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Abstract

Energy storage technologies are key to improving grid flexibility in the pres-
ence of increasing amounts of intermittent renewable generation. We propose
an insurance contract that suitably compensates energy storage systems for
providing flexibility. Such a contract provides a wider range of market oppor-
tunities for such systems while also incentivizing higher renewable penetra-
tion in the grid. Specifically, we consider a two-settlement day-ahead electric-
ity market in which generators, including renewable producers and storage
owners, bid to be scheduled for the next operating day. Due to production
uncertainty, renewable generators might be unable to meet their day-ahead
production schedule, and thus are subject to pay a penalty for shortages. As
a hedge against these penalties, we propose an insurance contract between
a renewable producer and a storage owner, in which the storage reserves
some energy to be used in case of renewable shortfalls. We show that such
a contract incentivizes the renewable player to bid higher, thus increasing
renewable participation in the electricity mix. At the same time, it provides
an extra source of revenue for storage owners that may not be profitable
with a purely arbitrage based strategy in the day-ahead market. Further, we
prove this contract is economically beneficial for both players. We validate
our analysis through two case studies.
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1. Introduction

The declining costs of storage technologies have motivated numerous stud-
ies regarding their usefulness to enhance grid flexibility. In particular, the
fast ramp capability of these energy sources make them an ideal candidate
to improve system reliability as renewable penetration in the electricity grid
increases [1]. As storage technology has improved, electricity markets have
started to adapt their regulations to allow these energy sources to partici-
pate in the market. More such changes will follow the U.S. Federal Energy
Regulatory Commission Rule 841 [2], which requires Regional Transmission
Organizations (RTOs) and Independent System Operators (ISOs) to recog-
nize the physical and operational characteristics of electric storage resources
to facilitate their participation in the RTO/ISO markets.

In recent years, the most cost-effective entry point for storage operators
in the electricity market has been to provide services in the ancillary market,
such as frequency regulation [3]. However, this market is relatively small as
compared to those that cover other grid services, and initial results where
they can generate money (say by meeting the duck curve related supply
shortfall) have began to appear. In California alone, a total of 13GW of
peaking capacity provided by conventional generators is expected to retire
within the next two decades. This capacity is a substantially larger amount
than the frequency regulation market in the entire United States, estimated
at 5GW [4]. Therefore, peaking capacity represents a large potential market
for storage operators. However, at current storage prices, arbitrage to pro-
vide energy in the day-ahead markets based on mechanisms such as time of
usage prices are rarely cost-effective [5]. It is of great interest to identify a
market mechanism in which storage operators can be compensated for their
provision of flexibility rather than merely arbitrage to provide energy. Such
a mechanism will have two benefits. One, by providing extra revenue to stor-
age owners, it will boost investments into storage technology even further.
Two, as storage becomes more economical, it will lead to a higher penetration
of intermittent renewable energies into the grid, while ensuring reliability of
electricity supply. Note that recent adaptation of market regulations for the
participation of energy storage has followed the changes in how intermittent
renewable producers can offer their energy.

In this paper, we focus on a stylized model of a two settlement day-ahead
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market, in which energy suppliers (conventional generators, renewable gen-
erators, and storage operators) offer their production for delivery in the next
operating day. The production schedule is settled by an ISO, which uses
a least-cost strategy to dispatch the generators so that the overall supply
meets the demand at the lowest cost possible. Generators that deviate their
actual production from their schedule are penalized, and thus there is an
incentive to follow this schedule. These policies have traditionally been im-
posed for non-renewable, firm generators; however, the adoption of the same
treatment for intermittent renewable generators has also started recently as
grids move away from a take-all-renewables approach in order to cut down
on the increasing need for system-level reserves [6]. However, levying of such
penalties leads to renewables bidding conservatively in the market [7]. We
consider a scenario in which renewables are treated as conventional gener-
ators (i.e. they bid in the day-ahead market and are charged penalties for
deviation) and propose a mechanism on the lines of an insurance contract
with sources of flexibility such as storage that can counteract such undesir-
able decrease in renewable participation.

This insurance contract can be viewed as lying between the two extremes
of the ISO incurring the increasing cost of system reserves in a grid takes
all renewable scenario and the renewable incurring the entire cost of its in-
termittency and hence bidding conservatively. In practice, there is already
a move towards asking the renewable power producers to shoulder (some)
of the responsibility of hedging against their own production variability. As
an example, the Bonneville Power Administration (BPA) has a self-supply
program in cooperation with Iberdrola Renewables, in which variable energy
resources are allowed to supply their own balancing services in lieu of incur-
ring the cost of the services provided by BPA [8]. The mechanism we propose
is a step towards putting such ad hoc arrangements on a firmer analytical
footing.

1.1. Main Contribution

Our main contribution is the design and analysis of an insurance contract
between a storage owner and a renewable producer. We consider a two settle-
ment day-ahead (DA) electricity market, in which all generators (including
renewables and storage units) bid to be scheduled to produce in the next
operating day. In real-time, all excess renewable energy is curtailed and any
shortfalls are penalized in a ex-post imbalance resolution mechanism. We
propose that as a hedge against production uncertainty and intermittence,
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the renewable producer be allowed to establish an insurance contract with a
storage owner. Through this contract, the storage owner commits to reserve
some amount of energy to be used in case of renewable shortage, while the
renewable producer purchases the right to call upon this energy reserve in
case of underproduction. In this framework, the storage unit (seller) sets a
lower bound on the per unit price of reserve being offered, and the renewable
generator (buyer) establishes an upper bound for that price. The insurance
contract is only feasible when there exists at least one reserve price for which
both participants voluntarily agree to sign the contract.

The chief technical difficulty in the analysis is from the fact that the
decisions made by the participants for the contract and in the day-ahead
market are coupled while the decisions of the storage owner are also coupled
temporally since before discharging, it needs to be charged. We focus on a
scenario in which the storage adopts an arbitrage policy, which is the one that
would be used in a peaking capacity service, to show that insurance contracts
are feasible and that no participant is worse off by signing them. Provision
of additional means of charging the storage (e.g. through a local solar panel)
can only benefit both the participants. We show that the presence of an
insurance contract incentivizes the renewable producer to bid higher in the
day-ahead market, leading to an increase in the amount of renewable energy
taken by the grid. We also derive a condition for which a storage unit is
profitable as an insurance provider, even if it is not profitable in the day-ahead
market. Combined, these results prove that the insurance contract proposed
is an opportunity to boost the participation of storage in the market, while
increasing the amount of renewable energy in the electricity mix. Our case
studies validate the benefits of an insurance contract by exploring both a
single-node scenario, in which there is no network congestion, and a modified
IEEE 14-bus power system case with constrained transmission capacity.

1.2. Related Work

Recent works have characterized the marginal value of storage both when
operated by a wind power plant [9] and by a system operator in a power
network [10]. Our approach differs from these studies in the ownership of the
energy sources analyzed. To the best of our knowledge, there are no works
which consider the possibility of establishing contracts between renewables
and storage owners to mitigate renewable intermittence, in which each player
makes their decision individually. A related stream of work analyzes how
storage can optimally bid in the electricity market as an independent asset,
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taking advantage of arbitrage opportunities [11, 12, 13]. In this paper, we
expand the day-ahead arbitrage opportunities by allowing the storage unit
to sign a contract with a renewable generator instead of offering that in the
market at times with peaking demand.

Studies regarding the simultaneous participation of storage in multiple
services, such as energy, ancillary services, and virtual bidding, are numer-
ous and we refer the reader to [14, 15, 16] and the references therein for a
representative survey. Although exploring all these market services brings the
benefit of a full overview about the revenue potential for energy storage, it
comes at the expense of tractability. The models formulated in these types of
work generally have numerous parameters and are solved numerically, which
may lead to a lack of insights about the drivers of the results achieved. Be-
cause one of our goals is to perform analytic studies about the adoption of our
insurance contract, our model considers only the day-ahead energy market.
A similar approach has been used in [17], in which the authors also analyze
the adoption of cap contracts by energy storage systems as a hedge against
price volatility. This model choice is also grounded on the fact that other
markets, such as frequency regulation, are relatively small as compared to the
day-ahead market and may start to saturate as more energy storage systems
enter the market. For instance, there are more storage projects entering the
PJM Interconnection’s queue, although there is operational evidence that
their RegD market has become saturated [18]. Therefore, as the market will
need to absorb that new capacity, we envision that more storage units will
focus on the day-ahead market in the future.

Several other works have analyzed the problems of optimal placement of
energy storage in the grid and optimal sizing of these systems [19, 20, 21, 22].
While we do not specifically consider the placement problem, we evaluate how
this aspect plays a role in the adoption of our insurance contract through a
case study in which the location of the storage in the power grid is varied.

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 introduces
the mathematical model. The problem is formulated in Section 3, in which
the utility functions of the participants are presented and the characteristics
required of the insurance contract are defined. In Section 4, we derive expres-
sions for the bidding strategies of the participants in the day-ahead market,
as well as their conditions to sign the contract, which are then used to prove
the feasibility of the insurance contract and to analyze the profitability of
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the storage owner. Section 5 presents our case studies, which are followed by
final conclusions and some directions for future work in Section 6.

2. Supply and Electricity Market Models

2.1. Energy Storage Model

Consider a day divided into N discrete time slots indexed by k ∈ K :=
{0, 1, ..., N−1}. The state of charge of the storage xk is the amount of energy
stored at the beginning of the time slot k. For the perfectly efficient energy
storage considered, the state of charge follows the dynamics

xk+1 = xk − uk ∀k ∈ K, (1)

where uk is the amount of energy extracted or injected in the storage, which
is positive (resp. negative) when the storage is discharging (resp. charging).
The input uk can be denoted as the difference between the charged quantity
u−k ≥ 0 and the discharged quantity u+k ≥ 0 at time k. Therefore, the storage
dynamics can be rewritten as

xk+1 = xk − u+k + u−k ∀k ∈ K. (2)

Given a finite energy capacity E for the storage, the state and inputs are
constrained by

0 ≤ xk ≤ E ∀k ∈ K (3)

u+k u
−
k = 0 ∀k ∈ K (4)

u+k , u
−
k ≥ 0 ∀k ∈ K. (5)

The constraint (3) sets the bounds on the amount of energy that can be stored
in the storage unit, (4) is a complementarity constraint which prevents the
storage from charging and discharging simultaneously, and (5) is a positivity
constraint. For simplicity, we do not initially consider the power constraint
of this storage unit, which restricts the ramp rates of this energy source.
However, such constraint is incorporated in the battery model of our case
study in Section 5.2.

We point out that, although we consider a perfectly efficient storage unit,
the problem can be generalized to include parameters relative to energy loss
and efficiency. As shown in [23], if the complementarity constraint (4) holds,
the storage dynamics can be described by the difference equation

xk+1 = αxk −
1

η+
u+k + η−u−k ∀k ∈ K, (6)
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where α ∈ (0, 1], η+ ∈ (0, 1] and η− ∈ (0, 1] are the leakage coefficient,
discharging efficiency, and charging efficiency, respectively. In Section 4.2,
we will derive conditions for which constraint (4) is satisfied. Further, the
efficiency and leakage parameters are also incorporated in the storage model
in the case study in Section 5.2.

Using the storage dynamics (2) and writing (3) recursively, we can write
the energy constraint in the compact form

0 ≤ A+u+ + A−u− ≤ E, (7)

where A+ ∈ RN×N and A− ∈ RN×N are triangular matrices with A+
ij = −1

and A−
ij = 1 for all i ≥ j, and the column vectors u+ ∈ RN and u− ∈ RN are

defined as u+ = [u+0 , ..., u
+
N−1]

T and u− = [u−0 , ..., u
−
N−1]

T . Further, 0 is the

null column vector of size N , and E = E1T, where 1T ∈ RN is the all-ones
column vector. Let U denote the set of all pairs (u+,u−) that satisfy the
storage constraints (2) – (5). A storage policy (u+,u−) is said to be feasible
if (u+,u−) ∈ U .

2.2. Renewable Production Model

The renewable production is modeled as a discrete-time random process
defined by R = {R0, ..., RN−1}. For each time slot k, the random variable Rk

has a continuous and twice differentiable probability density function fk(rk)
and cumulative density function Fk(rk). For simplicity, the random variables
{Rk} are assumed to be mutually independent.

2.3. Electricity Market Model

We model a day-ahead (DA) market that is operated by an independent
system operator (ISO) who is responsible for meeting the load reliably. In
this market, all generators bid the amount of energy they are willing to
commit for delivery in the next operating day. Each player also informs the
ISO of their asking price, which is the minimum price per unit of energy
they are willing to accept in order to deliver the amount committed. The
ISO clears the market by scheduling the generators in a least-cost fashion
that prioritizes the least expensive generators so that the supply meets the
demand and the customer pays the lowest possible energy price. In real-
time, an imbalance resolution mechanism penalizes the generators that do
not supply the amount of energy that they were cleared for.

In this work, we will focus on the bidding strategies of a renewable power
producer and a energy storage system, which are modeled as in Sections 2.1
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and 2.2. The network structure considered has unconstrained transmission
capacity, and thus all generators are paid a single market price. With this
assumption, we ignore transmission line congestion and the emergence of
locational marginal prices (LMPs) in the system nodes. The analysis of
possible impacts of network congestion in the decisions of the generators is
left as a direction for future work, as the incorporation of such constraints
would require a more detailed mathematical model. However, although we
do not address this problem in our theoretical analysis, we perform a case
study in a congested network in Section 5.2.

Because the DA market is typically composed of a large number of play-
ers, each individual generator is considered small relative to the whole mar-
ket. Therefore, we assume that the generators cannot exercise market power
and the market is competitive. With that assumption, the generators are
price takers. Further, the DA energy price vector over the entire day λ ,
[λ0, ..., λN−1]

T is assumed to be fixed and known. Finally, we assume the
load to be known. All these assumptions simplify the analysis and allow us
to focus on the insurance contract being proposed.

Given that the renewable production is stochastic, in real time, this pro-
ducer may be unable to meet his commitments. We assume that all renewable
production exceeding the commitment is curtailed. If the renewable produc-
tion is below its commitment, it pays a penalty per unit of shortfall at price
λp > max(λ) that is fixed and known. The curtailment assumption is sup-
ported by the existing no-compensation trend observed in markets with high
wind penetration. The penalty λp may refer to the price asked by a peaker
plant that is called in to compensate the shortfall.

3. Problem Formulation

We are interested in designing and analyzing an insurance contract be-
tween a renewable producer and a storage owner. We first introduce the
utility functions of each participant and then define the problem to be solved.

3.1. Utility Functions

The utility function of each participant is his expected profit.

3.1.1. Baseline case

In this scenario, both the renewable and the storage participants only bid
in the day-ahead market and insurance contracts are not allowed between
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them. The expected profit of the renewable producer is

J br (Cr) =
N−1∑
k=0

λkCrk − ERk [I(Crk −Rk)λp(Crk −Rk)] , (8)

where Cr = [Cr0, ..., Cr(N−1)]
T ∈ RN is the vector containing the commit-

ments for each time slot k. For each k, the first term of the expected profit
corresponds to the revenue acquired for committing to the day-ahead market
and the second term is the expected penalty due to shortage.

For the storage owner, the baseline utility function is

J bs(u
+,u−) =

N−1∑
k=0

λk(u
+
k − u

−
k )− g(u+k , u

−
k ), (9)

where, for each k, the first term is the revenue for supplying to and cost for
demanding from the market, while the second term is a cost function related
to the operation of the storage. This operational cost function g(u+k , u

−
k )

is assumed to be convex and strictly increasing in the decision variables
(u+k , u

−
k ).

3.1.2. Insurance contract case

In this case, the storage and the renewable players are allowed to establish
an insurance contract for reserve. In the contract, the storage supplies some
amount of energy to the renewable producer in case of shortage, instead of
offering this energy in the day-ahead market. The expected profit of the
renewable producer in this scenario becomes

J cr (Cr,Gr, πr) =
N−1∑
k=0

λkCrk − πrkGrk

− ERk [I(Crk −Rk −Grk)λp(Crk −Rk −Grk)] ,

(10)

where the vectors Gr = [Gr0, ..., Gr(N−1)]
T ∈ RN and πr = [πr0, ..., πr(N−1)]

T ∈
RN contain the reserve amounts and the (per unit) prices for each time k.
As compared to the baseline case, the renewable producer has the additional
cost of the contract, and the reserve amount helps decrease the expected
penalty. For the storage unit, the expected profit is

J cs(u
+,u−, πs) =

N−1∑
k=0

πsku
+
k − λku

−
k −ERk

[
g(min(Crk −Rk, u

+
k ), u−k )

]
, (11)
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where πs = [πs0, ..., πs(N−1)]
T ∈ RN is the per unit of reserve price vector.

The last term is the expected operational cost, which shows that the amount
supplied by the storage is the lesser of the renewable shortage and the reserve
in the contract. In this problem set-up, we consider that the storage is
supplying energy exclusively to the renewable player and charging from the
grid.

Note that the participants decide individually which reserve price they
are willing to pay or accept, as well as the amount of energy in the reserve
procured or offered. For that reason, each source has his own price and
reserve vectors. However, if an agreement is reached, these vectors will be
the same and equal to the values established in the insurance contract.

3.2. Contract Design Problem
Through an insurance contract, the storage unit commits to maintaining

some energy reserve available to be used in case of renewable shortage. The
contract is signed ex-ante, while in real-time, the storage is called upon to
supply this reserve in case of renewable shortage. If the shortage is less
than the reserve established in the contract, the storage unit will supply only
the amount needed to cover the shortfall; if the reserve is not enough to
cover the shortage completely, the storage supplies the entire reserve and the
renewable producer is responsible for paying the penalty corresponding to the
shortage remaining. An insurance contract C is defined as the pair {π,G}
that establishes the price per unit π = [π0, ..., πN−1]

T ∈ RN and amount of
energy G = [G0, ..., GN−1]

T ∈ RN to be set aside as a reserve by the storage
at each time k. We say that a contract C
• is individual rational if no participant is worse off by signing the con-

tract, i.e. their expected profit does not decrease in the presence of the
contract;

• is feasible if it induces a storage policy (u+,u−) ∈ U and is individual
rational.

The renewable producer tries to maximize his own expected profit when
deciding how much to bid in the day-ahead market and how much reserve
to purchase through an insurance contract with the storage unit. These two
decisions are made sequentially, as the contract is signed ex-ante. Then, in
the day-ahead market, the renewable producer solves

P1 : max
Cr≥0

J cr (Cr,Gr, πr), (12)
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where Gr and πr are treated as given. For the insurance contract, the problem
to be solved is

P2 : max
Gr,πr≥0

J cr (C
∗
r,Gr, πr), (13)

where C∗
r solves P1. Similarly, for the storage unit, the maximization problem

P3 : max
u−≥0

J cs(u
+,u−, πs) (14a)

s.t. (u+,u−) ∈ U (14b)

corresponds to the day-ahead market decision on how much to charge, given
the amount decided to supply to the renewable producer, and

P4 : max
u+,πs≥0

J cs(u
+,u−∗, πs) (15a)

s.t. (u+,u−∗) ∈ U , (15b)

refers to the insurance contract ex-ante decision. Note that these problem
definitions can be easily written for the baseline case by maintaining only
the day-ahead problem, letting the reserve amounts and price be zero, and
letting the storage supply energy to the day-ahead market instead of to the
renewable producer.

4. Main Results

4.1. Renewable Participation

The renewable generator will solve the profit-maximizing problems (12)
and (13) to decide how to participate in the market. The following results
can be proven using along the lines of [24].

Theorem 1. For every time slot k, the optimal renewable bid in the day-
ahead market is given by

C∗
rk = G∗

rk + F−1
k

(
λk
λp

)
, (16)

where the optimal reserve amount to be purchased in the insurance contract
is the maximum available, i.e. G∗

rk = Gmax,k, if the per unit price satisfies
the price constraint

πrk ≤ λk, (17)

and G∗
rk = 0 otherwise.
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Proof. See Appendix A.

The optimal strategy of this participant is reduced to that for the baseline
case if we set the reserve to be zero. As a buyer, the renewable producer sets
an upper bound on the reserve price. If the storage unit asks for a reserve
price above that threshold, the renewable producer is better off without a
reserve, and then an insurance contract is not signed. In such a situation,
we say there are no feasible insurance contracts, since it is not individual
rational for the renewable producer to purchase a reserve.

We observe that the renewable producer’s bid increases as the amount of
reserve purchased through the contract increases. This can be interpreted
as a moral hazard, which occurs when an agent behaves in a riskier way
because someone else bears the cost of this increased risk. Here, in case the
renewable producer is unable to meet this extra commitment, the cost of
delivering this amount is borne by the storage unit. Nevertheless, we will
show Section 4.3 that it is still beneficial for the storage unit to engage in
the insurance contract.

4.2. Storage Participation

Even in the baseline case, which is deterministic, deciding how much
energy to offer is a complex task for the storage unit. One of the reasons for
this complexity is the non-linearity in the complementarity constraint (4).
The following results show that this constraint can be relaxed.

Lemma 2. Given a convex and strictly increasing operational cost function
for the storage and considering this participant is a profit-maximizer, the
complementarity constraint u+k u

−
k = 0 for all k ∈ K always holds, both in the

baseline case and in the presence of an insurance contract.

Proof. See Appendix B.

The results of Lemma 2 allows us to simplify the storage problem by
removing the non-linear constraint (4). With this simplification, the maxi-
mization problem of the storage in the baseline case becomes a convex opti-
mization problem.

Let k = max (resp. k = min) refer to the time with the maximum (resp.
minimum) day-ahead price. Further, let ek denote the standard k−th basis
vector whose k−th entry is equal to 1 and all other entries are zero. We
define an arbitrage policy as one where the storage unit charges completely
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when the day-ahead price is the minimum and discharges when the price is
the maximum. The participation of the storage in the market is summarized
in the following result.

Theorem 3. In the baseline case, it is optimal for the storage unit to adopt
an arbitrage policy, in which the charging policy is given by u− = eminE and
the day-ahead offer is u+ = emaxE. Further, it is individual rational for the
storage to sign an insurance contract following this policy if the per unit price
of reserve for k = max satisfies

πs,max ≥ λmax −
g(E, 0)

E

(
1− Fr,max(Cr,max − E)

)
+

1

E

∫ Cr,max

Cr,max−E
g(Cr,max −Rmax, 0)fmax(r)dr.

(18)

Proof. See Appendix C.

The lower bound on the price set by the storage unit can be interpreted as
the minimum price for which the per unit expected profit earned by signing
the contract is at least equal to the per unit expected profit that can be
achieved by offering that energy in the day-ahead market.

4.3. Insurance Contract Feasibility

In the presence of an insurance contract, the expected cost of supplying
energy faced by the storage unit depends on the probability of shortage of
the renewable plant. The following result uses the upper and lower bounds
derived in Theorem 1 and Theorem 3 for the reserve price to show that insur-
ance contracts that are mutually beneficial for both the renewable generators
and storage owners are feasible.

Theorem 4. Let the storage charge following u− = eminE, when the day-
ahead price is minimum, and offer the stored energy to the renewable gen-
erator when this price is maximum, according to the discharge policy u+ =
emaxE. The interval of per unit reserve prices for which both the renewable
producer and the storage owner agree to sign an insurance contract, given by
[πs,max, λmax], with πs,max as in (18), is always non-empty.

Proof. See Appendix D.
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Theorem 4 proves that insurance contracts are always feasible for the
framework analyzed, which considers an unconstrained network. In Sec-
tion 5.2, we show that the feasibility of the contract will depend on the loca-
tion of these players in the grid, due to the differences in locational marginal
prices across the network.

The worst-case scenario for the storage unit occurs when the renewable
shortage is at least as large as the reserve amount established in the contract.
In this case, the storage unit will incur the operational cost of supplying the
full reserve. For a given insurance contract, we can use this fact to establish
a lower bound on the expected profit of the storage.

Corollary 5. Let the storage unit follow the arbitrage policy to charge when
the day-ahead price is minimum and offer the reserve u+ = emaxE in the
insurance contract. Then, the contract with a reserve price π = λ

• is feasible;

• leads to a storage expected profit that is lower bounded by the day-ahead
expected profit for the same policy.

Proof. The arbitrage policy is feasible, and, from Theorem 4, the contract
price proposed is the upper bound of the interval that guarantees individual
rationality for both players. Then, this insurance contract is feasible. To
find the lower bound on the profit, we analyze the worst-case scenario. In
this case, min(Cr,max −Rmax, E) = E, which leads to J bs = J cs .

4.4. Storage Profitability Analysis

The analysis performed in Section 4.3 is interesting since it identifies a
revenue source for the storage owner. This raises an interesting question
whether is is possible for the storage owner to be profitable as an insurance
provider, even though it is not competitive in the day-ahead market. We
highlight that we are not making any inferences about how profitable this
energy storage system may be in the frequency regulation, reserve, or any
other market other than the day-ahead energy market. Instead, we compare
the participation in the day-ahead market versus the provision of reserve to
a renewable generator through an insurance contract. Therefore, by stating
that a storage unit may not be profitable in the the day-ahead market, we
do not claim that this is true if this unit participates in other services.

The day-ahead profit of a storage unit which utilizes an arbitrage policy
in the day-ahead market depends on the difference between the highest and
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lowest energy prices. In the following result, we set bounds on the ratio of
these prices to establish a profitability condition for the storage to have an
insurance contract, even though it cannot achieve a positive profit in the
day-ahead market.

Theorem 6. Let g(u+, u−) be the operational cost function of the storage
for discharging u+ and charging u−, E be its energy capacity, and π denote
the per unit price of reserve in the insurance contract. Further, define the
following prices

Λ = 1− g(0, E)

λmaxE
− g(E, 0)

λmaxE
(19)

Λ =
π

λmax

− g(0, E)

λmaxE
− g(E, 0)Fr,max(Cr,max − E)

λmaxE
(20)

− 1

λmaxE

∫ Cr,max

Cr,max−E
g(Cr,max −Rmax, 0)fmax(r)dr

When following the arbitrage policy to charge u− = eminE and discharge
u+ = emaxE, the storage unit is profitable as an insurance provider, but not
in the day-ahead market, if

Λ ≤ λmin

λmax

< Λ. (21)

Proof. Proof follows from direct inspection of the expected profits for the
storage unit in the baseline scenario and in the insurance contract case. For
that, we simultaneously check conditions for this player to not be competitive
in the day-ahead market (J bs ≤ 0) and be profitable as an insurance provider
(J cs > 0).

The condition (21) derived in Theorem 6 establishes a lower and an upper
bound on the ratio between the minimum and the maximum day-ahead prices
in the time interval considered. This price ratio is a determinant factor to
how much profit the storage unit can expect to achieve using arbitrage. If
the lower bound holds, the difference between the maximum and minimum
day-ahead prices is not high enough to cover the storage operational costs
and yield a positive profit for this storage unit when it operates in the day-
ahead market only. On the other hand, the upper bound is satisfied when
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the payments from the insurance contract are high enough to cover both the
storage operational cost and the payments made to charge from the grid.

This result shows that storage technologies that are still too expensive
to bid in the day-ahead market may, instead, offer their energy through
an insurance contract with a renewable power plant. Therefore, insurance
contracts may be an alternative source of revenue for such storage units,
keeping them from being idle when they lack competitiveness, and serving as
an additional economic incentive for the improvement of their technology. We
note that at places such as California, it has already been identified that there
is a limitation in the amount of storage that can provide peaking capacity
according to their 4-hour rule, which credits storage units that can sustain
4 hours of operation at maximum output [4]. Further, the ratio between the
minimum and the maximum day-ahead prices becomes higher as more peak-
shaving services are provided, making it more likely that the lower bound
shown in (21) holds, and thus more difficult for new storage operators to
enter the market. Therefore, we can envision that insurance contracts would
allow for a higher penetration of storage in the grid by serving as an entry
point in the market for peaking capacity. In Section 5, we perform a case
study in which we show that the condition expressed in Theorem 6 is not too
stringent.

4.5. Model Extension - Two-Way Contract Structure

The insurance contract designed allows a renewable generator to request
use of an energy reserve from a storage unit in times of underproduction. In
this section, we extend the model to a full contract between these two players
which also permits production exchange from the renewable generator to the
storage if there is excess renewable production.

Trading excess renewable production is profitable both for the storage
unit and for the renewable generator. This happens because the renewable
generator is subject to curtailment in case of overproduction. Therefore, for
this generator, selling excess energy at any price ε > 0 is preferable to spilling
it. For the storage, purchasing energy at a price lower that the market price
leads to a decreased cost of charging. Thus, this contract has the potential
to increase the profits to each participant over the contract studied earlier.
However, there may be regulations preventing such a level of coordination
among bidders in a day-ahead market.

The possibility of extra revenue may affect the renewable participation
in the market, as any increase in the day-ahead commitment is now linked

16



both to an increase in expected penalty for shortage and to a decrease in
the expected revenue from selling exceeding generation (higher Cr implies
higher expected shortage and lower expected overproduction). To evaluate
this trade-off, we modify the renewable utility function (10) to include the
opportunity to sell excess production. Let πek denote the per unit price
charged for the excess energy at time k. The modified utility becomes

Jr(Cr,Gr, πr, πe) =
N−1∑
k=0

λkCrk − πrkGrk + ERk [I(Rk − Crk)πek(Rk − Crk)]

− ERk [I(Crk −Rk −Grk)λp(Crk −Rk −Grk)] . (22)

The following results hold for every time instant k ∈ K, but the time
subscript is suppressed for notational simplicity.

Proposition 7. Consider the renewable generator participates in the day-
ahead market and in the insurance contract with the two-way structure de-
scribed in Section 4.5. Then, the renewable utility (22) is concave in the
day-ahead commitment for small enough πe. In this case, the optimal com-
mitment C∗

r satisfies the equilibrium condition

λ = λpFR (C∗
r −Gr) + πe (1− FR(C∗

r )) (23)

As πe →∞, that function becomes convex in Cr. In such scenario, the player
chooses to bid its maximum capacity if

πeµR ≤ λCr − πrGr − ER [I(Cr −R−Gr)λp(Cr −R−Gr)] , (24)

where µR is the expected renewable production. Otherwise, the renewable
generator bids zero in the day-ahead market and sells all production to the
storage unit.

Proof. See Appendix E

The analysis above assumes the energy storage will voluntarily agree to
purchase the excess renewable energy. Thus, πe can be at most the energy
price λ, otherwise the storage unit is better off by being scheduled as a load
in the day-ahead market and charging at the lower cost λ.

If the time instant considered is such that the renewable player has no
energy reserve from the insurance contract, but is still able to sell excess
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energy to the storage unit, we can set Gr = 0 and rewrite (23) to find the
optimal renewable day-ahead commitment

λ = πe + (λp − πe)FR (C∗
r ) =⇒ C∗

r = F−1
R

(
λ− πe
λp − πe

)
. (25)

From equation (25), we observe the opportunity cost involved between sell-
ing energy to the market or through a bilateral contract with the storage
unit. The higher the reselling price πe, the lower is the day-ahead commit-
ment. This leads to an increased likelihood of having excess energy to resell.
Conversely, Cr increases with the day-ahead energy price λ.

5. Case Studies

We analyze the insurance contract proposed for two network scenarios.
First, we consider an unconstrained setup in which the renewable and the
storage participants are connected to the same node. We later analyze the
insurance contract in a modified IEEE 14-bus test system, where the partic-
ipants may be located in different nodes of the network and thus they may
be subject to different locational marginal prices (LMPs). For both cases,
the renewable production distribution was estimated from the Wind Integra-
tion National Dataset (WIND) Toolkit [25, 26]. For each month, we fitted
a Gaussian distribution for the hourly wind production in each hour of the
day, and we assumed the productions to be independent across time.

5.1. Single-Node Case

For this analysis, we consider four hubs within the Midcontinent Indepen-
dent System Operator footprint – Illinois, Michigan, Minnesota, and Indiana
hubs. We use the day-ahead price of these hubs that refer to 2018 [27].
Four different wind productions were modeled based on each hub location.
The storage unit investigated is a lithium-ion battery with energy capac-
ity E = 12MWh and a linear variable operation and maintenance cost of
$7/MWh [28].

We initially seek to confirm the existence of feasible insurance contracts
in all four locations. For that, we considered the contract discussed in Propo-
sition 5 and generated 1000 scenarios for renewable production to evaluate
the profit achieved by the storage unit when that contract is signed. We also
calculated the profit for the unit in the baseline case. The results of this
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analysis are shown in Fig. 1, where the shaded area corresponds to the profit
variation observed across the 1000 scenarios generated in the presence of an
insurance contract.

IL Hub

2 4 6 8 10 12
Month

0

100

200

300

400

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

MI Hub

2 4 6 8 10 12
Month

0

100

200

300

400

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

MN Hub

2 4 6 8 10 12
Month

0

200

400

600

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

IN Hub

2 4 6 8 10 12
Month

0

100

200

300
A

ve
ra

ge
 D

ai
ly

 P
ro

fit
 (

$)

IL Hub

2 4 6 8 10 12
Month

0

100

200

300

400

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

Profit Variation E[Js
b] E[Js

c] MI Hub

2 4 6 8 10 12
Month

0

100

200

300

400

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

MN Hub

2 4 6 8 10 12
Month

0

200

400

600

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

IN Hub

2 4 6 8 10 12
Month

0

100

200

300

A
ve

ra
ge

 D
ai

ly
 P

ro
fit

 (
$)

Figure 1: Storage average daily profit for baseline (red) and insurance contract (blue)
cases.

As proved in Corollary 5, the storage unit’s expected profit in the pres-
ence of an insurance contract, shown in blue, is lower bounded by the profit
achieved in the baseline case. The profits in these scenarios are closer in
cases with higher probabilities of renewable shortage, since this leads to the
storage having to supply higher energy amounts more frequently. The annual
expected profits for the storage unit both for the baseline and for the insur-
ance contract case are presented in Table 5.1. These results confirm that it
is individual rational for the storage unit to sign an insurance contract with
a renewable generator, as the contract proposed leads to an increase in the
expected profit of the storage unit.

We also evaluated how much renewable energy was taken by the grid in
real-time, which corresponds to the minimum between the renewable pro-
duction and the renewable commitment. Through the insurance contract
proposed, the storage commits to deliver some energy reserve at the hour of
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IL Hub MI Hub MN Hub IN Hub

Baseline 4.8909 4.9643 3.7147 5.8605

Insurance contract 5.3212 5.2350 4.4157 5.9527

Table 1: Annual expected profit for storage player (×104$)

the day with the highest day-ahead energy price, if needed. Thus, we focused
our analysis on that hour, as the behavior of the renewable generator during
other times will reduce to that observed in the baseline case. Fig. 2 shows
that the insurance contract leads to an increase in renewable integration in
the grid at the time of peak demand, for all hubs and all months. This is due
to the change in the optimal bidding strategy of the renewable generator,
which gives more room for extra production to be taken by the grid. This
trend may also be observed in other hours of the day if the renewable plant
finds other flexible sources that are willing to have an insurance contract at
these times.
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Figure 2: Increase in renewable energy taken by the grid at the hour with maximum
day-ahead energy price.

Finally, we check the condition presented in Theorem 6 to verify whether
there are any days of the year for which the storage unit investigated is
profitable as an insurance provider, even though it is not competitive in the
day-ahead market. The results presented in Fig. 3 show that this situation
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happens more often in the Minnesota hub, while it is less frequent in the
Indiana hub.
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Figure 3: Number of days per month in which storage unit is profitable as an insurance
provider, but not in the day-ahead market.

In fact, we can observe from Table 5.1 that operating in the Indiana hub
yields a higher expected profit for the storage unit, as compared to the other
hubs. Thus, the energy prices in this location are such that they enable the
storage player to participate more often in the day-ahead market. Similarly,
the Minnesota hub is the location for which the storage is less competitive,
leading to the lowest expected profit and a higher occurrence of days in which
this source can be profitable as an insurance provider, but not as a bidder in
the day-ahead market.

5.2. Modified IEEE 14-Bus Test System Case

We now evaluate the insurance contract in a case with constrained trans-
mission capacity. We use the IEEE 14-bus test system show in Fig. 4, and
we adopt the data from MATPOWER [29] with the following modifications:

• All transmission lines have a 80MW capacity.

• Generators at buses 1 and 2 have a 15MW ramp rate for 30min reserves.

• A wind power plant with 32MW capacity is added.
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• A storage unit with energy capacity E = 50MWh, power capacity
P = 20MW, linear cost $7/MWh, loss factor α = 0.95, charge and
discharge efficiencies η− = η+ = 0.85 is added.

Figure 4: IEEE 14-bus test system used in this case study.

We analyze a multi-period set-up with N = 24 time slots corresponding to
each hour of the day. The distribution for the wind production was estimated
from the WIND Toolkit [25, 26] considering the month on July and the
location in the Illinois hub. Further, we added a demand profile that follows
a typical demand curve for July in the Illinois hub, which was inferred from
the day-ahead price curve for this location and month. In the baseline case,
we considered the penalty for a shortage is such that the ratio λk/λp = 0.4 ∀k.
The total demand and the baseline wind profiles are presented in Fig. 5.

We solve for a multi-period optimal economic dispatch for this network.
The second modification permits that there is enough ramp capability in the
system to allow for a feasible solution for this problem, even with variable
demand and renewable production profile. We consider 14×14 scenarios, with
all possible combinations of bus location for the renewable and the storage
players. For each scenario, we let the wind power plant be scheduled based
on its baseline commitment and we observe the optimal schedule profile for
the storage unit. Then, we determine whether a insurance contract is feasible
or not in each situation, considering the storage can supply the amount of
energy that it was scheduled for in the baseline case, since we know that is a
feasible trade. Note that, in this constrained network case, the participants
will take into account their own LMPs when deciding on the price bounds
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Figure 5: Renewable baseline schedule profile (left, red) and total demand profile (right,
blue).

that will make it profitable for them to have an insurance contract. The
results can be seen in Fig. 6, where each square is green if the insurance
contract is feasible when the wind power plant is located in bus x and the
storage is in bus y, and it is red otherwise.
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Figure 6: Insurance contract feasibility for the modified IEEE 14-bus test system. For
each renewable bus x and storage bus y, the green squares indicate that the insurance
contract is feasible, while the red ones are cases in which it is not.

We observe that all squares in the diagonal, corresponding to when the
renewable and the storage players are at the same bus, are cases with feasible
insurance contracts. This result conforms with our analytical studies and the

23



single node case study. There are cases, however, in which it is not individual
rational for both players to have a contract. This is explained by the price
disparity between certain nodes in this network. The storage is discharging
at times with high demand, during which the grid becomes congested. The
distribution of generation and load in this test case is such that node 1 has
consistently the lowest LMP during congestion times, while node 2 has the
highest one. Fig. 7 shows the LMPs for all nodes for the representative case
with the storage at node 1 and the wind power plant at node 3 (the same
pattern was also observed for all other cases).
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Figure 7: Locational marginal prices for all nodes in a representative case with the wind
power plant at node 3 and the storage at node 1.

If the renewable generator is at node 1, he will set an upper bound on
the contract price that is significantly lower than any other LMP; thus, if
the storage is at any other node, he will not accept such a low offer, since
supplying to the market at any other LMP is more profitable. This scenario
represents the vertical line of red squares in Fig. 6. Similarly, if the storage
unit is at node 2, he will set a lower bound on the contract price that is
too high for the renewable generator to accept if he is at any other node.
The significant price gap between the LMP at bus 3 and at all the other
buses explains the remaining cases with no feasible insurance contract. The
LMPs at all the remaning buses are close together, allowing for an insurance
contract to be signed in these remaining cases. For this case study, it can be
argued that the storage owner should simply disregard the possibility of an
insurance contract and decide to install the storage system at the bus that
is more likely to have a high LMP. However, as the number of storage units
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located at a certain bus increases, the LMP at that location will decrease
due to the peak shaving aspect of the storage operation in the grid. Thus,
buses at which insurance contracts are currently infeasible may experience a
change in this feasibility condition once the distribution of storage, as well
as of other generators and loads, in the grid changes.

In the cases with a feasible contract, the expected profit of both partici-
pants increase at the hours in which a contract is signed, and we also allow
for more renewable energy to be taken by the grid. Therefore, we showed
that the insurance contract proposed can incentivize storage and renewable
participation in the market even in a congested network.

6. Conclusions and Future Work

We proposed a bilateral insurance contract between a renewable power
plant and a storage unit. We proved the feasibility of this contract and
showed that it leads to a mutually individual rational solution, in that no
participant is worse off by signing the contract. The proposed insurance
contract also promotes the increase of renewable participation in the market,
and provides an additional source of revenue for some storage units when
they are not profitable in the day-ahead market. In our case studies, we
validated our design both in an unconstrained and in a constrained power
grid.

Directions for future work include extending our analysis to a multi-player
scenario, in which multiple storage units and renewable players can choose
to have an insurance contract. We can also explore the case with a stor-
age aggregator as an insurance provider. We can consider that, through an
aggregator, owners of different storage technologies are able to offer their
energy to be used in case of renewable shortage. Some interesting questions
arise in this problem set-up, such as which storage to call upon to produce
in real-time in case of renewable shortage, and how to design a payment
scheme that makes this framework profitable for the participants. Further,
if the aggregator charges for this service, we can also analyze how he should
set the price charged.
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Appendix A. Proof of Theorem 1

We use backwards induction to solve for the decisions of the renewable
generator. We first solve for the DA commitment Crk for each time k, taking
the prior insurance contract decisions as fixed. The utility function (10) is
concave in the commitment decisions. Thus, taking its the derivative with
respect to Crk, we find the optimal renewable commitment.

∂J cr
∂Crk

= λk − λpFRk (Crk −Grk) = 0

⇒ C∗
rk = G∗

rk + F−1
Rk

(
λk
λp

)
. (A.1)

Substituting (A.1) back in the expression for the expected profit, we find

J cr = (λk − πrk)Grk + λkF
−1
Rk

(
λk
λp

)
− ERk

[
I

(
F−1
Rk

(
λk
λp

)
−R

)
λp

(
F−1
Rk

(
λk
λp

)
−R

)]
⇒ J cr = (λk − πrk)Grk + J b∗r , (A.2)

where the last term in (A.2) is the expected renewable baseline profit for the
optimal baseline commitment. From this, we observe that it is individual
rational for this player to purchase any available reserve through an insurance
contract as long as the price is πrk ≤ λk. Otherwise, the renewable player is
better off without the contract.

Appendix B. Proof of Lemma 2

Let (u+,u−) and (ũ+, ũ−) be two distinct feasible storage policies such
that, for every k,

−u+k + u−k = uk, u
+
k u

−
k = 0 (B.1)

−ũ+k + ũ−k = uk, ũ
+
k ũ

−
k > 0 (B.2)

Following [23, Theorem 1], we can show that u+k < ũ+k and u−k < ũ−k . There-
fore, for a strictly increasing cost function,

g(min(Crk −Rk, u
+
k ), u−k ) ≤ g(u+k , u

−
k ) < g(ũ+k , ũ

−
k ). (B.3)
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Let Js and J̃s denote the profit attained by the storage under these policies.
The storage will be better off with the policy that satisfies the complemen-
tarity constraint if and only if Js > J̃s. We show that this always holds if the
cost function is convex and strictly increasing. From the definitions (B.1)
and (B.2), it follows that

ũ+k − u
+
k = ũ−k − u

−
k . (B.4)

Let Uk denote the difference above and note that Uk > 0.
In the presence of an insurance contract, and for the case min(Crk −

Rk, u
+
k ) = u+k , the inequality Js > J̃s gives us

g(ũ+k , ũ
−
k )− g(u+k , u

−
k ) > πsk(ũ

+
k − u

+
k )− λk(ũ−k − u

−
k )

g(ũ+k , ũ
−
k )− g(u+k , u

−
k ) > (πsk − λk)Uk. (B.5)

From (B.3), we note that the left hand side of (B.5) is always positive. Thus,
this condition always holds if πsk ≤ λk. As this inequality coincides with
the upper bound set by the renewable producer on the reserve price (17), it
must be satisfied when a contract is signed. Therefore, in the presence of
an insurance contract, the storage policy satisfying u+k u

−
k = 0 will be chosen

and the constraint (4) can be relaxed. It is straightforward to notice that
this result is also true if min(Crk − Rk, u

+
k ) = Crk − Rk, as well as for the

baseline case, for which the right side of (B.5) will be zero.

Appendix C. Proof of Theorem 3

Since the storage baseline problem is convex, an optimal solution will
satisfy the KarushKuhnTucker (KKT) conditions. Let the column vectors
µ = [µ

0
, ..., µ

(N−1)
]T and µ = [µ0, ..., µ(N−1)]

T be the Lagrange multipliers

corresponding to the lower and upper storage energy constraints (7), respec-
tively, and the multipliers ρk and ρk refer to the positivity constraint (5).

Further, let A+T
k and A−T

k denote the transpose of the k−th column of the
matrices A+ and A−. For every k, the stationarity conditions are given by

λk −
∂

∂u+k
g(u+k , u

−
k )−A+T

k µ+ A−T
k µ+ ρk = 0, (C.1)

−λk −
∂

∂u−k
g(u+k , u

−
k ) + A+T

k µ−A−T
k µ+ ρk = 0. (C.2)
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The complementarity slackness conditions are

µ ◦ (A+u+ + A−u−) = 0, (C.3)

µ ◦ (E−A+u+ −A−u−) = 0, (C.4)

where, for two matrices A and B of the same size, A ◦ B denotes their
Hadamard (element-wise) product. The last condition is that all multipliers
must be non-negative. Proof that an arbitrage policy is optimal in the base-
line case follows from direct inspection of the KKT conditions (C.1) – (C.4)
for the policy (u+,u−), with u+ = emaxE and u− = eminE, where ek is the
standard k−th basis vector, and k = max (k = min) refers to the time with
the maximum (minimum) day-ahead price.

If the storage signs the insurance contract and offers E at the time k =
max, his expected profit is

J cs = (πs,max−λmin)E−g(0, E)−ER,max[g(min(Cr,max−Rmax, E), 0)]. (C.5)

The last term in (C.5) can be rewritten as∫ Cr,max−E

0

g(E, 0)fmax(r)dr +

∫ Cr,max

Cr,max−E
g(Cr,max −Rmax, 0)fmax(r)dr. (C.6)

In case he opts out, and instead offers his supply in the day-ahead market,

J bs = (λmax − λmin)E − g(0, E)− g(E, 0). (C.7)

The condition for individual rationality is that J cs ≥ J bs . Using the expressions
above and recognizing that∫ Cr,max−E

0

g(E, 0)fmax(r)dr = g(E, 0)Fr,max(Cr,max − E) (C.8)

yields the price condition presented in Theorem 3.

Appendix D. Proof of Theorem 4

We need to show that the upper bound (17) on the price is always above
or equal to the lower bound (18), considering the arbitrage policy.

λmax ≥λmax −
g(E, 0)

E

(
1− Fr,max(Cr,max − E)

)
+

1

E

∫ Cr,max

Cr,max−E
g(Cr,max −Rmax, 0)fmax(r)dr

(D.1)
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This condition reduces to

g(E, 0)
(
1− Fr,max(Cr,max − E)

)
≥
∫ Cr,max

Cr,max−E
g(Cr,max −Rmax, 0)fmax(r)dr

(D.2)
The integral on the right hand side can be bounded from above as∫ Cr,max

Cr,max−E
g(Cr,max −Rmax, 0)fmax(r)dr

<

∫ Cr,max

Cr,max−E
g(E, 0)fmax(r)dr

= g(E, 0)
(
Fr,max(Cr,max)− Fr,max(Cr,max − E)

)
≤ g(E, 0)

(
1− Fr,max(Cr,max − E)

)
,

(D.3)

which is the same as (D.2). Thus, the condition for the reserve price interval
to be non-empty holds.

Appendix E. Proof of Proposition 7

The first and second order derivatives of Jr with respect to Cr are

∂Jr
∂Cr

= λ− λpFR (Cr −Gr)− πe (1− FR(Cr)) (E.1)

∂2Jr
∂C2

r

= −λpfR (Cr −Gr) + πefR(Cr) (E.2)

It is straightforward to note that (E.2) will be negative (positive) for small
(large) enough πe, which means the function is concave (convex). Further,
the condition (23) is found by setting (E.1) to zero. In the convex case, the
optimal bid is found by checking when the expected utility is maximized at
the boundary Cr = 0 and when this happens at the maximum Cr.
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