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Abstract 
 
In this paper, we address the problem of link 
recommendation in weblogs and similar social 
networks.  First, we present an approach based 
on collaborative recommendation using the link 
structure of a social network and content-based 
recommendation using mutual declared interests.  
Next, we describe the application of this 
approach to a small representative subset of a 
large real-world social network: the 
user/community network of the blog service 
LiveJournal. We then discuss the ground 
features available in LiveJournal’s public user 
information pages and describe some graph 
algorithms for analysis of the social network.  
These are used to identify candidates, provide 
ground truth for recommendations, and construct 
features for learning the concept of a 
recommended link. Finally, we compare the 
performance of this machine learning approach 
to that of the rudimentary recommender system 
provided by LiveJournal. 

Keywords: social networks, collaborative 
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1 INTRODUCTION 
This paper presents a recommender system for links in a 
social network.  Such links have different meanings 
depending on the start and end points: between users of a 
weblog service denote friendship or trust; between users 
and communities, they denote subscribership and 
requested privileges such as posting access; between 
communities and users they denote accepted members 
and moderator privileges.  Specific recommendation 
targets for weblogs include links (new friends and 
subscriberships), security levels (link strength), requests 
for reciprocal links (trust, membership and moderatorship 
applications), and definition of security levels (filters).  
There are analogous applicatons of this functionality in 

social networks such as citation and collaboration 
networks.   

We investigate the problem of link recommendation in 
such weblog-based social networks and describe an 
annotated graph-based representation for such networks.  
Our approach uses graph feature analysis to recommend 
links (u, v) given structural features of individual vertices 
and joint features of the start and end points of a 
candidate link, such as distance between them.  We 
present a hybrid system that combines analysis of link 
structure with analysis of content, such as shared interests.  
This framework supports more in-depth analyses of 
structure combined with content, for normalization, 
feature construction, learning of constraints, clustering of 
a user’s friends and communities.  Such capabilities in 
turn support more sophisticated recommendations such as 
the security level of new and existing friendships. 

In this paper, we describe how this hybrid approach was 
used to develop LJMiner, a recommender system for the 
popular weblog service LiveJournal.  LJMiner 
differentiates friends from non-friends in a connected 
group of users with greater accuracy than the 
recommender system actually used by LiveJournal – 
namely, ranking users and communities by decreasing 
count of mutual interests.  This task is similar to the friend 
recommendation task given candidates within a specified 
radius, so the result is a strong positive indication that 
LJMiner can generate better recommendations than 
interest-based or simple graph-based recommendation in a 
fielded application. 

2 BACKGROUND 

2.1 Social Networks in Weblogs 
Social network services such as Denga’s LiveJournal, 
Google’s Orkut, Friendster, and The Facebook allow 
users to list interests and link to friends, sometimes 
annotating these links by designating trust levels or 
qualitative ratings for selected friends.  Among the most 
popular of these is the weblog service LiveJournal, a 
highly customizable and flexible personal publishing tool 



used by several million users.  In this work, we focus on 
LiveJournal and derivative services such as 
GreatestJournal, DeadJournal, and JournalFen based on 
the same open-source server code.  At the time of this 
writing, there are over 8.5 million LiveJournal accounts, 
of which over 2.5 million are active; these are either user 
accounts, associated with one or a small number of 
individuals, or communities (each a forum for multiple 
users similar to MSN Communities or Yahoo! Groups).   
The embeddability, syndication, OpenID integration, and 
metadata features of LiveJournal make it a rich source of 
structured data about these users and communities, and 
the interrelationships among them. 

Friendship in LiveJournal is an asymmetric relation 
between two accounts and which can be represented as an 
edge in a directed graph.  Either the start vertex u or the 
end vertex v may denote either a user account or a 
community account, though community-to-community 
links are not used.  Table 1 lists the categories of links 
and specific link types.  Community-to-user links are of 
three independent types: “member”, “posting access”, and 
“maintainer” (post and membership moderation).  Of 
these relations, only membership is requested by users or 
invited by maintainers; the rest are privileges granted by 
maintainers. 

Table 1.  Types of links in the blog service LiveJournal. 

Start End Link Denotes 
User User Trust or friendship 
User Community Readership or 

subscribership 
Community User Membership, posting 

access, maintainer 
Community Community Obsolete 

 
Thus, a reciprocal link between a user and a community 
means that the user subscribes to the community and is an 
accepted member of the community.  Subscriptions are 
listed in the “Friends: Communities” section of the user’s 
page and in a list titled “Watched By” in the community’s 
page.  Links from user u to v are listed in the “Friends” 
list of u and in an optionally displayed “Friends Of” list of 
v.  This list can be partitioned into reciprocal and non-
reciprocal sublists for a user u: 

Mutual Friends: { v | (v, u) ∈E ∧ (u, v) ∈ E } 

Also Friend Of: { v | (v, u) ∈ E ∧ (u, v) ∉ E } 

The social network for the LiveJournal user base consists 
of many connected components.  There are a few source 
vertices corresponding to users that link to friends but 
have no reciprocated friendships.  Many of these are 
aggregator accounts created for reading RSS or other 
users’ blog entries.  Additionally, there are sink vertices 
corresponding to users or communities watched by others, 
but who have named no friends.  Some of these are 

channels for announcement or dissemination of creative 
work. 

2.2 Collaborative, Structural, and Content-Based 
Link Recommendation 

We now discuss the link recommendation problem, the 
available data, and some previous approaches.  One social 
function of many weblog services is to introduce people 
to new friends and communities and to provide content 
aggregators and communication media among people who 
know each other.  The basis for these introductions is 
often the list of interests reported by a user or community 
maintainer. 

LiveJournal collects all of the abovementioned 
information on the social network structure, along with 
user interests, self-reported personal information, and 
descriptive statistics about posting history in a user 
information page for each account.  We seek to mine this 
data in order to provide improved link recommendations.  
Our hypothesis is that recommendations based only on 
shared interests can be greatly improved using 
information about the graph structure.  For instance, local 
structural features such as whether a link already exists 
from the candidate friend to the recommender system 
user, how many mutual friends of the user and candidate 
there are, and the degree of user and candidate all provide 
some supporting evidence for a link recommendation.  
Additionally, search-based graph analysis can yield 
information about the shortest alternate path in 
friendships from the user to the candidate, and vice versa. 

The long-term goal of this research is to explore ways in 
which contextual information can be combined with 
graph structure or descriptive graph features to obtain an 
enriched model for making weblog-based link 
recommendations. Examples of this information include 
user interests, preferences and constraints (e.g., desired 
ranges or limits for number of friends).  Mechanisms for 
combining structural and contextual information include 
filtering candidate sets by graph proximity, counting 
number of mutual friends sharing certain interests, 
normalizing weights of shared interests based on dynamic 
itemset frequency within a certain graph radius. 

Initially, we consider a predominantly collaborative and 
structural approach to recommendation: we hypothesize 
that users are likely to prefer links similar to extant ones 
and therefore generate candidates in this paper from 
within a specified radius in the social network.  This is a 
form of collaboration in that the paths are formed by other 
users’ choices of friends.  Statistics such as the indegree 
of a vertex, denoting length of the users “Frends Of” list, 
are similarly collaborative in nature.  We also use counts 
of mutual interests and mutual friends (structural 
recommendation).  In the next section, we discuss the 
acquisition of data and experiment design for this 
recommendation problem. 



3 EXPERIMENT DESIGN 

3.1 LJCrawler 
To acquire the graph structure and attributes describe in 
the previous section, we developed an HTTP-based spider 
called LJCrawler to harvest user information from 
LiveJournal   This multithreaded program collects an 
average of 5 records per second, traversing the social 
network depth-first and archiving the results in a master 
index file.  Because LiveJournal’s functionality for 
looking up users by user number is only available to 
administrators, we decided to compile a list of seeds for a 
disjoint-set representation of the disconnected social 
network.  For purposes of this experiment, however, 
starting from just one seed (the first author’s LiveJournal 
ID) and restricting the crawl to one connected oomponent 
was sufficient. 

Using LJCrawler, we compiled an adjacency list and the 
following ground features for each user: 

• Account type (user, community) 
• Paid status (free, paid, permanent) 
• Dates of creation and last update 
• Interest list 

3.2 Feature Analyzers 
We define a single example to be a candidate edge (u, v) 
in the underlying directed graph of the social network, 
along with a set of descriptive features calculated from 
the annotated graph recorded by LJCrawler: 

Graph features: 

1. Indegree of u: popularity of the user 
2. Indegree of v: popularity of the candidate 
3. Outdegree of u: number of other friends besides 

the candidate; saturation of friends list 
4. Outdegree of v: number of existing friends of the 

candidate besides the user; correlates loosely 
with likelihood of a reciprocal link 

5. Number of mutual friends w such that u → w ∧ 
w → v 

6. “Forward deleted distance“: minimum 
alternative distance from u to v in the graph 
without the edge (u, v) 

7. Backward distance from v to u in the graph  

The degree attributes can be enumerated in time linear in 
the number of users, as can the mutual friends count for 
each pair of users. Deleted distance requires one iteration 
over w for shortest path algorithm (re-relaxation).  In a 
graph (V, E), backward distance requires Θ(|V|3) using the 
brute-force dynamic programming implementation 
produced for this experiment, Θ(|E| lg |E|) using a simple 
heap, and Θ(|V| lg |V| + |E|) using Fibonacci heaps. 
[CLRS02] 

Interest-based features: 

8 Number of mutual interests between u and v 
9 Number of interests listed by u 
10 Number of interests listed by v 
11 Ratio of the number of mutual interests to the 

number listed by u 
12 Ratio of the number of mutual interests to the 

number listed by v 

Using a straightforward string pair enumeration and 
comparison algorithm, the mutual interest counts are 
stored in matrix of |V|2 elements, each requiring constant 
time to check (given a maximum of 150 interests). 

Other features: Additional planned features for 
continuing experiments include dates (update frequencies 
when taken differentially), user options such as maximum 
friends count, and content descriptors of LiveJournal 
entries and comments (average post length, word 
frequency, etc.). 

3.3 Generating Candidates 
We considered several alternative ways to generate 
candidate edges (u, v): 

1. Uniform at random  
2. From a query distribution modeled on the 

frequency of vertices at a given graph distance 
3. Exhaustively within a specified radius 

The first technique is likely to be unscalable, as the 
number of candidates is |V|2.  The second requires having 
a representatively large sample of the full LiveJournal 
social network, in order to fit the distribution parameters 
accurately.  The third was the most straightforward to 
implement.  Two calls to the all pairs shortest path 
algorithm provided cost matrix, and one pass at each 
radius up to a maximum of 10 yielded the data shown in 
Table 2.  To simplify the initial experiments, we defined 
the classification problem to be classification of d(u, v) as 
1 or 2. 

Table 2.  Number of candidate edges for the 941-node 
LiveJournal graph. 

Distance d Frequency       
(= d) 

Cumulative 
(≤ d) 

1 5934 5934 
2 45042 50976 
3 69013 119989 
4 101256 221245 
5 87683 308928 
6 51040 359968 
7 29981 389949 
8 13230 403179 
9 4808 407987 

10 1022 409009 
 



This task is actually useful for social network 
recommender systems because discrimination of a direct 
friend from a “friend of a friend” (FOAF) is functionally 
similar to recommending FOAFs to link to directly.  
There are more detailed classification targets, such as 
placement, promotion, and demotion of linked friends 
within strata of trust (setting, increasing, and decreasing 
the security level), but choosing a user’s friends to begin 
with is the more fundamental decision. 

4 RESULTS 

4.1 Small Experiment 
Using the 941-node annotated graph summarized in Table 
2, we generated 50976 candidate edges.  Note that all 
forward distances are greater than 1: when u and v are 
actually connected, we erase (u, v) and find the length of 
the shortest alternative path.  The complete listing of all 
twelve features is given in Section 3. 

The numerical types of all of the network features – both 
the ones describing the graph and those measuring and 
interests and ratios – makes data set amenable to logistic 
regression.   

We defined the concept IsFriendOf and trained three 
types of inducers with: 

1. all attributes 
2. all graph attributes excluding the forward and 

backward distances 
3. the backward distances alone 
4. the backward and forward distances alone 
5. interest-related attributes alone. 

Table 3.  Percent accuracy for predicting all classes 
using the 941-node graph. 

Inducer All NoDist BkDist Dist Interest 
J48 98.2 94.8 95.8 97.6 88.5 
OneR 95.8 92.0 95.8 95.8 88.5 
Logistic 91.6 90.9 88.3 88.9 88.4 

Table 4. Percent accuracy for predicting edges (d = 1, 
IsFriendOf = TRUE) using the 941-node graph. 

Inducer All NoDist BkDist Dist Interest 
J48 89.5 65.7 67.7 83.0 5.4 
OneR 67.7 41.1 67.7 67.7 4.5 
Logistic 38.3 33.3 0 4.5 4.5 

 

Tables 3 and 4 show the results for three inducers: the J48 
decision tree inducer, the 1R inducer, and the Logistic 
regression inducer.  All accuracy measures were collected 
over 10-fold cross-validated runs.  The J48 output wth all 
features achieves a significant boost over the next highest 
(distance only).  

4.2 Interpretation  
Using mutual interests alone, even with normalization 
based on the number of interests in u and v, results in very 
poor prediction accuracy using all inducers with which we 
experimented.  Intermediate results are achieved using 
mutual friends count and degree (NoDist: 65.7% on 
predicting edges) and using forward deleted distance and 
backward distance (Dist: 67.7%).  Using all 12 computed 
graph and annotation features resulted in the highest 
prediction accuracy (All: 89.5%). 

We note that LiveJournal once used a variant of 
normalized mutual interests to produce a list of potential 
friends, arranged in decreasing order of match quality.  
Although this was not the same type of recommender 
system as LJMiner supports, it shows that the state of the 
art user matching systems have a lot of room for 
improvement.  The results in Table 4 indicate that features 
produced by LJMiner, used with a good inducer, can 
generate collaborative and structural recommendations. 

5 CONTINUING WORK 

Scaling up: Our current research focuses on scaling up to 
tens of thousands and eventually millions of users.  
Crawling 8 million records is at least technically feasible, 
but scaling up the graph analyzers is a challenge that may 
best be met with heuristic search. 

Learning relational models:  A promising area of 
research is the recovery of relational graphical models, 
including class-level (membership and reference slot) 
uncertainty. [GFKT02] LJMiner has yielded a ready 
source of semistructured data for both structure learning 
and distribution learning.  Another potentially useful 
approach is to organize users and communities into 
clusters using this relational model. We have developed 
schemata for blog posts (entries, threads, comments) and 
for users and dynamic groups of users.  The next step in 
our experimental plan is to use these schema to learn a 
richer predictive model. 
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