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Abstract—We are confronted with massive amounts of in-
formation at every turn. In order to efficiently reason about
knowledge and information, humans have evolved efficient
strategies for organizing complex concepts in order to form
connections between and recall information. This behavior can
be observed and codified when people search for objects within
digital information networks. Current models of search be-
havior exhibit unnecessary or extraneous complexity. Minimal
or simple modifications to well established algorithms yield
valid models of human navigation by exploring hierarchical
information inherent in networks.

We explore and validate a new model of how humans navi-
gate an information networks. To that end, we present a new
path finding algorithm that approximates human navigation
by leveraging the categorical classification of the nodes within
the network. We compare our new model, CatPath, to existing
graph distance measures when possible and show that the
category paths are largely correlated with traces of human
navigation.
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I. INTRODUCTION

Large amounts of information are created and consumed
by humans and machines at an unprecedented rate day after
day. These data are maintained in a variety of information
systems, which are responsible for organizing and retrieving
the information when requested by a user. Research in infor-
mation network analysis has shown that the organization of
information plays a pivotal role in many search and retrieval
tasks. Information networks systems organize data in ways
that allows us to model data as a graph where graph-nodes
can be related to other nodes in complex ways. The Web is
a classic example of such an information network where
Web pages are organized according to their hyperlinks.
Humans can universally and naturally search for information
on the Web by navigating paths of Web pages via their
hyperlinks without instruction. Although human navigation
on the Web has certainly changed since the wide adoption
of search engines, these tools achieve their effectiveness by
modeling how a human might navigate the Web by following
hyperlinks.

However, many of these tools are poor representations of
how humans actually navigate information networks. An ex-
ample of a navigation model is the random surfer or random
walker introduced to the field in the PageRank algorithm [1].
The PageRank surfer does not surf with a target in mind like

most humans do. Alternative models have been developed
to direct or otherwise un-randomize the walker, but these
stochastic processes are typically used to solve some down-
stream task such as clustering, classification or retrieval [2].

Recent work has focused on modeling how humans
choose these walks, henceforth known as paths. Humans
possess access to abstract concepts to draw from when
searching for information. We believe that connections be-
tween physical and abstract concepts lead to choices in
path-finding. Many have studied path length [3], [4], [5]
in part motivated by Milgram’s seminal work on the ”The
Small World Problem” [6]. A study by West and Leskovec
explores how people navigate information networks and
solve wayfinding tasks [7]. Their key findings show that they
can predict the information (target or destination page) the
seeker is looking for from a short prefix of the navigation
path.

More recently, work on human navigation of information
networks looks at modeling the path by utilizing higher
order Markov chain models, i.e., memory models, as op-
pose to classic first order Markov chains, i.e., memoryless
models [8]. Models of navigation paths typically emphasize
predicting the next node from a path prefix. Both bodies of
work aim to elucidate human navigation at a more funda-
mental level. Probing the structure of information systems,
observing, and capturing human behavior helps us build and
augment.

Stemming from this mode of thinking, human navigation
models in information networks were originally concerned
with node similarity [9], where the human navigator al-
ways chooses the node with the smallest distance to the
destination node [10], [7], [11], [12]. In these models, the
destination node is known and the topological distance or
term-document distance is applied to calculate which node is
closest to the destination; and although this search strategy
may indeed result in short or closer-to-optimal paths they
may not actually mirror human behavior. Building on the
work of those listed, our interest, more explicitly, is on
the following questions: firstly, can conceptually shorter
paths on local choices for navigation offer a more accurate
model of human navigation in information networks?, and
secondly, are the paths themselves more or less similar?

This article focuses on a new model of how humans search
for a target in massive information networks. We approach
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Figure 1: Type hierarchy on Wikipedia for Global warming.
The symbols denote membership to a top-level category,
e.g., squares belong to the Society top-level category in
Wikipedia, etc.

this problem by first observing how the humans navigate
information networks that contain some added descriptive
schema or concept space. Our model leverages certain
properties of the concept-space to describe the conceptual
distance between two connected nodes in order to model
patterns of human navigation. In contrast to the previous
work, which makes navigation decisions based on distance
to the final destination (i.e., a global distance measure),
our model explores both local and global distances when
making navigation decisions. A natural example of this idea
is Wikipedia, in which Wiki-articles and inter-article links
compose an information network, and category pages exist
as an overarching conceptual organization of the underlying
Wiki-articles.

The elements along a search chain or path, from s to t
(i.e., source to target), contain associations humans develop
from every day experience. These associations are used
efficiently by people of varying age, background, etc. to
find information or gain knowledge. These associations are
analogous to a hierarchy where a concept is connected
to a class or category of a higher level. Some examples
of search chains that map nodes to higher-level types of
concepts has been discussed in recent literature [13], [7],
[8]. In the case of Wikipedia, Wiki-articles can be described
by their membership in one or more Wikipedia categories.
We are interested in using these categories, as presented in
the structure of Wikipedia, to model how humans navigate
Wiki-pages. An example of such a category hierarchy is
shown in Figure 1, where Global warming is a member of
three categories, Economic problems, Climate history and
Climate change (among others not shown); these low-level
categories are further members of middle-level categories,
which are members of progressively higher level categories
until one of the 22 main topic classifications, e.g., Society,
Science, Nature, is reached. In general, this work makes
the following contributions: 1.) We present a new model of
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Figure 2: A representative example of a human path (HP) be-
tween concepts Global Warming and Fidel Castro. Nodes
represent Wikipedia articles and the edges are hyperlinks
clicked by the user ( ), Category Path ( ), and Shortest
Path ( )

human navigation paths, CatPath, that uses the conceptual
category graph on Wikipedia as a model of how humans
navigate information networks. 2.) We validate the new
model by comparing traces of human paths to CatPath as
well as other path finding algorithms such as shortest path
and personalized PageRank.

II. CATEGORY PATHS

We model human navigation paths by computing Djik-
stra’s shortest path algorithm on a weighted information
network, where edge weights are computed to correspond to
a shortest path through some concept space. For example,
consider the illustration in Figure 2, which represents the
Global warming node belonging to both, the article-network
whose content links to other articles in a directed manner and
belongs to a concept space also. Recall from Figure 2 that
the shortest path between the source and destination nodes is
actually only 2. Yet human navigators are typically unaware
of the optimal paths between disparate nodes. So instead,
humans are likely to pick a topologically non-optimal route
that is deemed, by the walker, to move conceptually closer
to the target [7]. Because Global warming is conceptually
very distant from Fidel Castro intermediate steps need to be
taken when navigating from one to the other. The CatPath
model approximates human behavior by weighting each
edge in the information network by its distance through the
concept space.

Formally, we define an information network as {V,E} =
G, where V is the set of all vertices and E is the set of all
edges that connect two vertices. Many times, an information
network has a concept space, schema or type system. In the
CatPath model the vertices v ∈ V are defined as being either
concept-nodes (c-nodes, ∗c) or physical-nodes (p-nodes, ∗p)
according to their function in the graph. The edges e ∈ E



are defined as being either a concept-edge (c-edge, u∗ ↔ vc)
that connects any node to a c-node, or a physical edge
(p-edge, up → vp) that connects two p-nodes. The delin-
eation of concept versus physical is a problem and graph-
dependent, but generally p-nodes correspond to concrete,
atomic objects and c-nodes correspond to an amalgamation
or classification of one or more other nodes.

Wikipedia is one example of such an information network,
where Wiki-articles correspond to p-nodes, category pages
correspond to c-nodes, Wiki-links are directed edges that
connect two p-nodes, and category links are undirected
edges that connect two c-nodes or a p-node with a c-node.
In this example, Wiki-articles represent well defined, actual
objects or ideas, whereas category nodes are conceptual
classifications or agglomerations of Wiki-articles as well as
other category nodes.

For a given source p-node up ∈ V and destination p-
node vp ∈ V , a path through the information network is
a sequence of edges that connects up to vp denoted up ;
vp. The shortest path between two nodes up and vp is the
shortest sequence of edges that connect up to vp; ties are
broken arbitrarily. Because of the differences between p-
nodes and c-nodes defined in the CatPath model, we define
two types of paths: physical paths (p-paths) and concept
paths (c-paths aka CatPaths). A physical path exists between
two p-nodes and must only contain other p-nodes up →
xp → · · ·p → vp. A concept path also exists between two
p-nodes but must only contain c-edges, i.e., up → xc →
· · ·c → vp.

The CatPath approach to human navigation assumes that
humans navigate to nodes that are most conceptually re-
lated to their current node with respect to their destination.
CatPath therefore re-weights p-edges incident to the current
node according to length of the corresponding shortest c-
edge. Formally, given a current node xp with outgoing edges
to node yp and zp, CatPath sets the weight of each edge to
be the length of the corresponding shortest c-path between
xp ;c yp and xp ;c zp respectively.

In the running example, the link between Global warm-
ing and World is given a weight of 7 because the shortest
c-path through the category graph traverses 7 c-edges (5
category-to-category-edges, 2 category-to-article edges, and
incidentally includes 6 category-nodes). Similarly the weight
between Global warming and Global natural environment
is 2, and the weight between Global natural environment
and World is 2. With these weights computed a decision can
be made about which node should be traveled to next.

In the general case, CatPath models conceptual separation
of otherwise connected nodes in an information network by
finding the shortest path through its concept-space. Adjacent
p-nodes that are conceptually close together will have a
short corresponding c-path and therefore be given low edge
weights; conversely, adjacent p-nodes that are conceptually
far apart are likely to have longer c-paths and therefore are

likely to be given higher weights.
In order to efficiently compute the CatPath distance, each

edge weight is computed lazily, that is, we take the category
distance between two nodes xp and yp when performing
a relaxation. This results in a nested-shortest path search,
wherein the outer-shortest path search uses Dijkstra’s al-
gorithm to perform relaxations on the information network
using weights computed via an inner-shortest path search.
For our purposes Dijkstra’s algorithm is tuned so that
lower weights are better. The inner-shortest path search
performs the Dijkstra-like breadth first search (BFS) on the
unweighted concept network between the adjacent nodes
from the outer-shortest path search. The length between
these two adjacent nodes is returned to the outer-shortest
path searcher and set as the weight between current xp and
a candidate next-node yp.

Summary: CatPath models human path finding by
performing shortest path search on a network where the
edges are weighted by their distance in the concept hierarchy
(e.g.Wikipedia’s category hierarchy). We consider CatPath to
be a local-global hybrid model because the edge-weights are
computed locally, while the shortest CatPath from source to
destination is inherently a global metric. In contrast, we view
the human navigation model of Trattner et al. [11] (based
on the social networks model of Adamic et al. [10]) as a
global model because it greedily navigates to the adjacent
node that is globally closest to the destination. Similarly, we
view the ϵ-greedy model of Helic et al. as a global model
because it too chooses to navigate to the adjacent node that
is globally closet to the destination (albeit with a 1−ϵ chance
randomness [12]).

A. Implementation Details

The CatPath model must run on very large, complex
datasets. Procedural programming methods, including Di-
jkstra’s dynamic programming approach to shortest path
finding, is infeasible for even moderately sized graphs. This
is especially true for the nested path finding algorithm
employed by CatPath. To address these issues we imple-
mented the nested shortest path algorithm in the vertex
programming paradigm using the Pregel-like framework,
PowerGraph [14]. CatPath was implemented as a rather
straightforward adaptation of the existing single source
shortest path algorithm for vertex programming. The CatPath
vertex program was able to compute the category distance
from a given starting point to all other nodes in the 10
million node Wikipedia graph in a couple of hours on
average.

III. EXPERIMENTS

In order to determine the ability of CatPath to model
human path-finding behavior, we compare paths of human
navigation to the CatPath model as well as the shortest path



and the personalized PageRank score [2] (i.e., random walk
with restart) on a large information network.

A. Datasets

The Wikipedia dataset used in this work was retrieved
from the public data dump in December 2013. Wikipedia
is an ideal example of an information network with a built
in concept space. It consists of 10,276,554 pages, of which
about 4 million are standard Wiki-articles, over 1 million
category nodes, and 740 million total edges, other pages
are redirects or disambiguation pages. In addition, we use
a collection of human paths collected from the managers
of the Wikipedia Game1, an online and mobile game that
places users at random Wikipedia pages and asks them to
find another random Wiki-page. The Wiki Game setup is a
nearly ideal human signal for our task for two reasons: 1)
humans are given a destination and asked to find it in the
fewest number of clicks possible, and 2) the Wiki Game
is an untimed competition which allows human navigators
to think carefully about their selections while providing a
competitive incentive to perform as effectively as possible.
The Wiki Game dataset was collected in June of 2013 and
contains 1,966,704 games with 54,996 users. Within this set
of games, 7,052 distinct source nodes and 3,497 distinct
destination nodes are observed, see [15] for more details
on these user-generated paths.

Note that the Wiki Game dataset uses the full Wikipedia
network and is different from the Wikispeedia game. While
the source and destinations in the Wiki Game appear artifi-
cial, keep in mind that two disparate pages make it difficult
rely on intuition to easily make a decision on what link to
follow. Disparate pages forces players to integrate knowl-
edge of the two concepts and the workings of Wikipedia
hyperlinks. We are, after all, interested in how the underlying
network structure is leveraged in these tasks. The size of the
combined dataset is significant in terms of computation and
the memory footprint required to find answers to questions
in a reasonable amount of time and with out excessive
hardware needs. Moreover, the massive trails of clicks left
behind by Wiki Game users, or from similar datasets, offer
unprecedented opportunities to enhance our understanding
of human behavior.

B. Methodology

Recall that the overarching goal of this paper is to develop
a model that simulates HP finding in large information net-
works. With that in mind, we need to compare the proposed
CatPath model to as many traces of human navigation as
possible. A comparison methodology, therefore, ought to
satisfy two objectives: (1) the test set should be large and
diverse, and (2) because human navigation traces may be
wildly inconsistent, the test set should contain as many traces
of human paths as possible for each source and destination.

1http://thewikigame.com/

With these goals in mind, we selected the 100 most
frequent source nodes from the 7,052 Wiki Game starting
points, that is, we selected the 100 nodes that serve as the
starting points for the most games. Using these 100 most
frequent starting points, we found the CatPath distance,
shortest path distance and personalized PageRank (PPR)
scores for each possible target node. For example, the
most common starting point was World War I, so CatPath,
shortest path and PPR scores were generated between World
War I and all other Wiki-articles. This process was repeated
for the remaining 99 frequent starting points.

Alternative path sampling strategies are possible, but the
above methodology does satisfy the stated objectives result-
ing in a test set that is large and contains many comparable
human paths. In the remainder of this section we determine
which path generation technique best approximates traces of
human navigation.

1) Path Comparison Metrics: The working dataset is
briefly described using the metrics shown in Table I after
filtering out unsuccessful human paths (i.e., Wiki Games
that did not reach the destination), and human paths that
exceeded 30 clicks (i.e.the extreme tail of the path length
distribution).

Table I: Summary statistics of the dataset and KS-test
statistics comparing the shape of path length distributions.
Lower is better. ∗ indicates p-value < 0.001. Kolmogorov-
Smirnov goodness of fit tests (KS-test) were performed
to determine how the shape and size of the distributions
compare.

Path Metric Summary KS-test
ν µ Mo σ HP CatPath PPR SP

Human Path 5 6.13 6 2.52 0 0.06∗ 1.0∗ 0.95∗

CatPath 5 5.82 5 2.01 0 1.0∗ 0.98∗

PPR - - - - 0 0.99∗

Shortest Path 3 2.87 3 - 0

Contrary to the reports by West and Leskovec, who
found that the median path lengths of human paths and
shortest paths only differ by a length of 1 [7], we find that
human paths are much longer than the mean and median
as compared to the actual shortest paths. It is unclear why
these results are so drastically different than the result
of West and Leskovec; similar path filtering is performed
in both cases and the sample sizes are both sufficiently
large so as to preclude statistical anomaly. One possible
explanation stems from the datasets used. The network used
by West and Leskovec is a rather small educational subset of
Wikipedia containing only 4,604, which is nearly 3 orders of
magnitude smaller than the data set used in this experiment.
It may be reasonable to assume that larger networks offer
a greater opportunity for a user to veer off course and take
longer paths on average. Another possible explanation for
this discrepancy may be due to the differences between



the Wikispeedia dataset, developed and used in West and
Leskovec’s experiments, and the Wiki Game dataset used
in this work. We will not enumerate the differences here
except to say that it is possible, although we argue not
particularly likely, that minute differences in gameplay may
render comparison moot.

The results from Table I show a small sample of some
positive results. The CatPath length and Human Path length
(HPL) mean, median, mode and standard deviations seem,
at first glance, to match quite well. The next section
performs a through comparison of the proposed CatPath
Model with Personal PageRank (PPR) [2], the shortest path
and the recorded human paths. Related work is generally
incomparable because, for example, West and Leskovec
do not propose a model for human paths per se; instead,
their work describes the form of human traces and uses
those features to predict a user’s destination [7]. Similarly,
Adamic and Adar’s work does not investigate traces human
navigation, but rather topological separation due to email
correspondence [10]. The work by Trattner et al. and the
study by Helic et al. are the most relevant, but still they
mainly focus on hierarchy induction and path similarity.
The former used both, artificially induced hierarchies from
external knowledge, an approach rooted in the well cited
work of Benz et al. [16], and Wikipedias inherent category
labels [11], [12]. Trattner et al. concluded that the inherent
hierarchy of the network can approximate human navigation
better than induced hierarchies from external knowledge.
Thus, we limit our work to Wikipedia’s category labels to
build our concept space.

To compare the applicable models we look at the shape
and content of the various paths with the following metrics:
· Path Length is the number of edges traversed in order to
navigate from the starting point to the destination. This is
indeed a simple metric, yet two paths of differing lengths are
naturally not the same, and the dissimilarity between the two
paths is naively proportional to the path length difference.
· Path Distance is the summation of the edge weights
traversed as the user navigates from a source to the des-
tination. Distinguishing path distance from path length is
important in the context of this paper because edge weights
are determined by the Category graph distance, which is
critical to the underlying model. To compare path length
and path distance we employ standard correlation statistics:
Pearson’s r, which measures the correlation between pairs
of values in two lists, and Kendall’s τ , which measure the
correlation between pairs of ranks in two lists. A high
correlation would indicate that the compared models are
similar.
· Distance-to-go In addition to the total path length we also
compare paths by observing how they change as the human
navigator moves closer to the target. In this metric, we
compare all possible states of navigation (at the beginning,
with l − 1 edges remaining, l − 2 edges remaining, etc) in

each applicable model. Agreement of two or more models
in this metric would indicate similarity; disagreement in this
metric would indicate the opposite.
· Length-to-go Just as path distance is similar to path
distance as described above; length-to-go is analogously
similar to distance-to-go.
· Mean Difference In addition to correlations, differences
in path lengths is another indicator of path similarity. The
smaller the mean difference the more similar the paths. This
is similar to the stretch metric used in works by [11], [12].
· Jaccard Coefficient The previous methods have mostly
focused on topological path measures. However, the content
or labels of nodes can provide further insight into the
similarity of the paths generated by various models. The
Jaccard coefficient, defined as (P ∩Q)/(P ∪U) for two sets
P and Q, is the natural way to express similarity in terms
of node/object overlap.

Taken together, these metrics provide a reasonable assess-
ment toolbox that is used to identify the relative effectiveness
of CatPath in the next section.

C. Results

For each of the top 100 starting points (u) in the Wiki
Game we computed the number of clicks needed to reach
every end-point (v). The corresponding sum of weights
in the resulting CatPath (i.e., the CatPath distance) was
computed for each u ; v, as were shortest path length
(SPL) and PPR scores. Pearson’s correlation and Kendall’s
τ were computed on the resulting measurements and are
listed in Table II.

Table II: Kendall’s rank correlation τ and Pearson’s product-
moment correlation

τ τ p-value r2 p-value

CatPath – PPR -0.165 ≤ 2.22e-16 0.0006 5.7e-06
CatPath – SP 0.319 ≤ 2.22e-16 0.1184 2.2e-16
CatPath – HP 0.178 ≤ 2.22e-16 0.0130 2.2e-16

SP – PPR -0.0967 ≤ 2.22e-16 0.0028 2.2e-16
HP – PPR -0.0835 ≤ 2.22e-16 0.00014 0.024
SP – HP 0.125 ≤ 2.22e-16 0.0065 2.2e-16

We find that CatPath distance is most correlated with
SPL. However, most importantly, human path lengths are
most correlated with CatPath distances. This means that
larger CatPath distances correspond to longer human paths
in both ranked-difference, measured by Kendall’s τ , and in
path length, measured by Pearson’s r. Furthermore, PPR
scores have, as expected, a negative rank correlation; this
is because low PPR scores typically correspond to longer
network distances and therefore higher path lengths.

Figure 3 shows scatter plots for each navigation path
correlation pair. These figures are an early, albeit sim-
ple, indication that CatPaths are a good model for human
navigation paths. CatPaths and shortest paths are pairwise
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Figure 3: Scatterplots comparing path lengths for each path navigation model. Only 500 random points are plotted in each
subfigure for efficient document rendering. Slope of linear regression line indicates correlation strength. Pearson’s r, Kendall’s
τ and corresponding p-values are shown in Table II.

compared with each other using Pearson correlation coef-
ficient to show that these sets are not correlated. A value
of 1 indicates highly correlated sets while a value of 0
implies no correlation. These results were significant with
p-value ≈ 0. Additionally, we subjected pairs of CatPaths,
shortest paths, and human paths to Kendall’s τ−test to
calculate the correlation coefficient and significance values
(p-values) as a relative measure of linear dependency of two
variables.

Exploring these plots a bit closer we can see, e.g.in
Figure 3b, evidence that our model of human navigation
computes CatPaths with higher path length compared to
the optimal node count. This figure appears sparse on the
surface because many of the node hops are distributed
very tightly on the shortest path range of 1 and 3. The
figure shows a large and significant number of shortest
paths of length 1, 2 and 3. Where as CatPaths plotted
against HPL, e.g. in Figure 3c, have a wider range. A close
look at the actual values highlights the evidence that the
mean of the path length from CatPath approximates that of
HPL. Lastly, in Figure 3f we see again that SPL, which
we interchangeably equate with the optimal path length)
is tightly bounded between 1 and 3, inclusive, but human
paths have a wider range of values. This empirical evidence
tells us that humans traverse through a higher node count
space than the network’s optimal shortest path. Personalized
PageRank as a function of CatPath, shortest path, and HPL,
e.g. in Figures 3a,3d, and 3e, collectively show that local
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Figure 6: CatPath length (i.e., p-path length) as a function
of: (a) the CatPath distance (i.e., sum of weights), and (b)
HPL. Note that only 500 random points were plotted in these
figures for efficient document rendering.

importance or influence of each node in a chain has about
the same ranking and is independent of path length type.

CatPath distance is defined as the sum of their path’s
edge weights. For example, in Figure 2, although the final
p-path has a length of 6, the CatPath distance is 15 (not
illustrated). In general, the total weight of a CatPath must
be at least twice as long as its length because each c-path has
a minimum length of 2. Figure 6 shows the correlation of
the p-path lengths as a function of the CatPath distance (6a)
(τ = .867, r2 = 0.80, p < .001) and as a function of their
corresponding HPL (6b) (τ = 0.296, r2 = 0.049, p < .001).
A strong correlation between weight and length is obvious,
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Figure 5: CatPath distance-to-go as a function of (a) PPR, and (b) human path
length-to-go with standard error (red) and 95% confidence intervals (black)

but the correlation between human paths and p-path lengths
is only slightly positive.

If we compute the difference in path lengths for all
paths, we view path similarity from a different perspective.
Figure 4 shows the mean difference in path lengths between
human navigation paths and CatPath distances as well as
human navigation paths and shortest paths. Our study of the
completed paths, in the Wiki Game, yields median values
for shortest and human paths centered around 2 and 5
respectively. This result is consistent with other studies of
the Wiki Game (for won or completed games) [17] that find
actual paths to be more than 1 hop away from the optimal
path length. The PPR score does not actually generate a
path, therefore path length measurements are not available
for PPR.

Rather than total path length, a better way to compare
paths is by observing how they change as the human
navigator moves closer to the target. Figure 5a shows the
mean PPR scores as a function of how CatPath and shortest
path navigate through the network. We find that as humans
navigate towards the target their PPR scores steadily rise to
an average peak 4 steps away from the target before dropping
as they finalize their path. Recall that these PPR scores are
driven from the starting node, not the target node; thus, the
initial rise in scores indicate that humans navigate to highly-
connected (i.e., high PageRank) yet topically specific nodes
before finalizing their path through other nodes. The peak of
human paths in Figure 5a is echoed in results by West and
Leskovec [7] and indicate a tipping point between nodes that
are relevant to the source-node (left-side of the peak) and
nodes that are relevant to the destination-node (right-side of
the peak). Most importantly, we find that the CatPath model
generates paths that possess this important property.

In the same spirit at the above results, Figure 5b shows
the CatPath distance-to-go as a function of human-path
lengths. We find that CatPath distances correlate with human
path lengths up to a distance of about 7. After this point,
the CatPath distances do not continue rise with human
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Figure 7: Distribution of path lengths for various models.
PPR does not result in a path length; rather the PPR score
between the source and the destination nodes discretized into
30 equal size bins for comparison-sake.

path lengths. These results indicate that CatPath distances
are better at modeling short human navigation paths than
long, meandering human paths. This is because the CatPath
model does not account for randomness or missteps that are
common in human navigation, and because longer human
paths are likely caused by missteps or random-guessing, the
non-stochastic CatPath model not correlate well with longer
human paths.

Figure 7 show the distribution of path lengths for the
various models. The HPL distributions shown here are
similar in size and shape to the human path results of
West and Leskovec, however the shortest path distribution
described in Figure 7 is skewed leftward as compared the
smaller graph used by West and Leskovec [7]. This is likely
due to densification laws that govern graph sizes; that is,
as graphs grow in size their average shortest path size
shrinks [18]. We find that the distribution of CatPath lengths
and lengths of human paths is very similar, even in the tail
of the distribution. Scores for SPL and PPR (discretized into
30 bins) do not match the size and shape of human paths.
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Figure 8: Distributions of Jaccard coefficients of CatPath
traces and shortest paths compared to human path traces,
as well as mean Jaccard coefficients with standard error
(red) and 95% confidence intervals (black) (inset). Higher
is better.

Path lengths, distances and differences show the size and
shape of the path topology. Another way to compare the
models is by looking at the actual node labels (e.g., the
title of the Wikipedia article) and finding the amount of
overlap between various paths. For example, if a human path
contained the p-nodes up → xp → yp → zp → vp, the
corresponding CatPath contained up → xp → ap → zp →
vp and the shortest path contained up → bp → vp then we
would conclude that the CatPath was more similar to the
human path because it has xp and zp in common, whereas
the human path and shortest path have no nodes in common2.

Figure 8 shows the distribution of Jaccard coefficients
as well as the mean Jaccard coefficients (inset) comparing
human paths to shortest paths and the CatPath model re-
spectively. We find that the CatPath model generates higher
Jaccard coefficients (i.e., a larger normalized overlap) with
the human path traces than do shortest paths. This indicates
that the actual nodes selected by CatPath overlaps those
chosen by humans more frequently than alternate models.

IV. CONCLUSIONS

In this paper we develop the CatPath model for human
navigation. This model is based on the observation that hu-
man paths are typically longer than shortest-path estimates,
are based on local perceptions of conceptual relatedness, and
have a peculiar tipping point pattern that indicates when a
human is heading towards the destination rather than away
from the source.

We report the results of a suite of experiments on traces
of human paths through Wikipedia via the Wiki Game and
conclude that paths generated by the CatPath model are more
similar to human paths than alternatives.

2source and destination nodes are always in common in all experiments
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