
Collaborative and Structural Recommendation of Friends using
Weblog-based Social Network Analysis

William H. Hsu, Andrew L. King, Martin S. R. Paradesi, Tejaswi Pydimarri, Tim Weninger

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

 {bhsu | aking | pmsr | tejaswi | weninger}@ksu.edu http://www.kddresearch.org

Abstract

In this paper, we address the problem of link
recommendation in weblogs and similar social
networks. First, we present an approach based
on collaborative recommendation using the link
structure of a social network and content-based
recommendation using mutual declared interests.
Next, we describe the application of this
approach to a small representative subset of a
large real-world social network: the
user/community network of the blog service
LiveJournal. We then discuss the ground
features available in LiveJournal’s public user
information pages and describe some graph
algorithms for analysis of the social network.
These are used to identify candidates, provide
ground truth for recommendations, and construct
features for learning the concept of a
recommended link. Finally, we compare the
performance of this machine learning approach
to that of the rudimentary recommender system
provided by LiveJournal.

Keywords: social networks, collaborative
recommendation, LiveJournal, machine learning, data
mining, graph algorithms

1 INTRODUCTION
This paper presents a recommender system for links in a
social network. Such links have different meanings
depending on the start and end points: between users of a
weblog service denote friendship or trust; between users
and communities, they denote subscribership and
requested privileges such as posting access; between
communities and users they denote accepted members
and moderator privileges. Specific recommendation
targets for weblogs include links (new friends and
subscriberships), security levels (link strength), requests
for reciprocal links (trust, membership and moderatorship
applications), and definition of security levels (filters).
There are analogous applicatons of this functionality in

social networks such as citation and collaboration
networks.

We investigate the problem of link recommendation in
such weblog-based social networks and describe an
annotated graph-based representation for such networks.
Our approach uses graph feature analysis to recommend
links (u, v) given structural features of individual vertices
and joint features of the start and end points of a
candidate link, such as distance between them. We
present a hybrid system that combines analysis of link
structure with analysis of content, such as shared interests.
This framework supports more in-depth analyses of
structure combined with content, for normalization,
feature construction, learning of constraints, clustering of
a user’s friends and communities. Such capabilities in
turn support more sophisticated recommendations such as
the security level of new and existing friendships.

In this paper, we describe how this hybrid approach was
used to develop LJMiner, a recommender system for the
popular weblog service LiveJournal. LJMiner
differentiates friends from non-friends in a connected
group of users with greater accuracy than the
recommender system actually used by LiveJournal –
namely, ranking users and communities by decreasing
count of mutual interests. This task is similar to the friend
recommendation task given candidates within a specified
radius, so the result is a strong positive indication that
LJMiner can generate better recommendations than
interest-based or simple graph-based recommendation in a
fielded application.

2 BACKGROUND

2.1 Social Networks in Weblogs
Social network services such as Denga’s LiveJournal,
Google’s Orkut, Friendster, and The Facebook allow
users to list interests and link to friends, sometimes
annotating these links by designating trust levels or
qualitative ratings for selected friends. Among the most
popular of these is the weblog service LiveJournal, a
highly customizable and flexible personal publishing tool

used by several million users. In this work, we focus on
LiveJournal and derivative services such as
GreatestJournal, DeadJournal, and JournalFen based on
the same open-source server code. At the time of this
writing, there are over 8.5 million LiveJournal accounts,
of which over 2.5 million are active; these are either user
accounts, associated with one or a small number of
individuals, or communities (each a forum for multiple
users similar to MSN Communities or Yahoo! Groups).
The embeddability, syndication, OpenID integration, and
metadata features of LiveJournal make it a rich source of
structured data about these users and communities, and
the interrelationships among them.

Friendship in LiveJournal is an asymmetric relation
between two accounts and which can be represented as an
edge in a directed graph. Either the start vertex u or the
end vertex v may denote either a user account or a
community account, though community-to-community
links are not used. Table 1 lists the categories of links
and specific link types. Community-to-user links are of
three independent types: “member”, “posting access”, and
“maintainer” (post and membership moderation). Of
these relations, only membership is requested by users or
invited by maintainers; the rest are privileges granted by
maintainers.

Table 1. Types of links in the blog service LiveJournal.

Start End Link Denotes
User User Trust or friendship
User Community Readership or

subscribership
Community User Membership, posting

access, maintainer
Community Community Obsolete

Thus, a reciprocal link between a user and a community
means that the user subscribes to the community and is an
accepted member of the community. Subscriptions are
listed in the “Friends: Communities” section of the user’s
page and in a list titled “Watched By” in the community’s
page. Links from user u to v are listed in the “Friends”
list of u and in an optionally displayed “Friends Of” list of
v. This list can be partitioned into reciprocal and non-
reciprocal sublists for a user u:

Mutual Friends: { v | (v, u) ∈E ∧ (u, v) ∈ E }

Also Friend Of: { v | (v, u) ∈ E ∧ (u, v) ∉ E }

The social network for the LiveJournal user base consists
of many connected components. There are a few source
vertices corresponding to users that link to friends but
have no reciprocated friendships. Many of these are
aggregator accounts created for reading RSS or other
users’ blog entries. Additionally, there are sink vertices
corresponding to users or communities watched by others,
but who have named no friends. Some of these are

channels for announcement or dissemination of creative
work.

2.2 Collaborative, Structural, and Content-Based
Link Recommendation

We now discuss the link recommendation problem, the
available data, and some previous approaches. One social
function of many weblog services is to introduce people
to new friends and communities and to provide content
aggregators and communication media among people who
know each other. The basis for these introductions is
often the list of interests reported by a user or community
maintainer.

LiveJournal collects all of the abovementioned
information on the social network structure, along with
user interests, self-reported personal information, and
descriptive statistics about posting history in a user
information page for each account. We seek to mine this
data in order to provide improved link recommendations.
Our hypothesis is that recommendations based only on
shared interests can be greatly improved using
information about the graph structure. For instance, local
structural features such as whether a link already exists
from the candidate friend to the recommender system
user, how many mutual friends of the user and candidate
there are, and the degree of user and candidate all provide
some supporting evidence for a link recommendation.
Additionally, search-based graph analysis can yield
information about the shortest alternate path in
friendships from the user to the candidate, and vice versa.

The long-term goal of this research is to explore ways in
which contextual information can be combined with
graph structure or descriptive graph features to obtain an
enriched model for making weblog-based link
recommendations. Examples of this information include
user interests, preferences and constraints (e.g., desired
ranges or limits for number of friends). Mechanisms for
combining structural and contextual information include
filtering candidate sets by graph proximity, counting
number of mutual friends sharing certain interests,
normalizing weights of shared interests based on dynamic
itemset frequency within a certain graph radius.

Initially, we consider a predominantly collaborative and
structural approach to recommendation: we hypothesize
that users are likely to prefer links similar to extant ones
and therefore generate candidates in this paper from
within a specified radius in the social network. This is a
form of collaboration in that the paths are formed by other
users’ choices of friends. Statistics such as the indegree
of a vertex, denoting length of the users “Frends Of” list,
are similarly collaborative in nature. We also use counts
of mutual interests and mutual friends (structural
recommendation). In the next section, we discuss the
acquisition of data and experiment design for this
recommendation problem.

3 EXPERIMENT DESIGN

3.1 LJCrawler
To acquire the graph structure and attributes describe in
the previous section, we developed an HTTP-based spider
called LJCrawler to harvest user information from
LiveJournal This multithreaded program collects an
average of 5 records per second, traversing the social
network depth-first and archiving the results in a master
index file. Because LiveJournal’s functionality for
looking up users by user number is only available to
administrators, we decided to compile a list of seeds for a
disjoint-set representation of the disconnected social
network. For purposes of this experiment, however,
starting from just one seed (the first author’s LiveJournal
ID) and restricting the crawl to one connected oomponent
was sufficient.

Using LJCrawler, we compiled an adjacency list and the
following ground features for each user:

• Account type (user, community)
• Paid status (free, paid, permanent)
• Dates of creation and last update
• Interest list

3.2 Feature Analyzers
We define a single example to be a candidate edge (u, v)
in the underlying directed graph of the social network,
along with a set of descriptive features calculated from
the annotated graph recorded by LJCrawler:

Graph features:

1. Indegree of u: popularity of the user
2. Indegree of v: popularity of the candidate
3. Outdegree of u: number of other friends besides

the candidate; saturation of friends list
4. Outdegree of v: number of existing friends of the

candidate besides the user; correlates loosely
with likelihood of a reciprocal link

5. Number of mutual friends w such that u → w ∧
w → v

6. “Forward deleted distance“: minimum
alternative distance from u to v in the graph
without the edge (u, v)

7. Backward distance from v to u in the graph

The degree attributes can be enumerated in time linear in
the number of users, as can the mutual friends count for
each pair of users. Deleted distance requires one iteration
over w for shortest path algorithm (re-relaxation). In a
graph (V, E), backward distance requires Θ(|V|3) using the
brute-force dynamic programming implementation
produced for this experiment, Θ(|E| lg |E|) using a simple
heap, and Θ(|V| lg |V| + |E|) using Fibonacci heaps.
[CLRS02]

Interest-based features:

8 Number of mutual interests between u and v
9 Number of interests listed by u
10 Number of interests listed by v
11 Ratio of the number of mutual interests to the

number listed by u
12 Ratio of the number of mutual interests to the

number listed by v

Using a straightforward string pair enumeration and
comparison algorithm, the mutual interest counts are
stored in matrix of |V|2 elements, each requiring constant
time to check (given a maximum of 150 interests).

Other features: Additional planned features for
continuing experiments include dates (update frequencies
when taken differentially), user options such as maximum
friends count, and content descriptors of LiveJournal
entries and comments (average post length, word
frequency, etc.).

3.3 Generating Candidates
We considered several alternative ways to generate
candidate edges (u, v):

1. Uniform at random
2. From a query distribution modeled on the

frequency of vertices at a given graph distance
3. Exhaustively within a specified radius

The first technique is likely to be unscalable, as the
number of candidates is |V|2. The second requires having
a representatively large sample of the full LiveJournal
social network, in order to fit the distribution parameters
accurately. The third was the most straightforward to
implement. Two calls to the all pairs shortest path
algorithm provided cost matrix, and one pass at each
radius up to a maximum of 10 yielded the data shown in
Table 2. To simplify the initial experiments, we defined
the classification problem to be classification of d(u, v) as
1 or 2.

Table 2. Number of candidate edges for the 941-node
LiveJournal graph.

Distance d Frequency
(= d)

Cumulative
(≤ d)

1 5934 5934
2 45042 50976
3 69013 119989
4 101256 221245
5 87683 308928
6 51040 359968
7 29981 389949
8 13230 403179
9 4808 407987

10 1022 409009

This task is actually useful for social network
recommender systems because discrimination of a direct
friend from a “friend of a friend” (FOAF) is functionally
similar to recommending FOAFs to link to directly.
There are more detailed classification targets, such as
placement, promotion, and demotion of linked friends
within strata of trust (setting, increasing, and decreasing
the security level), but choosing a user’s friends to begin
with is the more fundamental decision.

4 RESULTS

4.1 Small Experiment
Using the 941-node annotated graph summarized in Table
2, we generated 50976 candidate edges. Note that all
forward distances are greater than 1: when u and v are
actually connected, we erase (u, v) and find the length of
the shortest alternative path. The complete listing of all
twelve features is given in Section 3.

The numerical types of all of the network features – both
the ones describing the graph and those measuring and
interests and ratios – makes data set amenable to logistic
regression.

We defined the concept IsFriendOf and trained three
types of inducers with:

1. all attributes
2. all graph attributes excluding the forward and

backward distances
3. the backward distances alone
4. the backward and forward distances alone
5. interest-related attributes alone.

Table 3. Percent accuracy for predicting all classes
using the 941-node graph.

Inducer All NoDist BkDist Dist Interest
J48 98.2 94.8 95.8 97.6 88.5
OneR 95.8 92.0 95.8 95.8 88.5
Logistic 91.6 90.9 88.3 88.9 88.4

Table 4. Percent accuracy for predicting edges (d = 1,
IsFriendOf = TRUE) using the 941-node graph.

Inducer All NoDist BkDist Dist Interest
J48 89.5 65.7 67.7 83.0 5.4
OneR 67.7 41.1 67.7 67.7 4.5
Logistic 38.3 33.3 0 4.5 4.5

Tables 3 and 4 show the results for three inducers: the J48
decision tree inducer, the 1R inducer, and the Logistic
regression inducer. All accuracy measures were collected
over 10-fold cross-validated runs. The J48 output wth all
features achieves a significant boost over the next highest
(distance only).

4.2 Interpretation
Using mutual interests alone, even with normalization
based on the number of interests in u and v, results in very
poor prediction accuracy using all inducers with which we
experimented. Intermediate results are achieved using
mutual friends count and degree (NoDist: 65.7% on
predicting edges) and using forward deleted distance and
backward distance (Dist: 67.7%). Using all 12 computed
graph and annotation features resulted in the highest
prediction accuracy (All: 89.5%).

We note that LiveJournal once used a variant of
normalized mutual interests to produce a list of potential
friends, arranged in decreasing order of match quality.
Although this was not the same type of recommender
system as LJMiner supports, it shows that the state of the
art user matching systems have a lot of room for
improvement. The results in Table 4 indicate that features
produced by LJMiner, used with a good inducer, can
generate collaborative and structural recommendations.

5 CONTINUING WORK

Scaling up: Our current research focuses on scaling up to
tens of thousands and eventually millions of users.
Crawling 8 million records is at least technically feasible,
but scaling up the graph analyzers is a challenge that may
best be met with heuristic search.

Learning relational models: A promising area of
research is the recovery of relational graphical models,
including class-level (membership and reference slot)
uncertainty. [GFKT02] LJMiner has yielded a ready
source of semistructured data for both structure learning
and distribution learning. Another potentially useful
approach is to organize users and communities into
clusters using this relational model. We have developed
schemata for blog posts (entries, threads, comments) and
for users and dynamic groups of users. The next step in
our experimental plan is to use these schema to learn a
richer predictive model.

6 ACKNOWLEDGEMENTS
We thank Todd Easton and Kirsten Hildrum for helpful
discussions and Jason Li for assistance with
implementations.

7 REFERENCES
[GFKT02] L. Getoor, N. Friedman, D. Koller, & B.
Taskar. Learning Probabilistic Models of Link Structure.
Journal of Machine Learning Research, 2002.
[CLRS02] Cormen, Leiserson, Rivest, R., & Stern.
Introduction to Algorithms, second edition. Cambridge,
MA: MIT Press.

