
Authorship Classification:
A Syntactic Tree Mining Approach ∗

Sangkyum Kim, Hyungsul Kim, Tim Weninger, Jiawei Han
University of Illinois at Urbana-Champaign

{kim71, hkim21, weninge1, hanj}@illinois.edu

ABSTRACT
In the past, there have been dozens of studies on auto-
matic authorship classification, and many of these studies
concluded that the writing style is one of the best indica-
tors of original authorship. From among the hundreds of
features which were developed, syntactic features were best
able to reflect an author’s writing style. However, due to the
high computational complexity of extracting and computing
syntactic features, only simple variations of basic syntactic
features of function words and part-of-speech tags were con-
sidered. In this paper, we propose a novel approach to min-
ing discriminative k-embedded-edge subtree patterns from a
given set of syntactic trees that reduces the computational
burden of using complex syntactic structures as a feature
set. This method is shown to increase the classification ac-
curacy. We also design a new kernel based on these features.
Comprehensive experiments on real datasets of news articles
and movie reviews demonstrate that our approach is reliable
and more accurate than previous studies.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text Analysis; H.3.3 [Information Search and Re-
trieval]: Clustering; H.2.8 [Database Applications]: Data
Mining

General Terms
Algorithms, Pattern

∗
This research is part of the Blue Waters sustained-petascale comput-

ing project, which is supported by the National Science Foundation
(award number OCI 07-25070) and the state of Illinois. Blue Waters
is a joint effort of the University of Illinois at Urbana-Champaign,
its National Center for Supercomputing Applications, IBM, and the
Great Lakes Consortium for Petascale Computation. This work was
also sponsored in part by the National Science Foundation (under
grants IIS-09-05215, CCF-0905014, and CNS-0931975) and an ND-
SEG Fellowship award. Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and do not
necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

Keywords
Authorship Classification, Text Mining, Text Categoriza-
tion, Discriminative Pattern, Closed Pattern

1. INTRODUCTION
In computational linguistics and text mining domains,

there have been three classical classification problems: topic
classification, genre classification, and authorship classifica-
tion. Among those three problems, the most difficult one is
encountered when we try to classify documents in terms of
their authorship (known as authorship classification, author-
ship attribution and/or authorship discrimination). This
problem can be thought of as classifying documents based
on the writing styles of the authors. It is a nontrivial prob-
lem even for the human beings: while a human can easily
identify the topic and genre of a document, identifying its
authorship is harder. Even worse, if the documents are from
the same topic and genre, the task becomes much harder.

In the era of excessive electronic texts, authorship clas-
sification has been more and more important with a wide
variety of applications. Besides the early works of analyzing
disputed plays of Shakespeare(1887) [20] or anonymous doc-
uments of The Federalist Papers(1964) [23], it could also be
used to identify authors of short ‘for sale’ messages in a news-
group [37] and even for forensic investigations by identifying
authorship of e-mail messages [2]. Detecting plagiarism or
copyright infringement of unauthorized reuse of source code
by establishing a profile of an author’s style is another im-
portant application of authorship classification [6].

Existing approaches of authorship classification use var-
ious methods to extract effective features, most commonly
style markers such as function words [11, 35, 1, 13] and
grammatical elements such as part of speech (POS) tags [3,
12, 36]. Function words are the most common words that
have little semantic content of their own but usually indicate
a grammatical relationship or generic property. The success
of using function words and POS tags as features for au-
thorship classification indicates the usefulness of syntactic
information.

Unfortunately, research on more complex syntactic struc-
tures has not yet been flourished because of the lack of a
reliable, automatic tool which retrieves syntactic structures,
and because of the high computational cost associated with
syntactic structure-based algorithms. Instead, several rather
simple syntactic structures, such as rewrite rules [3, 12] and
n-grams of POS tags [11, 12, 15, 14] were discussed.

Lately, several advanced techniques were developed which
greatly improved the performance of Natural Language Pro-

Example. The major indexes fell more than 2 percent, and the surge that had lifted
the troubled indexes by more than 20 percent in the last month showed signs of
stalling as the reporting period for the first fiscal quarter of the year began.

...

...

...

S

S S .CC,

... NP

...
...

S

SBAR

WHNP

WDT

VP

...

...

VBD VP

PP

IN

...

NP

PP

IN NP

S

S

VP

VBD NP

... PP

IN

VP

VBG SBAR

IN

NP

...

...

PP

IN NP

... ...

S

NP

PP

IN NP

VP

PP

IN NP

VBD

S – simple declarative clause
NP – noun phrase
PP – prepositional phrase
IN – preposition
VP – verb phrase
VBD - verb, past tense

Pattern t Syntactic Tree S

Figure 1: A 2-ee subtree pattern t is mined from
two NY Times journalists Jack Healy and Eric Dash
who worked in the same business department. On
average, 21.2% of Jack’s sentences contained t while
only 7.2% of Eric’s sentences contained t.

cessing(NLP) tools [18] enabling reliable, highly accurate
sentence parsing into a syntactic tree of POS tags. Recently,
emerging research of question answering (QA) systems [22,
4, 30] adapted these advanced preprocessing techniques to
develop a tree kernel function that computed a matching
score of two syntactic trees in order to retrieve similar ques-
tions or to classify questions in the QA system. But those
approaches have several problems to be applied to author-
ship classification problem for the following reasons: (i) Even
though their tree kernel utilizes more complex features than
earlier works of rewrite rules and n-grams of POS tags, those
features were in restricted forms of subtrees of a syntactic
tree. There is a need to design a feature set that can cap-
ture syntactic information of a longer and more complicated
sentence structure than simple question formats. (ii) The
number of features becomes explosive once we consider all
possible subtrees (even with some restrictions), and it leads
to a burden on computational cost, however efficient a ker-
nel computation is. (iii) Existing tree kernels work only for
a data set of trees, not a data set of sets of trees. A question
can be transformed into a syntactic tree, but a document
which consists of a set of sentences becomes a set of syntac-
tic trees.

In this paper, we propose a novel syntactic feature set of
tree fragments allowing at most k-embedded edges (in short,
k-ee subtree). Compared with previous feature sets that
consists of distinct subtree components, our new feature set
captures the relationship between k+1 subtree components
of a syntactic tree, which leads to a better representation
of a data set of long and complex sentences. To reduce the
number of features, we only mine a set of discriminative and
frequent k-ee subtrees, which results in higher accuracy by
avoiding overfitting to the training data and by not gener-
ating non-discriminative features that often deteriorate the
performance. For the classification, we introduce a new tree
kernel by defining a proper value for each corresponding fea-
ture to be well-defined and effective on a data set of sets of
trees.

Figure 1 gives an example of a k-ee subtree pattern t for

k = 2. Pattern t is composed of three smaller induced sub-
trees, which are connected by two embedded edges (S,NP)
and (VP,PP). The differences of pattern distributions be-
tween two authors suggest that a set of k-ee subtree pat-
terns can be utilized as a good feature set for authorship
classification.

Our framework can also be considered as a tree-kernel
method, but it is different from previous tree-kernel ap-
proaches of a QA system in the following ways: First, our
objects to be classified are in a more general form. Previous
tree-kernel methods work for questions where each question
becomes one syntactic tree, while our approach are based on
documents where each document is a set of syntactic trees.
Since previous tree kernels work only between two syntac-
tic trees not between two set of syntactic trees, it cannot
be directly applied to the authorship classification problem.
Second, we use a more general feature set of subtree patterns
allowing k-embedded edges, which works well to represent
long and complex syntactic structures of a sentence. Third,
a tree-kernel method essentially matches two trees without
looking at the entire dataset. That is, it counts the common
number of subtree patterns of two syntactic trees. But, our
approach can get an overview of different classes of training
data to select the discriminative patterns as features.

We adapt the framework of discriminative frequent pat-
tern mining which showed good results for various problem
settings in unstructured and semi-structured data mining
such as mining discriminative frequent itemset, sequence,
and graph patterns to classify UCI datasets, software be-
haviors, and chemical compound data, respectively [8, 19,
31].

While other syntactic features utilize the bag-of-words model
to represent a document – which assigns the number of oc-
currences of a feature to its value – k-ee subtree patterns
cannot adapt the same way due to the overlapped occur-
rences. Since we consider all subtrees and even allow k-
embedded edges, a huge number of occurrences might over-
lap each other which would lead to an exaggeration of a fea-
ture value. At the other end, binary features will lose most
of their occurrence information which results in either 0 or
1. Therefore, we design a new way to assign proper values
for k-ee subtree features in between two extreme ends.

To validate the utility of our new feature set to others, for
fair comparisons, we apply the same classification algorithm
(SVM) to various feature sets over several real datasets. Ex-
perimental results demonstrate the effectiveness of our newly
proposed feature set of k-ee subtree patterns over the well-
known existing feature sets.

In summary, the contributions of this paper are as follows:

• We propose a new feature set of k-ee subtree patterns
for authorship classification.

• We develop an algorithm to mine discriminative k-ee
subtree patterns.

• We propose a new document representation based on
our new feature set of k-ee subtree patterns that is
proper for data of sets of trees.

• Through experiments on various datasets, we demon-
strate the utility of our proposed framework to provide
an effective solution for the authorship classification
problem.

The rest of the paper is organized as follows. Section 2
presents an overview of the related works. In Section 3,
we introduce various preliminary concepts, define our new
feature k-ee subtree pattern, and describe our k-ee subtree
pattern-based authorship classification framework. Section
4 presents a closed and frequent k-ee subtree mining algo-
rithm with several pruning techniques. In Section 5, we ex-
plain discriminative pattern mining with a sequential cover-
age approach. We report our experimental results in Section
6, followed by conclusions and future work in Section 7.

2. RELATED WORKS
There are two main steps involved in any authorship clas-

sification algorithms: feature extraction step and classifi-
cation step based on extracted features. For the feature
extraction step, since the earliest works that used a small
number of common words such as ‘and ’, ‘to’ as a feature set,
nearly 1,000 different features have been studied including
sentence length, chi-square score, lexical richness [25, 17],
vocabulary richness [10], function words [1], word n-grams
[26], character n-grams [14], and rewrite rules [3] with lots
of controversy on their effectiveness. Even though there was
an issue of fair comparison between feature sets because pre-
vious works conducted experiments based on their own data
sets with different classification methods [35, 27], function
words and rewrite rules were considered to show reliable re-
sults. In [27], comprehensive survey on different feature sets
were presented.

For the classification step, even though lots of new fea-
tures were explored for authorship classification, most of
the classification algorithms were simply adapted from well-
known classification algorithms in other domains such as
PCA [16], k-nearest neighbor, decision tree, bayesian net-
works [35], language model [36], and SVM [11, 12, 36, 15].
The ones that showed good performance in other fields like
language model method and SVM also showed high accu-
racy for authorship classification. For this reason, usually
SVM has been used to compare the effectiveness of feature
sets [12, 15], so in this paper we also use SVM for fair com-
parison between our new feature set and previous feature
sets.

Our proposed feature set of k-ee can be considered as a
variation of tree patterns. In data mining domain, there
have been several studies on tree pattern mining [33, 9, 28].
TreeMiner [33] is one of the pioneer of mining frequent tree
patterns. CMTreeMiner [9] mined closed and maximal fre-
quent tree patterns together.

For tree classification, rule-based classifiers (XRules [34],

CTC [38]) and a decision tree based classier (Tree2 [5]) were
proposed. But none of them could be applied to classify sets
of trees as documents.

3. PRELIMINARIES
Traditional authorship attribution approaches adopted func-

tion words, POS tags, and rewrite rules as a feature set
to build a classification model. Even though they achieved
good accuracy, there still existed room to find a more mean-
ingful feature set to improve the performance. In this sec-
tion, we describe rewrite rules which are somewhat complex
syntactic structures that hold more syntactic information
than the other two feature sets. Secondly, we define our
new feature set of k-ee subtree patterns.

3.1 Rewrite Rule
In [3], rewrite rules were considered to be building blocks

of a syntactic tree, just as words are building blocks of a
sentence. Here, a syntactic tree is a rooted and ordered tree
which is labeled with POS tags that represents the syntactic
structure of a sentence. Its interior nodes are labeled by non-
terminals of the grammar, and the leaf nodes are labeled by
terminals.

Compared to previous approaches that utilized function
words and POS tags, rewrite rules can hold functional struc-
ture information of the sentence. In linguistics, a rewrite rule
is in the form of “X → Y ” where X is a syntactic category
label and Y is a sequence of such labels such that X can be
replaced by Y in generating the constituent structure of a
sentence. For example, “NP → DT+JJ+JJ+NN ” means
that a noun phrase (NP) consists of a determiner (DT) fol-
lowed by two adjectives (JJ) and a noun (NN).

There is a limit when using rewrite rules as features of a
classification model. First, because of the restriction that
the entire rule cannot be broken into smaller parts, no sim-
ilarity between rules are considered. A large number of
slightly different rules are all counted as independent fea-
tures. For instance, a rewrite rule “NP → DT+JJ+NN ”,
missing one JJ from the above example, becomes a sepa-
rate rewrite rule. Second, since a rewrite rule is a two-level
tree structure, it is not enough to hold most of the syntac-
tic structure information of a sentence. For example, the
relationships between rewrite rules are missing, which can
hold more refined syntactic information. For these reasons,
we developed a new feature set of k-ee tree patterns that
are flexible and complex enough to represent the syntactic
structure information of a sentence.

3.2 k-Embedded-Edge Subtree Pattern
To overcome the drawbacks of the feature sets used in pre-

vious approaches, we extended the definition of the rewrite
rule to form a new feature set. Based on the analysis of the
rewrite rule, a new feature should be a multi-level tree struc-
ture to hold the novel information of the syntactic structure
of a sentence. Moreover, it should be allowed to contain only
a part of a rewrite rule. Induced subtree patterns of a syntac-
tic tree were one of the candidate feature set which satisfied
both conditions. But, our pilot experiments showed that a
small number of combinations of those induced subtree pat-
terns could achieve even higher accuracy, which motivated
us to define k-ee subtree patterns for our new feature set as
follows.

Definition 1. We define a tree t to be an induced subtree
of a tree s if there exists an identity mapping from t to s
preserving all parent-child relationships between the nodes
of t. We define an edge e of a tree s to be embedded iff e
is a pair of two nodes of s with an ancestor-descendant (not
parent-child) relationship. We define a k-embedded-edge
subtree (k-ee subtree) t of a tree s to be a set of induced
subtrees of s that can be connected by at most k embedded
edges.

Since we allow a k-ee subtree pattern to be not only a two-
level but also a multi-level subtree structure, the number of
k-ee subtree patterns would be exponential on the number
of trees and their sizes. We define a minimum support to
ensure we only mine general common patterns that will be
applicable to test data thus avoiding overfitting.

A

B E

C D

A

B

C D

A

B E

C D A

S1 S2 S3

Figure 2: A toy example of a database D with three
syntactic trees

A

BA

A

B

C D

A

B E

C D

A

B

C

t2 t3 t4 t5t1

Figure 3: Examples of frequent k-ee patterns in D
when k = 0 and α = 2

Definition 2. We define the support of a k-ee subtree
pattern t (denoted by sup(t)) to be the total number of
syntactic trees of sentences in training data that contains
t. We say t is frequent iff sup(t) ≥ α for a user-specified
minimum support threshold α.

As common words or function words were studied as fea-
tures for authorship classification in previous works, fre-
quent patterns share the philosophy that more general fea-
tures are preferred to discriminate the writing styles of the
authors.

Figure 2 shows a toy database D of three syntactic trees.
Given minimum support threshold 2, all five 0-ee subtree
patterns presented in Figure 3 become frequent. For exam-
ple, patterns t1, t2, t3, and t4 appears in all three syntactic
trees, so their supports are all 3. Pattern t5 only appears in
S1 and S3, so its support becomes 2.

Even though we only use frequent k-ee subtree patterns as
a feature set for a classification model, the potential number
of patterns can still become a bottleneck. To address this
problem, we introduce the concept of a closed pattern in
order to prevent generating redundant patterns; in this way
we can summarize frequent patterns into a smaller set of
closed patterns without any loss of information.

Definition 3. We define a k-ee subtree pattern t to be
closed if there exists no tree pattern t′ that contains t with
sup(t′) = sup(t).

For example, two 0-ee subtree patterns t4 and t5 in Figure
3 are closed in the toy database D since their superpatterns
have smaller support. Patterns t1, t2, and t3 are not closed
since they have the same support with their superpattern
t4.

We will explain how to mine closed k-ee subtree patterns
efficiently utilizing several pruning techniques in Section 4.
In this way, using closed and frequent k-ee subtree patterns
as a new feature set not only reduces the size of the feature
set but also makes our authorship classification framework
more scalable.

A

B B B B

A

B B

Pattern t2 Syntactic Tree S2

Figure 4: An example of overcounting of overlapped
k-ee subtree pattern occurrences

3.3 Frequency Measure of k-ee Subtree
The frequency of a pattern within a document (or a set

of syntactic trees) is quite important in the sense that it
can be a good measure to discriminate the writing styles of
different authors. Previously well-known features such as
function words, POS tags, and rewrite rules adapted bag-of-
words approach that used the number of their occurrences
in a document as their frequency measure. However, the
k-ee subtree patterns cannot simply adapt the same fre-
quency measure because it generates many overlapped oc-
currences, which would lead to an exaggerated frequency
measure. Overlapped patterns appear because we consider
all kinds of subtrees allowing several embedded edges. Fig-
ure 4 is an illustration of this overcounting problem. The
syntactic tree S has only one A and four Bs, but the num-
ber of occurrences of pattern t becomes 6. More generally, if
A has n Bs as its children in S, then the occurrence count of
pattern t becomes O(n2). Since we allow k embedded edges
for a k-ee subtree pattern, this overcounting problem will be
even more amplified.

Our observation that a document is parsed into a set of
syntactic trees (of sentences) gave us an insight to define the
frequency measure of a k-ee subtree pattern in a different
way by counting the number of syntactic trees of a document
that contain the pattern.

Definition 4. We define the frequency of a k-ee subtree
pattern t in a document d (denoted by freq(t, d)) to be the
fraction of the number of syntactic trees of sentences in d
that contains t.

For example, if a document d is composed of S1, S2, and S3

in Figure 2, then the frequencies of patterns t1, t2, t3, and
t4 (in Figure 3) in d become all 1 while the frequency of a
pattern t5 in d becomes 2/3.

Note that our feature value is a normalized score in the
sense that we only consider the fraction of the number of
sentences in a document. In this way, we can remove the
effect of different document lengths.

3.4 k-ee Subtree-based Authorship Classifica-
tion

We propose a k-ee-subtree pattern-based authorship clas-
sification framework with the following four steps: (1) Con-
vert each document into a set of syntactic trees. As men-
tioned earlier, several high-quality parsing tools have been
developed recently. (2) Mine frequent k-ee subtree patterns
of the syntactic trees from the training data. There are sev-
eral reasons we use only frequent patterns. First, we do not
assume the parser works perfectly with no error, but we do
assume it works with a reasonable accuracy. A small rate
of error might produce strange patterns with low support.
Therefore, if we only use frequent patterns, we can reduce

the influence of parsing errors. Second, using patterns with
low support as features may cause overfitting and subse-
quently harm the classification accuracy. Statistically, using
frequent patterns of training data as features for the classifi-
cation model generalizes well to the test data, since frequent
patterns of training data have a higher chance to also ap-
pear in test data. (3) Select discriminative patterns from the
frequent k-ee subtree patterns. Depending on the user spec-
ified minimum support threshold, we might get a large num-
ber of frequent patterns which may again cause overfitting.
Therefore, we carefully choose only a small number of non-
redundant and highly discriminative patterns as the features
for the classification model. (4) Construct the classification
model with the discriminative patterns and training data.

4. K-EE SUBTREE PATTERN MINING
In the previous section, we explained the reasons to use

k-ee subtree patterns as a new feature set of authorship
classification. These patterns hold more profound syntac-
tic information (than other features including rewrite rules)
and are flexible enough to consider partial matching of the
syntactic trees. Even though the k-ee subtree patterns are
confined to be frequent and closed, the number of patterns
can still be very large. Therefore, the next task is to mine
these patterns efficiently.

In this section, we introduce a k-ee subtree pattern min-
ing method that (i) finds the frequent and closed patterns
efficiently and (ii) captures their frequencies in each docu-
ment. We do not generate candidate k-ee subtree patterns
and check for frequent and closed attributes. Instead, we
find a frequent k-ee subtree pattern, and extend it by adding
a node (that is guaranteed to be frequent) in a depth-first
search manner. Depth-first search pattern expansion enables
several pruning techniques for closed and frequent pattern
mining. We first introduce how to efficiently find a frequent
node for pattern extension, and then explain the pruning
techniques for closed pattern mining.

4.1 Pattern-Growth Approach
Previous apriori-based approaches for pattern mining gen-

erated a huge number of patterns and re-scanned the entire
database each time the size of candidate patterns were in-
creased to verify whether they were frequent. Recently, sev-
eral studies were conducted on the pattern-growth approach
by using the projected database in sequence and tree pattern
mining [24, 39]. In this study, we adapt these pattern-growth
techniques for frequent k-ee subtree pattern mining.

Instead of the apriori-based expensive candidate genera-
tion and test framework, we follow the following steps for
pattern-growth approach. First, find a size 1 frequent k-
ee subtree t in the training dataset D. Second, project the
postfix of each occurrence of t in the syntactic trees of D
into a new database Dt. Here, we say a postfix of an oc-
currence of t in a syntactic tree s to be the forest of the
nodes of s appearing after the occurrence of t in a pre-order
scan of s. Third, find a frequent node v in Dt that can be
attached to the rightmost path of t that forms a k-ee sub-
tree pattern. Once v is frequent in Dt, it ensures that the
extended pattern is also frequent, so we do not need to scan
the whole database D again. The reason we only search for
a frequent node that can be attached to the rightmost path
of t is to avoid generating duplicated patterns in the min-
ing process. Note that, in this study, we consider a node v

A

B

A

B

D

A

A

B

C D

A

B E

C D

A

B

C

A

B E

C

B

C D

A

B E

D

A

E

B

C

B

D

B

t2

t3

t4

t5

t6

t7

t8

t10 t12 t14

t13

t1 t11

Ct15

Dt16

A

B E

t9

Pruned

Figure 5: Pattern growth of k-ee subtree patterns
using pruning with minimum support 2 when k=0

B E

C D

B

C D

B E

C D A

Figure 6: Projected database of t1

attached to t by an induced edge forms a different pattern
from the one attached by an embedded edge because of the
k-embedded edge restriction. So we consider each case sep-
arately. Fourth, recursively go back to second step with the
extended pattern for every frequent node we found. Fifth,
recursively go back to the second step to expand all the other
size-1 frequent k-ee subtrees.

4.2 Pruning Methods
Figure 5 shows an example of the pattern-growth ap-

proach to mine 0-ee subtree patterns of a database of three
syntactic trees described in Figure 2 when the minimum
support threshold is 2. Each pattern is indexed in pattern-
generation order. We first search for size-1 frequent pat-
terns, which are t1, t11, t15, and t16 in this case. We choose
t1 as a starting point, and find frequent nodes that can be
attached to t1 from its projected database described in Fig-
ure 6. We find nodes B and E are frequent, and we extend
t1 to t2 by adding a node B. Once all frequent 0-ee subtree
patterns that extends t2 are all mined, then we extend t1 to
t10 by adding a node E. Similar procedures are recursively
performed until we mine all frequent patterns.

In our pattern-growth approach, the projected database
of a pattern t keeps shrinking as the mining process moves
on and t becomes a bigger superpattern. Note that we do
not physically create projected databases. In fact, instead
of keeping physical copy of postfix data, we use a pseudo-
projection that only stores a pointer to the syntactic tree
and the offset of each node of a pattern occurrence in the
syntactic tree to save memory and make the procedure more
efficient.

Algorithm 1: Procedure ClosedMine to mine k-ee
closed subtree patterns

input : Tree data set D, minimum support θ
output: Closed k-ee subtree patterns C

1 foreach frequent vertex t ∈ D do
2 ClosedMine_Sub(t,Dt,θ);
3 end

After we perform the pattern-growth method to mine all
frequent k-ee subtree patterns, we can remove the patterns
which are not closed. Instead of the inefficient two-step ap-
proach, we can integrate several well-known pruning tech-
niques for semi-structured data mining [32, 29, 9] into the
pattern-growth method to output only closed patterns. The
common intuition of the pruning methods is that we only
need to check immediate supertrees of a tree pattern t not
the whole supertree for the closure checking. In this paper,
we adapt the blanket convention of [9] to describe pruning
techniques for closed k-ee subtree pattern mining as follows.

Definition 5. Define the blanket of a k-ee subtree pattern
t (denoted by Bt) by the set of supertrees of t that has one
more node than t. For a pattern t′ ∈ Bt, we denote t′\t
to be an additional node v of t′ that is not in t. Here,
t′\t represents not only the vertex label of v, but also its
position and the type of edge connection (either induced or
embedded) between t and v. We define the right-blanket of
t (denoted byBr

t) as a subset ofBt where t′ ∈ Bt right iff t′\t
is the rightmost vertex of t′. We define the left-blanket of t
(denoted by Bl

t) by Bl
t = Bt −Br

t . For t′ ∈ Bt, we define t′

and t to be occurrence-matched if, for each occurrence of t
in a database, there is at least one corresponding occurrence
of t′. We define t′ and t to be sentence-matched if for any
syntactic tree s of a sentence in D that contains t it also
contains t′.

For example, in Figure 5, pattern t4 is in the blanket of
t7 since t4 is a superpattern of t7 by one more node C. And
also, pattern t4 is in both Bl

t7 and Br
t3 . Since t4 ∈ Bt7 and

each occurrence of t7 is contained in an occurrence of t4, we
say t4 and t7 are occurrence-matched.

The following two pruning techniques are based on occurrence-
level matching. Backward Extension Pruning(BEP) checks
the occurrence matching of the current mining tree pattern
t with previously mined supertrees of t, and Forward Ex-
tension Pruning(FEP) checks the occurrence matching of t
with the supertrees of t that will be mined later.

Proposition 1. (Backward Extension Pruning) For
a k-ee subtree pattern t, if there exists a supertree t′ ∈ Bl

t

such that t and t′ are occurrence-matched, then neither t nor
any supertrees of t as extensions of any node of its rightmost
path can be closed.

For example, pattern t7 and its descendants in Figure 5
are pruned since t4 is in the left blanket of t7, and t4 and t7
are occurrence-matched which satisfies the BEP condition.
Similarly, t10, t11, t15, t16 and their descendants are pruned
because of BEP criterion.

Proposition 2. (Forward Extension Pruning) For
a k-ee subtree pattern t, if there exists a supertree t′ ∈ Br

t

Algorithm 2: Subprocedure ClosedMine Sub used for
ClosedMine

1 if t satisfies BEP condition then return;
2 if no t′ ∈ Bt sentence-matches with t then
3 C ← C ∪ {t};
4 end
5 foreach t′ ∈ Btright do /* bottom up to enable FEP

pruning */

6 if t′ satisfies FEP condition then break;
7 if sup(t′) ≥ θ then
8 ClosedMine_Sub(t′,Dt′ ,θ);
9 end

10 end

such that t and t′ are occurrence-matched and the parent of
t′\t is v (where v is a vertex on the rightmost path of t),
then neither t nor any supertrees of t as extensions of any
proper ancestor node of v can be closed.

For example, pattern t6 and its descendants in Figure 5 are
pruned since all conditions for FEP are satisfied as follows:
(i) t4 is in the right-blanket of t3 (ii) D is t4\t3 (iii) A is
the proper ancestor node of D’s parent node in t4 (iv) t6
is an extension of t3 by adding a node E at A. Similarly,
pattern t9 and their descendants are pruned because of the
FEP criterion.

BEP described in Proposition 1 means that once we find a
pattern t′ is in the left-blanket of t that occurrence-matches
with t, then we do not have to perform pattern-growth of
t, because a pattern extension in the pattern-growth ap-
proach is performed in a depth-first traversal manner. FEP
described in Proposition 2 is a simple corollary of the BEP.

Algorithm 1 and 2 describe how to incorporate the prun-
ing methods BEP and FEP into pattern-growth approach
to mine closed and frequent k-ee subtree patterns. In Al-
gorithm 2, line 5 and 8 ensures the algorithm to work in
a pattern-growth way. We check BEP condition at line 1,
and FEP condition at line 6. In this way, we do not have
to generate all frequent k-ee subtree patterns to mine closed
patterns.

5. DISCRIMINATIVE K-EE SUBTREE PAT-
TERN SELECTION

In Section 3, we developed an algorithm to mine closed
and frequent k-ee subtree pattern, but there may still be
too many resulting patterns. In this section, we present
how to carefully select discriminative patterns from among
the closed and frequent patterns in order to reduce the size
of the feature set and to improve the performance of the
classifier.

Based on the study that the patterns with high Fisher
score can help improving the classification performance [7],
we use it in our study to evaluate the discriminative power
of a k-ee subtree pattern. The Fisher score is defined as

Fr =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ2
i

where ni is the number of data samples in class i, µi is
the average pattern frequency in class i, σi is the standard
deviation of the pattern frequency in class i, and µ is the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FW POS RR 0-ee 1-ee 2-ee

Figure 7: Fisher score distribution of various feature
sets

Algorithm 3: Procedure WSMine to mine discrimina-
tive k-ee subtree patterns

input : Tree data set D, min sup θ
output: Discriminative k-ee features F of D

1 C ← ClosedMine(D,θ);
2 while (C 6= ∅) or (D 6= ∅) do
3 Select top-1 discriminative pattern t from C;
4 F ← F ∪ {t};
5 D ← D−{trees that are covered by δ features in F};
6 C ← C − {t};
7 end

average pattern frequency in the whole dataset. A pattern
will have a large Fisher score if it has similar values within
the documents of the same class and very different values
across the documents of different classes, at the same time.

Figure 7 presents Fisher score distributions of various fea-
ture sets such as function words (FW), POS tags (POS),
rewrite rules (RR), and k-ee subtree patterns for k=0, 1,
and 2 (0-ee, 1-ee, and 2-ee, respectively). We can easily see
that the highest scores are mostly from k-ee subtree pat-
terns, which implies that they can be more meaningful than
other features. In fact, in the experiments, our k-ee subtree
patterns achieved highest accuracy for all datasets.

Based on this Fisher score measure, we perform the fea-
ture selection procedure in a sequential coverage way as fol-
lows. We describe this procedure in Algorithm 3. We select
the top scored pattern which covers at least one syntactic
tree of the dataset and remove it from the list of the pat-
terns. Moreover, any syntactic tree that is covered by at
least δ features will be removed from the dataset. Here,
delta is a feature coverage threshold introduced in [7]. It
allows multiple patterns to represent a tree, which is known
to improve the classification accuracy. Third, we go back to
the second step until either the dataset becomes empty or
no more patterns are left.

Once the feature selection procedure is complete, we get
a small number of discriminative, closed, and frequent k-
ee subtree patterns. Considering these patterns as a feature
set, we express a document as a vector representation assign-
ing a feature value by the frequency of the pattern described
in Definition 4, and learn a classification model.

6. EXPERIMENTS
In this section, we present empirical evaluation results

Table 1: Statistics of News Articles
of documents # of sentences # of words

N1 100 3710 77501
N2 100 2666 59745
N3 100 5587 114337
N4 100 7198 129867

Total 400 19161 381450

Table 2: Statistics of Movie Reviews
of documents # of sentences # of words

M1 578 16508 423749
M2 567 15108 414295
M3 597 15320 357301
M4 415 4150 104337

Total 2177 51086 1299682

to validate the performance of our authorship classification
framework. In particular, we conduct experiments on news
articles and movie reviews. The experiments are designed
to test whether our k-ee subtree patterns, as a new feature
set, are useful for authorship classification.

6.1 Datasets
We collected two different kinds of documents from a pub-

lic data collection The New York Times: news articles and
movie reviews. We got four authors with 400 documents for
news articles, and four authors with around 2,000 documents
for movie reviews.

For the news articles, we chose two journalists Eric Dash
(N1) and Jack Healy (N2) from business department, and
two other journalists Denise Grady (N3) and Gina Kolata
(N4) from health department, who were one of the main
contributors in their departments. The reason we collected
documents in this way is because the journalists in the same
department are likely to write articles in the same topic and
genre using similar words. The statistics of each journalist
are shown in Table 1.

For the movie reviews, we chose four main movie critics of
The Times: A. O. Scott (M1), Manohla Dargis (M2), and
Stephen Holden (M3), and Jeannette Catsoulis (M4). The
reason we collected this data is because movie reviews of
the same movie are likely to be in the same topic and genre
using similar words. The statistics of each critics are shown
in Table 2.

6.2 Evaluation Methodology
To evaluate the performance, we paired the authors of

each domain and conducted binary classification on these
12 different datasets. For each dataset, we conducted 5-fold
cross validation, and averaged the accuracy as a measure of
the performance. For each fold, training data was used to
mine the syntactic features and to get a classification model
while test data was only used for prediction purpose. In this
way, our evaluation ensured that there is no information leak
from the test data for the classification task.

To show how effectively our new feature set works, we
compared the authorship classification performance with other
syntactic features such as function words, POS tags, and
rewrite rules. As for function words, we took the list of 308
function words from [21]. We used 70 POS tags generated

Table 3: Number of Features
Domain RR 0-ee 1-ee 2-ee

News Articles 3929 280.83 560.23 789.93
Movie Reviews 9029.2 557.87 1348.9 2074.5

from the stanford parser [18]. The number of features of
the other feature sets are presented in Table 3. For each
feature set and for each dataset, we computed the average
value of the number of distinct features of 5-fold training
data. In the table, we showed the average of the number
of distinct features for each domain. The difference of the
number of features between different domains implies that
movie reviews are written in more sophisticated way than
news articles. That also implies indirectly that it would be
harder to classify movie reviews than news articles. We see
that rewrite rules are using the biggest number of features.

We used the occurrences of each feature as a feature value
for the syntactic features except k-ee subtree patterns which
used a new frequency measure defined in Definition 4. For
the fair comparison, we used the same classifier, linear-kernel
SVM (with the parameter tuned for the best performance
of each feature set), which was previously shown to work
reliably with high accuracy on authorship classification [11].

6.3 Performance Evaluation
Authorship classification accuracies for various feature sets

are presented in Table 4 and 5. All experimental results of
k-ee subtree pattern-based classification used (relative) min-
imum support threshold 0.1 for frequent pattern mining and
sequential coverage threshold 10 for discriminative pattern
mining by default. We can easily find that our proposed
feature set of k-ee subtree patterns, especially for k = 1, 2,
achieved the highest accuracies for most of the datasets. We
see that using embedded edges can help to enhance the au-
thorship classification performance, but we cannot say more
embedded edges would get better performance. For a higher
number of embedded edges (k), even we utilize several prun-
ing techniques, it is intractable to mine them all. Moreover,
higher k sometimes tends to overfit to training data that
might degrade the accuracy performance. We can conclude
that a small number of embedded edges is enough to achieve
high performance of classification task for both in accuracy
and efficiency aspects.

For both data collections of news articles and movie re-
views, all feature sets showed similar tendencies. 1-ee and
2-ee showed the highest accuracies of news article datasets
and movie review data collections repectively, while POS
got the worst accuracies for both data collections. Among
12 datasets of experiments, N12, N34 and M12 showed bad
performances for all feature sets. Analyzing statistics of data
collections in Table 1 and 2, we see that the classes in them
has similar number of words which indirectly shows those
classes are hard to classify. Especially for dataset N34, both
classes of N3 and N4 are from health department of news
domain and they have quite a few quotations with informal
style of writings which made it the hardest dataset to be
classified. It is noticeable that even for this hard dataset,
our feature set got the highest accuracy with a big gap of
performance to the other feature sets.

We calculated the standard deviation of the accuracies to
show how reliable the feature sets are, and found that k-ee

Table 4: Accuracy Comparisons (News Articles)
FW POS RR 0-ee 1-ee 2-ee

N12 91.5 87 94 96 95 95.5
N13 94 85 91 97.5 98 97.5
N14 95.5 92.5 96 94.5 96.5 95
N23 95 92.5 92.5 96.5 98.5 99
N24 97 95.5 97.5 98.5 98.5 98.5
N34 80.5 67.5 67.5 88.5 90 90

AVG 92.3 86.7 89.8 95.3 96.1 96.0
STD 6.04 10.16 11.15 3.57 3.28 3.31

Table 5: Accuracy Comparisons (Movie Reviews)
FW POS RR 0-ee 1-ee 2-ee

M12 92.8 81.0 88.0 92.48 94.26 94.22
M13 93.6 92.5 92.7 95.22 95.06 95.8
M14 92.1 88.0 94.2 97 97.4 97.7
M23 94.4 92.8 94.8 97.58 97.92 97.58
M24 93.1 91.0 92.9 95.22 96.04 96.32
M34 93.1 88.6 94.9 97.12 97.22 97.12

AVG 93.2 89.0 92.9 95.8 96.3 96.5
STD 0.77 4.40 2.59 1.90 1.45 1.32

subtree patterns achieved consistent results for both data
collections.

Overall, we conclude that k-ee subtree patterns are mean-
ingful features for authorship classification which works reli-
ably for real life data collections and achieves high accuracy.

7. CONCLUSION
In this paper, we proposed a novel solution for an author-

ship classification problem by mining discriminative closed
k-ee subtree patterns. First, we designed a new feature set
of k-ee subtree patterns which contains more meaningful
syntactic structures of a sentence than previous feature sets
which are based on simple forms of syntactic features in-
cluding function words, POS tags, and rewrite rules. To
mine k-ee subtree patterns, we developed a closed frequent
k-ee tree mining algorithm by use of several pruning tech-
niques. We performed a Fisher score based feature selection
procedure on top of those mined patterns. This small set of
discriminative patterns could effectively classify the docu-
ments based on their authorship.

Experimental study has been performed on two real datasets,
news articles and movie reviews, from The New York Times
public data corpus. These data collections were carefully
chosen to ensure to be in the same genres using similar
terms. Our k-ee subtree pattern based classification achieved
the best results compared to other feature sets such as func-
tion words, POS tags, and rewrite rules.

In future research, we want to develop a way to directly
mine discriminative k-ee subtree patterns, not generating
all closed patterns. Usually, discrimiative patterns selected
from closed patterns with low minimum support threshold
θ show better accuracy, but it is hard to find an optimized
θ since the mining cost increases exponentially when θ be-
comes lower. A directive way of mining discriminative pat-
tern might work without specifying θ which would guarantee
high quality of discriminative patterns.

8. REFERENCES
[1] S. Argamon and S. Levitan. Measuring the usefulness

of function words for authorship attribution. In
ACH/ALLC, 2005.

[2] S. Argamon, M. Šarić, and S. S. Stein. Style mining of
electronic messages for multiple authorship
discrimination: first results. In KDD, 2003.

[3] H. Baayen, H. van Halteren, and F. Tweedie. Outside
the cave of shadows: using syntactic annotation to
enhance authorship attribution. Literary and Linguist
Computing, 11(3):121–132, 1996.

[4] S. Bloehdorn and A. Moschitti. Structure and
semantics for expressive text kernels. In CIKM, 2007.

[5] B. Bringmann and A. Zimmermann. Tree2 - decision
trees for tree structured data. In PKDD, 2005.

[6] S. Burrows, A. L. Uitdenbogerd, and A. Turpin.
Application of information retrieval techniques for
source code authorship attribution. In DASFAA, 2009.

[7] H. Cheng, X. Yan, J. Han, and C.-W. Hsu.
Discriminative frequent pattern analysis for effective
classification. In ICDE, 2007.

[8] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct
discriminative pattern mining for effective
classification. In ICDE, 2008.

[9] Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining
closed and maximal frequent subtrees from databases
of labeled rooted trees. IEEE Transactions on
Knowledge and Data Engineering, 17(2):190–202,
2005.

[10] O. de Vel, A. Anderson, M. Corney, and G. Mohay.
Mining e-mail content for author identification
forensics. SIGMOD Record, 30(4):55–64, 2001.

[11] J. Diederich, J. Kindermann, E. Leopold, and
G. Paass. Authorship attribution with support vector
machines. Applied Intelligence, 19(1-2):109–123, 2003.

[12] M. Gamon. Linguistic correlates of style: authorship
classification with deep linguistic analysis features. In
COLING, 2004.

[13] A. M. Garćıa and J. C. Mart́ın. Function words in
authorship attribution studies. Literary and Linguistic
Computing, 22(1):49–66, 2007.

[14] J. Grieve. Quantitative authorship attribution: An
evaluation of techniques. Literary and Linguistic
Computing, 22(3):251–270, 2007.

[15] G. Hirst and O. Feiguina. Bigrams of syntactic labels
for authorship discrimination of short texts. Literary
and Linguistic Computing, 22(4):405–417, 2007.

[16] D. L. Hoover. Statistical stylistics and authorship
attribution: an empirical investigation. Literary and
Linguistic Computing, 16(4):421–444, 2001.

[17] D. L. Hoover. Another perpective on vocabulary
richness. Computers and the Humanities,
37(2):151–178, 2003.

[18] D. Klein and C. D. Manning. The Standford parser: A
Statistical Parser, 2002. http:
//nlp.stanford.edu/software/lex-parser.shtml.

[19] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of software behaviors for failure
detection: a discriminative pattern mining approach.
In KDD, 2009.

[20] T. C. Mendenhall. Spelling checkers,spelling correctors
and the misspellings of poor spellers. Science,
11(214):237–246, 1887.

[21] R. Mitton. Spelling checkers,spelling correctors and
the misspellings of poor spellers. Information
Processing and Management, 23(5):495–505, 1987.

[22] A. Moschitti. Efficient convolution kernels for
dependency and constituent syntactic trees. In ECML,
2006.

[23] F. Mosteller and D. L. Wallace. Inference & Disputed
Authorship: The Federalist. Addison Wesley, 1964.

[24] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen,
U. Dayal, and M. chun Hsu. Prefixspan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In ICDE, 2001.

[25] J. Rudman. The state of authorship attribution
studies: Some problems and solutions. Computers and
the Humanities, 31(4):351–365, 1998.

[26] C. Sanderson and S. Guenter. Short text authorship
attribution via sequence kernels, markov chains and
author unmasking: an investigation. In EMNLP, 2006.

[27] E. Stamatatos. A survey of modern authorship
attribution methods. Journal of the American Society
for Information Science and Technology,
60(3):538–556, 2009.

[28] A. Termier, M.-C. Rousset, M. Sebag, K. Ohara,
T. Washio, and H. Motoda. Dryadeparent, an efficient
and robust closed attribute tree mining algorithm.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 20(3):300–320, 2008.

[29] J. Wang and J. Han. Bide: Efficient mining of
frequent closed sequences. In ICDE, 2004.

[30] K. Wang, Z. Ming, and T.-S. Chua. A syntactic tree
matching approach to finding similar questions in
community-based qa services. In SIGIR, 2009.

[31] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining
significant graph patterns by leap search. In SIGMOD,
2008.

[32] X. Yan and J. Han. Closegraph: mining closed
frequent graph patterns. In KDD, 2003.

[33] M. J. Zaki. Efficiently mining frequent trees in a
forest. In KDD, 2002.

[34] M. J. Zaki and C. C. Aggarwal. Xrules: an effective
structural classifier for xml data. In KDD, 2003.

[35] Y. Zhao and J. Zobel. Effective and scalable
authorship attribution using function words. In AIRS,
2005.

[36] Y. Zhao, J. Zobel, and P. Vines. Using relative
entropy for authorship attribution. In AIRS, pages
92–105, 2006.

[37] R. Zheng, J. Li, H. Chen, and Z. Huang. A framework
for authorship identification of online messages:
Writing-style features and classification techniques.
Journal of the American Society for Information
Science and Technology, 57(3):378–393, 2006.

[38] A. Zimmermann and B. Bringmann. Ctc — correlating
tree patterns for classification. In ICDM, 2005.

[39] L. Zou, Y. Lu, H. Zhang, R. Hu, and C. Zhou. Mining
frequent induced subtrees by prefix-tree-projected
pattern growth. In WAIMW, 2006.

