Nash equilibrium is by thinking about player i’s best-response function

$$B_i(\sigma_{-i}) = \{ \text{Player } i \text{’s best-response to } \sigma_{-i} \}$$

Then a strategy profile $\sigma^* = (\sigma^*_1, ..., \sigma^*_N)$ is a Nash equilibrium if, for each player i,

$$B_i(\sigma^*_{-i}) = \sigma^*_i$$

so that σ^* is a mutual best response.
Example: Quantity Competition

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 4, 4 & 3, 6 & 2, 6 \\
2 & 6, 3 & 4, 4 & 2, 3 \\
3 & 6, 2 & 3, 2 & 0, 0 \\
\end{array}
\]

The best-response functions are the underlined entries. There are three “intersections”: \((1, 3)\), \((2, 2)\), \((3, 1)\). These are the spots where \(B_r(1, 3) = 1\) and \(B_c(3, 1) = 3\), or \(B_r(2, 2) = 2\) and \(B_c(2, 2) = 2\), and \(B_r(3, 1) = 3\) and \(B_c(1, 3) = 1\).
Example: Battle of the Sexes

The intersection of the best-response functions gives all of the Nash equilibria.
Nash Equilibrium

Definition

For each player $i = 1, 2, ..., n$, let $B_i(\sigma)$ be player i’s best-response function. Then a Nash equilibrium is a strategy profile $\sigma^* = (\sigma_1^*, \sigma_2^*, ..., \sigma_n^*)$ where, for each player i,

$$B_i(\sigma_{-i}^*) = \sigma_i^*$$

This is how we’re going to think about Nash equilibria for our next class of games.
Nash Equilibrium

In particular, suppose there are two players, \(a \) and \(b \), with best-response functions

\[B_a(\sigma_b) \]

and

\[B_b(\sigma_a) \]
In particular, suppose there are two players, a and b, with best-response functions

$$B_a(\sigma_b)$$

and

$$B_b(\sigma_a)$$

Then to find Nash equilibria, we substitute b’s best-response function into a’s best-response function:

$$\sigma^*_a = B_a(B_b(\sigma^*_a))$$
Nash Equilibrium

In particular, suppose there are two players, \(a \) and \(b \), with best-response functions

\[
B_a(\sigma_b)
\]

and

\[
B_b(\sigma_a)
\]

Then to find Nash equilibria, we substitute \(b \)’s best-response function into \(a \)’s best-response function:

\[
\sigma_a^* = B_a(B_b(\sigma_a^*))
\]

See how this eliminates \(\sigma_b \) from the problem? We find \(a \)’s best response to \(b \) best responding to \(a \), and we have an equilibrium.
Definition

A simultaneous-move game with complete information is *continuous* if players choose their strategies from intervals, such as \([a, b]\), \([0, 5]\), or \([-3, \infty)\).
Continuous Games

Definition

A simultaneous-move game with complete information is *continuous* if players choose their strategies from intervals, such as \([a, b]\), \([0, 5]\), or \([-3, \infty)\).

- For example, we might be interested in a strategy that tells an investor *when* to sell a particular asset: Time is a continuous variable, so we should let it take any value in \([0, \infty)\).
Continuous Games

Definition

A simultaneous-move game with complete information is *continuous* if players choose their strategies from intervals, such as \([a, b]\), \([0, 5]\), or \([-3, \infty)\).

- For example, we might be interested in a strategy that tells an investor *when* to sell a particular asset: Time is a continuous variable, so we should let it take any value in \([0, \infty)\).
- Many quantities are essentially continuous: For example, pennies are such small denominations that money is essentially a continuous variable. If we’re considering how many fish to catch in a season, where the measurement is in millions of tons, the marginal fish is negligible.
A simultaneous-move game with complete information is *continuous* if players choose their strategies from intervals, such as \([a, b]\), \([0, 5]\), or \([-3, \infty)\).

- For example, we might be interested in a strategy that tells an investor *when* to sell a particular asset: Time is a continuous variable, so we should let it take any value in \([0, \infty)\).
- Many quantities are essentially continuous: For example, pennies are such small denominations that money is essentially a continuous variable. If we’re considering how many fish to catch in a season, where the measurement is in millions of tons, the marginal fish is negligible.
- We’ve already seen some continuous games: Mixed strategies take a discrete choice (pure strategies) and smooth the situation out (mixed strategies). So choosing a probability \(p\) in \([0, 1]\) fits this class.
The Cournot Game

There are two firms, a and b. They simultaneously choose any quantity $q_a, q_b \geq 0$. The price in the market is given by $p(q_a, q_b) = A - q_a - q_b$, and their total costs are $C(q) = cq$.

There are two firms, \(a \) and \(b \). They simultaneously choose any price \(p_a, p_b \geq 0 \). If one firm chooses a strictly lower price than the other, it faces a market demand curve \(D(p) = A - p \) and the other firm gets no customers. If the two firms announce the same price, they split the market demand \(D(p) = (A - p)/2 \). Their total costs are \(C(q) = cq \).
The Hotelling Game

There are two firms, a and b. They simultaneously choose any price $p_a, p_b \geq 0$. Firm a is located at the left endpoint of the interval $[0, 1]$, and firm b is located at the right endpoint. Consumers are uniformly distributed on $[0, 1]$, so for any $1 \geq b \geq a \geq 0$, there are $b - a$ consumers in $[a, b]$. The consumer living at address $0 \leq x \leq 1$ visiting firm f gets a payoff

$$u(x, f) = \begin{cases}
 v - p_a - tx & \text{, visit firm } f = a \\
 v - p_b - t(1 - x) & \text{, visit firm } f = b \\
 0 & \text{, make no purchase}
\end{cases}$$

Their total costs are $C(q) = cq$.
Our Problem:

Since the players in these games have strategy sets $s_i > 0$, we can't use a strategic form with rows and columns to solve the game. We're going to have to approach these as maximization problems, and use calculus.
General Approach:

- **Step 1**: Write down the players' payoff functions. Are they differentiable? (If not, we can’t use calculus.)
- **Step 2**: Maximize each player’s payoff with respect to his own strategy, taking the behavior of the other players as given. Solving this problem gives that player’s best-response function.
- **Step 3**: Now that we have a best-response function for each player, we can look for an intersection, which is a Nash equilibrium. In particular, this is the exact spot where we use the idea

\[\sigma^*_i = B_i(B_{-i}(\sigma^*_i)) \]
Example: The Cournot Game, Step 1

In the Cournot game, the players’ payoff functions are

\[\pi_a(q_a, q_b) = (A - q_a - q_b)q_a - cq_a \]

\[\pi_b(q_b, q_a) = (A - q_a - q_b)q_b - cq_b \]

(These payoff functions are differentiable, so we are free to use calculus.)
Example: The Cournot Game, Step 2

Maximize with respect to \(q_a \),

\[
\frac{\partial \pi_a(q_a, q_b)}{\partial q_a} = A - q_a - q_b - q_a - c = 0
\]

and solve to get

\[
q_a = \frac{A - c - q_b}{2}
\]

This is firm \(a \)'s best-response function. Doing the same work for firm \(b \) gives

\[
q_b = \frac{A - c - q_a}{2}
\]
Example: The Cournot Game, Step 3

Now we’ve got two best-response functions:

\[q_a = \frac{A - c - q_b}{2}, \quad q_b = \frac{A - c - q_a}{2} \]

We need to solve these simultaneously. Meaning, we have two equations in two unknowns, and the entire system determines their values, not just one equation at a time.
Example: The Cournot Game, Equilibrium

Then the Nash equilibrium is:

\[q_a^* = \frac{A - c}{3}, \quad q_b^* = \frac{A - c}{3} \]
Consider the two functions

\[q_a(q_b) = \frac{A - c - q_b}{2} ,\quad q_b(q_a) = \frac{A - c - q_a}{2} \]

We might want to get a better sense of what competition “looks like” in these games.
Best-Response Functions in the Cournot Game

\[
q_a(0) = \frac{A-c}{2}
\]

\[
q_b(A-c) = 0
\]

\[
(q_a^*, q_b^*)
\]

\[
q_a(A-c) = 0 \quad q_b(0) = A-c
\]
The Bertrand Game, Step 1

The firm’s payoffs in the Bertrand game are

\[\pi_a(p_a, p_b) = \begin{cases}
(A - p_a)(p_a - c), & p_a < p_b \\
\frac{A - p_a}{2}(p_a - c), & p_a = p_b \\
0, & p_a > p_b
\end{cases} \]

Is this function continuous? Differentiable?
For $c \leq p_b \leq p_m$, our profit function is, in general, not differentiable. So firm a’s best-response function doesn’t exist.
It is a Nash equilibrium of the Bertrand Game for both firms to choose $p^*_a = p^*_b = c$.
The Hotelling Game

There are two firms, \(a\) and \(b\). They simultaneously choose any price \(p_a, p_b \geq 0\). Firm \(a\) is located at the left endpoint of the interval \([0, 1]\), and firm \(b\) is located at the right endpoint. Consumers are uniformly distributed on \([0, 1]\), so for any \(1 \geq b \geq a \geq 0\), there are \(b - a\) consumers in \([a, b]\). The consumer living at address \(0 \leq x \leq 1\) visiting firm \(f\) gets a payoff

\[
 u(x, f) = \begin{cases}
 v - p_a - tx & \text{, consumer } x \text{ visits firm } f = a \\
 v - p_b - t(1 - x) & \text{, consumer } x \text{ visits firm } f = b \\
 0 & \text{, make no purchase}
 \end{cases}
\]

Their total costs are \(C(q) = cq\).
What are the firms’ payoffs?
What are the firms’ payoffs?

\[\pi_a(p_a, p_b) = \left(\frac{1}{2} + \frac{p_b - p_a}{2t} \right) \ast (p_a - c) \]

and

\[\pi_b(p_b, p_a) = \left(\frac{1}{2} + \frac{p_a - p_b}{2t} \right) \ast (p_b - c) \]
We maximize each player's payoff with respect to the strategy that player controls:
We maximize each player's payoff with respect to the strategy that player controls:

\[
\frac{\partial \pi_a(p_a, p_b)}{\partial p_a} = \frac{1}{2} + \frac{p_b - p_a}{2t} - \frac{1}{2t}(p_a - c) = 0
\]

\[
\frac{\partial \pi_b(p_b, p_a)}{\partial p_b} = \frac{1}{2} + \frac{p_a - p_b}{2t} - \frac{1}{2t}(p_b - c) = 0
\]
Solving each player’s first-order condition in terms of that player’s strategy gives a best-response function:
Solving each player’s first-order condition in terms of that player’s strategy gives a best-response function:

\[p_a(p_b) = \frac{t + p_b + c}{2} \]

and

\[p_b(p_a) = \frac{t + p_a + c}{2} \]
Now we substitute one best-response function into the other to solve them simultaneously, giving the Nash equilibrium prices:
Now we substitute one best-response function into the other to solve them simultaneously, giving the Nash equilibrium prices:

\[p_a^* = t + c \]

and

\[p_b^* = t + c \]

So our Nash equilibrium is that both players charge \(t + c \), which is the marginal cost \(c \) plus a term that depends on product differentiation, \(t \).
Graphing Best-Response Functions

Consider the two functions

\[p_a(p_b) = \frac{t + p_b + c}{2}, \quad p_b(p_a) = \frac{t + p_a + c}{2} \]

Again, we might want to get a better sense of what competition “looks like” in these games.
Best-Response Functions in the Hotelling Game

\[p_a(0) = \frac{t}{2} \]

\[p_b(0) = \frac{t}{2} \]
Strategic Complements and Strategic Substitutes

Definition

A game exhibits *strategic substitutes* if the players’ best-response functions are downward sloping in their opponents’ strategies (as in Cournot competition), and a game exhibits *strategic complements* if the players’ best-response functions are upward sloping in their opponents’ strategies (as in Hotelling competition).
Strategic Substitutes and Strategic Complements

![Graph showing strategic substitutes and strategic complements with BR1 and BR2 lines on s1(s2) and s2(s1) axes.](image)
Qualitative Analysis of Equilibria
Qualitative Analysis of Equilibria

In games of strategic complements, if your opponent increases his strategy, you want to *increase* yours.
Qualitative Analysis of Equilibria

- In games of strategic complements, if your opponent increases his strategy, you want to *increase* yours.
- In games of strategic substitutes, if your opponent increases his strategy, you want to *decrease* yours.
An Important Trick: Symmetry

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A game is symmetric if any player’s payoff function $u_i(s_i, s_j, s_{-i,j})$ can be converted into any other player’s payoff function $u_j(s_j, s_i, s_{-j,i})$ simply by re-arranging the player’s “names” in the payoff functions.</td>
</tr>
</tbody>
</table>
An Important Trick: Symmetry

Definition

A game is *symmetric* if any player’s payoff function $u_i(s_i, s_j, s_{-i,j})$ can be converted into any other player’s payoff function $u_j(s_j, s_i, s_{-j,i})$ simply by re-arranging the player’s “names” in the payoff functions.

Theorem

Any symmetric game has a symmetric equilibrium, where every player uses the same strategy.
A Simple Partnership Model

Suppose there are two (engineers, lawyers, doctors, etc.) who start a firm. They each exert effort $e_1, e_2 > 0$, and equally split the profits of the firm, $\pi(e_1, e_2) = se_1e_2, s > 0$. The cost of effort is $\frac{c}{2}e^2$ for both agents, where $c > 0$. If they work separately and do not monitor each other, what is the Nash equilibrium effort level if $s < c$?
A Simple Partnership Model

Suppose there are two (engineers, lawyers, doctors, etc.) who start a firm. They each exert effort $e_1, e_2 > 0$, and equally split the profits of the firm, $\pi(e_1, e_2) = se_1e_2$, $s > 0$. The cost of effort is $\frac{c}{2}e^2$ for both agents, where $c > 0$. If they work separately and do not monitor each other, what is the Nash equilibrium effort level if $s < c$? Do the results change if agent 1 gets a payoff

$$u_1(e_1, e_2) = se_1e_2 + e_1 - \frac{c}{2}e_1^2$$

and agent 2 gets

$$u_2(e_2, e_1) = se_2e_1 + e_2 - \frac{c}{2}e_2^2$$
There are three farmers in a market for beef. The cows all graze on a common pasture. The more cows that are put on the pasture, the lower the value of each cow, since the cows then compete more aggressively for food, for a price $p(q_1, q_2, q_3) = A - q_1 - q_2 - q_3$. The cows are otherwise costless.
There are three farmers in a market for beef. The cows all graze on a common pasture. The more cows that are put on the pasture, the lower the value of each cow, since the cows then compete more aggressively for food, for a price \(p(q_1, q_2, q_3) = A - q_1 - q_2 - q_3 \). The cows are otherwise costless.

- What is the Nash equilibrium of the game where the farmers simultaneously and non-cooperatively decide how many cows to graze?
- If the town placed a tax \(t \) per cow grazing on the common, could the efficient number of cows be achieved? What would the tax be?
N-player Cournot

Suppose there are $I = 1, 2, \ldots, N$ players in a Cournot market, where price $p(q_1, q_2, \ldots, q_N) = A - q_1 - q_2 - \ldots - q_N$ and $C(q) = cq$ for all firms.
Suppose there are $I = 1, 2, \ldots, N$ players in a Cournot market, where price $p(q_1, q_2, \ldots, q_N) = A - q_1 - q_2 - \ldots - q_N$ and $C(q) = cq$ for all firms.

- What is the equilibrium for I players, in general?
- What happens to the equilibrium price and quantity as I grows?