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Abstract— Consider a scalar linear time-invariant system
whose state is being estimated by an estimator using measure-
ments from a single sensor. The sensor may be compromised by
an attacker. The attacker is allowed to replace the measurement
sequence by an arbitrary sequence. When the estimator uses
this sequence, its estimate is degraded in the sense that the mean
square error of this estimate is higher. The estimator monitors
the received data to detect if an attack is in progress. The
aim of the attacker is to degrade the estimate to the maximal
possible amount while remaining undetected. By defining a
suitable notion of stealthiness of the attacker, we characterize
the trade-off between the fundamental limits of performance
degradation that an attacker can induce versus its level of
stealthiness. For various information patterns that characterize
the information available at every time step to the attacker,
we provide information theoretic bounds on the worst mean
squared error of the state estimate that is possible and provide
attacks that can achieve these bounds while allowing the
attacker to remain stealthy even if the estimator uses arbitrary
statistical ergodicity based tests on the received data.

I. INTRODUCTION

Security of cyber-physical systems is now an established
research topic. The canonical problem in this field is for an
attacker to attack the cyber-system, i.e., the data being trans-
mitted, to induce performance degradation in the physical
system by corrupting the estimate or generate inappropriate
control. Conversely, the problem for the estimator or the
controller is to detect if the received data has been corrupted,
and if so, to mitigate the performance loss due to such
corrupted data.

Various attack models have been defined and developed in
the literature. While simple attacks may consider an attacker
that jams the channel across which data is transmitted,
more sophisticated attacks that substitute false data for the
correct measurements or control signals may achieve greater
performance degradation. For any attacker, two metrics seem
relevant: the performance degradation it can induce and the
ease with which an attack it generates can be detected by
the estimator or the controller. It seems intuitive that an
attacker that does not care about being detected can substitute
arbitrarily bad data and degrade the system performance
arbitrarily. It is the constraint that the attack be undetected
that limits the actions of the attacker and consequently the
performance degradation it can induce. This trade-off has
been studied in the literature. For deterministic systems,
works such as [1], [2], [3], [4], [5] consider an attacker
that can control some sensors and controllers in a distributed
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deterministic system. Since the system is deterministic, the
only degree of freedom available to the attacker if she
wants to remain stealthy is to utilize the fact that not all
modes of the system can be observed by every sensor. These
works relate stealthiness to the observability structure of the
system and compute the performance degradation that such
a stealthy attacker can induce. A different stream of work
considers stochastic systems in which the attacker has an
additional degree of freedom in the sense that the process
and measurement noises induce some uncertainty in what
the correct values of the measurements should be. Most
works in this direction consider stealthiness of the attacker
with respect to specific schemes employed by the estimator
to detect if an attack is in progress. Usually such schemes
follow from classical bad data detection algorithms [6] and
are in the form of some residual error detector. Finally, there
is a rich and growing literature of works (see, e.g., [1], [2],
[3], [4], [7], [8], [9], [10], [11]) that define various specific
attack strategies and detection tests for such attacks when the
attacker’s capability is constrained in some manner - say in
terms of the number of components that it can compromise.

Thus, there seems to be a gap in the literature. While the
notion of stealthiness for distributed deterministic systems
has been defined, a similar notion for stochastic systems has
been studied only for the special case when the detector
employs a particular test, or when there are additional
constraints on the attacker. In this work, we take the first
step towards filling this gap. We focus on state estimation
for an autonomous system (see, e.g., [1], [6], [12] for a good
overview on works with this setup). We consider a process
being driven by white noise whose state is observed by one
sensor. An estimator relies on the measurement sequence
it receives from the sensor to generate an estimate in the
minimum mean squared error (MMSE) sense. The sensor
may be compromised and the attacker can substitute any
arbitrary sequence for the correct measurement sequence.
The estimator has to detect if an attack is in progress. If an
attack is not detected, the state estimate is calculated. Note
that the system is centralized and fully observable; however,
the stochastic measurement and process noises allow the
attacker some stealthiness in altering the data.

For this problem, we begin by defining a suitable notion
of stealthiness in terms of the probability of missed detection
when an attack is in progress and probability of false alarm
when no attack is in progress. The estimator must rely on
the statistical properties of the received data sequence to
detect an attack. We allow the estimator to conduct any
ergodicity based test in which sample averages, moments
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or distribution function can be checked against expected
values. Using information theoretic tools, we characterize
the asymptotic performance degradation that can be induced
by an attacker that remains stealthy. For various information
patterns that specify the information available to the attacker,
we present explicit attacks that achieve this bound.

The paper is organized as follows. We begin in Section II
by presenting the system and attacker model and formulating
the problem. In Section III, we first present a converse result
for the maximum performance degradation that a stealthy
attacker can induce. Then, we present achievability results
for various information patterns for the attacker. Section V
presents numerical results to illustrate the trade-off between
the performance degradation and stealthiness. Section VI
concludes the paper.

II. SYSTEM AND ATTACK MODEL

Consider the scalar linear time-invariant system:

xk+1 = axk + wk, yk = cxk + vk (1)

with the initial condition x1 that is assumed to be a Gaussian
random variable with mean zero. Without loss of generality,
we assume that c ≥ 0. In this system model, {wk}k>0 and
{vk}k>0 represent the process noise and the measurement
noise, respectively; both sequences are assumed to be inde-
pendent and identically distributed (i.i.d.) Gaussian processes
with mean zero and variance σ2

w, σ
2
v , respectively. Moreover,

we assume that the process noise and the measurement noise
are mutually independent.

An estimator receives the measurements {yn}kn=1 and
generates a minimum mean squared error estimate of the
state based on these measurements. Denote the estimate of
xk+1 based on the measurement sequence {yn}kn=1 by x̂k+1.
Denote the corresponding estimation error by ek+1 , x̂k+1−
xk+1 and the mean square error (MSE) by Pk+1 , E

[
e2k+1

]
.

It is well-known that the Kalman filter [13], [14] provides a
recursive calculation for the estimate as

x̂k+1 = ax̂k +Kk(yk − cx̂k) (2)

where the Kalman gain and the MSE Pk+1 can be calculated
by the following recursions:

Kk =
acPk

c2Pk + σ2
v

, Pk+1 = a2Pk + σ2
w −

a2c2P 2
k

c2Pk + σ2
v

.

The initial condition of the Kalman filter is given by x̂1 =
E[x1] = 0. The sequence {zk}k>0 calculated as zk ,
yk− cx̂k is called the innovation sequence. It is well known
that the innovation sequence is a zero mean white Gaussian
process with variance E[z2k] = c2Pk + σ2

v .
If the system (1) is detectable (i.e., |a| < 1 or c 6= 0), then

the Kalman filter converges to a steady state in the sense
that limk→∞ Pk exists [14]. Denote by P , limk→∞ Pk
the asymptotic MSE. The asymptotic MSE P is the positive
semi-definite solution of the following algebraic Riccati
equation:

P = a2P + σ2
w −

a2c2P 2

c2P + σ2
v

, (3)

and hence the steady-state Kalman gain K , limk→∞Kk

is obtained by K = acP
c2P+σ2

v
. Other statistical proper-

ties of the steady-state Kalman filter are given by σ2
z ,

limk→∞ E
[
z2k
]
= c2P + σ2

v , σ2
x , limk→∞ E

[
x2k
]
=

σ2
w

1−a2 ,

σ2
x̂ , limk→∞ E

[
x̂2k
]
=

K2σ2
z

1−a2 .
We are interested in the situation when the sensor in the

system (1) is compromised by an attacker who is capable
of replacing the measurement sequence {yk}k>0 by any
arbitrary attack sequence {ỹk}k>0. However, the attack se-
quence must be a function only of the information available
at the attacker, as specified by the information pattern of the
problem. If the estimator is not aware of the presence of the
attacker, the attack sequence {ỹk}k>0 is treated as the input
of the Kalman filter. Denote the corresponding “estimate” of
the state obtained from the output of the Kalman filter by
{ˆ̃xk}k>0. Similar to (2), the sequence {ˆ̃xk}k>0 is obtained
by the recursion ˆ̃xk+1 = aˆ̃xk + Kkz̃k, where the initial
condition ˆ̃x1 = x̂1 is not changed. Denote the corresponding
“innovation” by z̃k , ỹk − cˆ̃xk. Note that the sequence
{z̃k}k>0 need neither be zero mean, nor white or Gaussian.

For the estimation error ẽk+1 = ˆ̃xk+1−xk+1 of this com-
promised estimate, denote the second moment by P̃k+1 =
E[ẽ2k+1]. In general, P̃k+1 ≥ Pk+1 and the attacker is
interested in maximizing P̃k+1. We consider the asymp-
totic behavior of P̃k+1 as the metric of the performance
degradation that the attacker can induce. Since the attack
sequence is arbitrary, P̃k+1 may not converge. Accordingly,
we consider the limit superior of the Cesàro mean of the
sequence {P̃k}k>0 as given by

P̃ , lim sup
k→∞

1

k

k∑
n=1

P̃n. (4)

Notice that if {P̃k}k>0 is a convergent sequence, then P̃ =
limk→∞ P̃k (see, e.g., [15]).

A. Information Pattern for Generating an Attack

The attack sequence is a function of the information
available to the attacker. We denote by Ik the information
available to the attacker at time k. Specification of Ik for
every k indicates the information pattern for the attacker.

Assumption 1: The sequence {Ik}k>0 is assumed to have
the following properties.

1) Due to causality constraints, Ik is independent of
{wn}n≥k and {vn}n>k.

2) The attacker is assumed to have knowledge of the
system parameters a, c, σ2

w, σ
2
v .

B. Stealthiness

Intuitively, an attacker can degrade the performance of the
estimator by an arbitrary amount if there is no constraint on
the attack sequence {ỹk}k>0. For instance, it can simply
set the measurements to very large values, leading to P̃
attaining an arbitrarily high value. In a practical setting,
there are constraints on the attack sequence that arise from
the attacker’s desire to stay undetected. If the attacker is
detected, all received measurements can be ignored and the
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degradation of the MSE will be no greater than E[x2k], which
is bounded for a stable system. Thus, the attacker aims at
degrading the performance of the estimator by more than this
amount while remaining undetected or stealthy.

To define a stealthy attack more formally, we separate the
function of an attack detector from that of an estimator. To
detect a stealthy attack, the attack detector must rely on the
statistical properties of the received measurement sequence
as compared with their expected values.

Definition 1 (Stealthy Attack): An attack {ỹk}k>0 is said
to be stealthy if there exists no detector that can detect that
an attack is in progress with zero probability of false alarm
and zero probability of missed detection.

Since the initial condition of the Kalman filter is not
changed by any attacker, there is a one-to-one corre-
spondence between the measurement sequence {yk}k>0

(resp. {ỹk}k>0) and the innovation sequence {zk}k>0 (resp.
{z̃k}k>0). Since the innovation sequence has a nice statisti-
cal characterization, it is convenient to use the innovation
sequences {zk}k>0 and {z̃k}k>0 in the sequel. By the
Neyman-Pearson criterion [16], if the two random sequences
{zk}k>0 and {z̃k}k>0 are identically distributed, then the
corresponding attack is stealthy. We provide two examples
of such stealthy attacks and the corresponding performance
degradation generated by attackers with access to different
information patterns.

Example 1: Suppose that the attacker has no information
about the states or the measurements. The attacker gen-
erates two random sequences {w̃k}k>0 and {ṽk}k>0 that
are identically distributed to, but independent of, {wk}k>0

and {vk}k>0, respectively. Consider the attack generated by
substituting the true measurements by the measurements that
are the output of a fictitious system with the same dynamics
as the true plant dynamics in (1) but the process noise and
the measurement noise replaced by {w̃k}k>0 and {ṽk}k>0,
respectively. Then, the attack {ỹk}k>0 is stealthy. Since ˆ̃xk+1

and xk+1 are independent, the MSE can be calculated as
P̃k+1 = E

[
ˆ̃x2k+1] + E

[
x2k+1

]
. Hence, we have

P̃ =

{
σ2
x̂ + σ2

x, if |a| < 1,

∞, otherwise.
(5)

Example 2: Consider the attack ỹk = −yk that can be
generated by an attacker with the information Ik = {yn}kn=1.
Obviously, we have z̃k = −zk, and the attack is stealthy. To
calculate the MSE for the attack, notice that ˆ̃xk+1 = −x̂k+1

because of the linearity of the Kalman filter. We have P̃k+1 =
Pk+1 + 4E

[
x̂2k+1

]
. Considering the limit of P̃k+1 yields

P̃ =

{
P + 4σ2

x̂, if |a| < 1,

∞, otherwise.
(6)

Remark 1: As we can see in Example 1, for unstable
systems (|a| ≥ 1), it is possible for an attacker to generate
an attack that leads to an arbitrarily bad estimate as k →∞,
even if it has no information about the states. Moreover, such
a performance degradation is achieved while the attacker is
stealthy. Thus, we focus on the case when |a| < 1.

C. Problem Statement

It seems intuitive that the performance degradation that
an attacker can induce depends both on the information
available to it and whether it is stealthy or not. While
various works (e.g., [1], [2], [4], [9], [11]) have considered
particular detectors that the estimator can apply to detect if an
attack is in progress, fundamental limits of the performance
degradation that a stealthy attacker can induce when the
estimator can apply any possible test is not known. Notice
that the large body of literature (e.g. [3], [5], [10], [17])
that considers attacks that cannot be detected based on
observability conditions are not directly applicable here,
since the system is observable. As seen in Examples 1 and 2,
in spite of the system being observable, an attacker can
utilize the statistical uncertainty introduced by the process
and measurement noises to induce a high P̃ . In this paper,
we wish to obtain the fundamental limits of performance
degradation, as measured by P̃ , that a stealthy attacker can
induce when the detector can apply any ergodicity based test.
To solve this problem, we use tools from information theory
to bound the performance degradation that an attacker can
induce if it wishes to remain stealthy.

III. MAIN RESULTS

The problem statement as stated above is still quite
general. To make inroads into the problem, we make the
following further assumptions.

Assumption 2:
1) For a stable system, the initial condition of the Kalman

filter is assumed to be P1 = P .
2) The detector belongs to the class of ergodicity based

detectors, i.e., any detector that uses 1
k

∑k
n=1 g(ζn)

as a test statistic for any function g that satisfies
E[|g(zn)|] < ∞, where ζn = zn if no attack is in
progress, and ζn = z̃n otherwise.

With the above assumption, the Kalman filter becomes
time-invariant, namely, Kk = K and Pk = P for all
k ∈ N. Moreover, the innovation sequence {zk}k>0 becomes
an i.i.d. sequence of Gaussian random variables with mean
zero and variance σ2

z . We will like to emphasize that this
assumption is solely for ease of presentation and all the main
results in the paper go through without this assumption by
using the ergodic theory of non-stationary processes [18].
An ergodicity based detector as defined in Assumption 2
relies on the strong law of large numbers and can detect
any attack sequence whose sample averages do not coincide
with the marginally expected statistical averages. While such
a detector is not the most general detector possible, it
still represents a very powerful detector that can consider
arbitrary statistics of the received data such as any moment
of the data or its marginal distribution. We will also find it
convenient to consider an analog notion of stealthiness rather
than the digital notion implied by Definition 1. We define the
following notion of stealthiness, which is a generalization of
Definition 1.

Definition 2: (Marginal Stealthiness) An attack {ỹk}k>0

is said to be δ-marginally stealthy (δ-MS) if its associated
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innovation sequence {z̃k}k>0 satisfies the condition

P

[
lim
k→∞

{∣∣∣∣∣1k
k∑

n=1

g(z̃n)− E
[
g(zn)

]∣∣∣∣∣ ≤ δ
}]

= 1 (7)

for any measurable function g where
∣∣E[g(zn)]∣∣ ≤ 1. Further,

an attack is said to be strictly MS if it is δ-MS with δ = 0.
Notice that stealthiness as defined in Definition 1 if

specialized for the class of ergodicity based detectors that
we consider here corresponds to the case when δ = 0.

A. Preliminary Results

Our main contribution is a fundamental limit for the
performance degradation induced by a δ-MS attack. We will
provide a converse result and an achievability result for this
limit. To prove these results, we begin by considering the
performance limit for an even weaker notion of stealthiness.

Definition 3: (Weakly Marginal Stealthiness) An attack
sequence {ỹk}k>0 is said to be ε-weakly marginally stealthy
(ε-WMS) if its associated innovation sequence {z̃n}kn=1 is
ε-weak typical [15] almost surely (a.s.) as k →∞, namely,

P

[
lim
k→∞

{∣∣∣∣∣1k
k∑

n=1

− log fz(z̃n)− h(z)

∣∣∣∣∣ ≤ ε
}]

= 1 (8)

where fz(·) and h(z) are the probability density function and
the differential entropy of zn, respectively. Further, an attack
is said to be strictly WMS if it is ε-WMS with ε = 0.

The advantage of considering this notion is that an attack
that is not ε-WMS is also not δ-MS for a suitably defined
δ. Thus, the performance degradation induced by an ε-WMS
provides an upper bound for the degradation that can be
induced by a δ-MS attack. However, the notion of WMS
attacks allows us to use the tool of weak typicality from
information theory. Given the Gaussianity assumptions in the
model (1), the following result is apparent.

Lemma 1: If an attack {ỹk}k>0 is ε-WMS, then

lim sup
k→∞

1

k

k∑
n=1

E
[
z̃2n
]
≤ lim sup

k→∞

1

k

k∑
n=1

z̃2n ≤ (1 + 2ε)σ2
z (9)

Proof: This two inequalities follow immediately from
Fatou’s lemma [19] and (8), respectively.

We begin by deriving the converse result for ε-WMS
attacks by providing a preliminary result.

Lemma 2: For any random variables x and y, and any
measurable function g, we have E

[
xg(y)

]
≤ E

[
E[x|y]2

] 1
2 ×

E
[
g(y)2

] 1
2 . Further, the inequality holds with equality if and

only if g(y) is chosen such that E[x|y] = αg(y) almost surely
where α is any non-negative constant.

Proof: The lemma follows from Cauchy-Schwarz in-
equality.

Now we present the converse part of the performance
degradation limit for ε-WMS attacks.

Theorem 1: Consider system (1) with the additional as-
sumptions that 0 < |a| < 1 and c > 0. Suppose that the
attacking sequence {ỹk}k>0 generated by an attacker with

access to information sets {Ik}k>0 is ε-WMS. Then the limit
superior of the Cesàro mean of the MSE is bounded by

P̃ ≤ 1

1− a2
((
K2 + 2aKα

)
(1 + 2ε)σ2

z + σ2
w

)
, (10)

where α > 0 is chosen such that all the inequalities in (1)
hold with equalities if we let E

[
ẽn
∣∣In] = αz̃n for every

n ∈ N.
Proof: For every ε-WMS attack, its associated innova-

tion sequence satisfies the inequality in Lemma 1. To obtain
an upper bound of the Cesàro mean of the MSE, we consider
a superset of ε-WMS attacks, that is, the set of attacks
whose associated innovation sequence satisfies the inequality
in Lemma 1. Note that wn is independent of {xi}ni=1 and
In because of the causality assumption. Thus, we obtain

lim sup
k→∞

1

k

k∑
n=1

E
[
ẽ2n+1

]
= lim sup

k→∞

1

k

k∑
n=1

a2P̃n +K2E
[
z̃2n
]
+ 2aKE

[
ẽnz̃n

]
+ σ2

w

≤ a2 lim sup
k→∞

1

k

k∑
n=1

P̃n + lim sup
k→∞

1

k

k∑
n=1

K2E
[
z̃2n
]

+ lim sup
k→∞

1

k

k∑
n=1

2aKE
[
ẽnz̃n

]
+ σ2

w. (11)

Since x̂1 is the initial condition of the Kalman filter, which
can not be altered by any attacker, we have P̃1 = P <
∞. Hence, we can write lim supk→∞

1
k

∑k
n=1 P̃n+1 =

lim supk→∞
1
k

∑k
n=1 P̃n. From (9) and (11), we obtain

P̃ ≤
K2(1 + 2ε)σ2

z + lim sup
k→∞

2aK
k

k∑
n=1

E
[
ẽnz̃n

]
+ σ2

w

1− a2
.

(12)

Due to the assumption of c > 0, we have aK ≥ 0. In
order to maximize (12), we have to find an upper bound for∑k
n=1 E[ẽnz̃n] by choosing an appropriate z̃n as a function

of In for n = 1, 2, · · · , k. Using Lemma 2 and Cauchy-
Schwarz inequality yields

1

k

k∑
n=1

E
[
ẽnz̃n

]
≤ 1

k

k∑
n=1

E
[
E
[
ẽn
∣∣In]2] 1

2E
[
z̃2n
] 1

2 (13)

≤

(
1

k

k∑
n=1

E
[
E
[
ẽn
∣∣In]2])

1
2
(
1

k

k∑
n=1

E
[
z̃2n
]) 1

2

. (14)

By Lemma 2, the inequality (13) holds with equality if and
only if E

[
ẽn
∣∣In] = αnz̃n holds for every n ∈ {1, 2, · · · , k}

where αn ≥ 0. Both inequalities (13) and (14) hold with
equalities if and only if α1 = · · · = αk = α. Hence,

lim sup
k→∞

1

k

k∑
n=1

E
[
ẽnz̃n

]
≤ α(1 + 2ε)σ2

z (15)

where α is chosen as indicated in the statement of the
theorem. By (12) and (15), the theorem follows.
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Remark 2:
• Note that the upper bound in (10) may not be achiev-

able, since this upper bound is obtained by considering
a superset of ε-WMS attacks.

• The upper bound in (10) is a monotonic increasing
function of ε. From the attacker’s perspective, this
introduces a trade-off between the degree of stealthiness
(as measured by the value of ε) and the performance
degradation it can induce at the estimator.

Theorem 1 provides a converse statement that no ε-WMS
attack can cause the Cesàro mean of the MSE to be larger
than the upper bound in (10). The upper bound in (10)
is in terms of the parameter α that is a function of the
specific information available to the attacker. We now prove
the achievablity of (10) for several information patterns.

Example 3 (Ik = {z̃n}k−1n=1): Suppose that the attacker
has no information about the states. However, it is reasonable
to assume that the attacker knows the attack sequence it gen-
erated in the past. To achieve the upper bound in Theorem 1,
the attack is generated by the relation E[ˆ̃xk−xk|{z̃n}k−1n=1] =
αz̃k, which gives a recursion αz̃k+1 =

(
aα + K

)
z̃k. The

innovation sequence associated with the attack is given by
z̃k = (−1)k+1z̃1 if −1 < a < 0 and z̃k = z̃1 if 0 < a <
1. In addition, the choice of initial condition is given by
z̃1 = ±

√
(1 + 2ε)σz . Clearly, the attack is ε-WMS. Thus

the upper bound in Theorem 1 is achievable by an ε-WMS
attack.

Next, we consider the information pattern {Ik}k>0 that
enables the attacker to use a steady state Kalman filter to
estimate the state xk+1 at every time k. Specifically, the
attacker’s MMSE state estimate can be written as

x̂Ak+1 = ax̂Ak +KAzAk , (16)

where KA > 0 is the attacker’s Kalman gain and {zAk }k>0

is the attacker’s innovation sequence that is assumed to be
i.i.d. Gaussian with mean zero and variance σ2

zA > 0. We
present three examples for such information pattern.

Example 4 (Ik = {xn}kn=1): In this case, x̂Ak+1 = axk.
Note that the attacker can recover the process noise wk−1
since wk−1 = xk−axk−1. Such state estimate is compatible
with (16) if we let KA = a and zAk = wk−1.

Example 5 (Ik = {yn}k−1n=1): Consider the case in which
the attacker can intercept {yn}k−1n=1 and then generate ỹk. In
this case, x̂Ak+1 = ax̂k, and it can be obtained by letting
KA = aK and zAk = zk−1.

Example 6 (Ik = {yn}kn=1): Clearly, we have x̂Ak+1 =
x̂k+1, and hence KA = K, zAk = zk.

For any such information pattern, let us consider the
innovation sequence {z̃k}k>0 associated with the attack that
satisfies E

[
ˆ̃xk − xk

∣∣Ik] = αz̃k for all k ∈ N. Note that

αz̃k+1 = (aˆ̃xk +Kz̃k)−
(
ax̂Ak +KAzAk +

KA

a
zAk+1

)
= a

(
ˆ̃xk −

(
x̂Ak +

KA

a
zAk
))

+Kz̃k −
KA

a
zAk+1

= aαz̃k +Kz̃k −
KA

a
zAk+1

since E
[
xk
∣∣Ik] = x̂Ak + 1

aK
AzAk for every k ∈ N. Hence,

we obtain a recursion for generating {z̃k}k>0:

z̃k+1 =
(
a+

K

α

)
z̃k −

KA

aα
zAk . (17)

In particular, from (17), we have

lim
n→∞

E
[
z̃2n
]
=

(K
A

aα )2σ2
zA

1−
(
a+ K

α

)2 (18)

if
∣∣a + K

α

∣∣ < 1. Now, we focus on the calculation of the
constant α. We choose α such that limk→∞ E

[
z̃2k
]
= (1 +

2ε)σ2
z . Using (18), α can be solved by

α =
aK +

√
K2 +

(
KA

a

)2 · (1−a2)σ2
zA

(1+2ε)σ2
z

1− a2
. (19)

Notice that such an attack makes all the inequalities in the
proof of Theorem 1 hold with equality. Moreover, {z̃k}k>0

is an autoregressive process of order one. This implies that
{z̃k}k>0 is ergodic [20], which further implies that all the
inequalities in (9) hold with equality and such an attack is
ε-WMS. Thus, the upper bound in Theorem 1 is achievable.

B. The Fundamental Limit for MS Attacks
Using the converse and the achievability of ε-WMS at-

tacks, we can now present the main result, which is the
fundamental limit of performance degradation induced by
δ-MS attacks.

Theorem 2: Consider the problem formulation presented
in Section II. Suppose that 0 < |a| < 1 and c > 0.

1) (Converse) The the upper bound (10) holds for all δ-
MS attacks, where ε is chosen as

ε =

{
δ , if |h(z)| ≤ 1,
δ
|h(z)| , otherwise.

(20)

2) (Achievability) For the information patterns that pos-
sess the property stated in (16), the upper bound (10)
is achievable.

Proof: 1) With the ε stated in (20), clearly, δ-MS im-
plies ε-WMS. Using Theorem 1, we can obtain the converse.
2) Since the attack generated according to (17) is ergodic,
the performance bound in (10) is achievable.

Remark 3:
1) We would like to emphasize that the achievability

result in Theorem 2 holds only for δ = 0.
2) Since strict MS is implied by the stealthiness in Defini-

tion 1, P̃ achieved by any stealthy attack is also upper
bounded by (10) with ε = 0.

3) The optimal strict MS attacks for the information
patterns in Theorem 2 are not stealthy in the sense
of Definition 1, since such attacks can be detected by
estimating the autocorrelation of {z̃k}k>0.

IV. NUMERICAL RESULTS

So far, we have presented six different attacks in Exam-
ples 1–6. We denote by P̃#i the P̃ achieved by the attack in
Example i where i ∈ {1, 2, · · · , 6}. Unless otherwise speci-
fied, in this section, we let (a, c, σ2

w, σ
2
v) = (0.4, 1, 1, 0.1).
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A. The MSE Due to the Attacks

For the attacks in Examples 3–6, we set ε = 0. We discuss
the effect on the ratio P/P̃ by changing the value of a, as
shown in Fig. 1. The parameter a measures the correlation
of the system state at time k + 1 to the state at time k.
Intuitively, a = 0 would imply that the system state xk+1

is simply the noise wk. Thus, an attacker can not degrade
the MSE any further. Figure 1 confirms this intuition and
further presents the degradation for various values of a, as
attacks with different information patterns are considered.
Figure 1 also shows that, as a→ 0, the attack in Example 2
is the optimal stealthy attack for the information patterns
Ik = {xn}kn=1 and Ik = {yn}kn=1, since the set of stealthy
attacks is a subset of all strict MS attacks. Moreover, in this
regime, the knowledge of {xn}kn=1 is redundant as long as
the attacker knows {yn}kn=1. On the other hand, as |a| → 1,
we can see that P̃ is unbounded for all attacks. Since the
information patterns in Examples 3 and 4 indicate the two
extreme cases that the attacker has no and full information
about the causal states, respectively, it shows that using any
information pattern to generate the optimal strict MS attack
leads to the same P̃ as |a| → 1.

−1 −0.5 0 0.5 1
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0.2

0.4

0.6

0.8

1

a

P
/
P̃

 

 

Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6

Fig. 1. P/P̃ v.s. a for several attacks where c = 1, σ2
w = 1, σ2

v = 0.1.

B. The Trade-off Between Stealthiness and MSE

Theorems 1 and 2 have formalized the notion that stealth-
iness of an attacker can be traded-off with the performance
degradation it can induce. To illustrate such a trade-off
numerically, we plot in Figure 2 the upper bound in (10) as
a function of ε for the information pattern discussed above.
Observe that, the slopes of the upper bounds in Figure 2 do
not seem to be sensitive to the particular information pattern
used. Indeed, it can be proved analytically that the limits
of α in these examples go to infinity with the same rate.
Consequently, as ε being large, the upper bounds of P̃ in (10)
for all information patterns are asymptotically equivalent.

V. CONCLUDING REMARKS

For an unstable system, it is possible for an attacker to
make the MSE arbitrary bad. For a stable system, Theorem 1
quantifies a trade-off between stealthiness and attack perfor-
mance. Further, we prove the achievability of fundamental
limits of performance degradation induced by ε-WMS attacks
and strict MS attacks for several information patterns. Under
certain limit conditions, we show that the attack in Example 2
is also the optimal stealthy attack.
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Fig. 2. The upper bound of P̃ /P v.s. ε for several attacks.
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