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ABSTRACT

We purpose and analyze an off-line randomized sensor selection
strategy for sequential hypothesis testing problem constrained with
sensor measurement costs. Within the framework of Wald’s approx-
imation, the sequential probability ratio test (SPRT) with sensor se-
lection is designed for minimizing the expected total measurement
cost subject to reliability and sensor usage constraints. In the case of
symmetric hypotheses, we introduce a quantity, called efficiency, of
a sensor and show that it is critical to the sensor selection in SPRT.
Furthermore, an algorithm with linear time complexity is proposed
to obtain the optimal sensor selection probabilities.

Index Terms— Sequential analysis, sequential probability ratio
test, SPRT, sensor selection, linear fractional programming.

1. INTRODUCTION

Hypothesis testing when any of the multiple sensors present can be
queried for new data is a basic function in a sensor network. How-
ever, this function is constrained by power consumption of sensors
in a wireless sensor network. Thus, sensor selection for sequen-
tial hypothesis testing under sensor usage constraints is an important
problem.

Sequential hypothesis testing has been considered since Wald’s
pioneering work on sequential analysis [1] which introduced the idea
of sequential probability ratio test (SPRT) for the binary hypothe-
sis testing problem and showed that the average sample number of
SPRT can never be larger than any other sequential test with the
same performance. Wald also gave several approximate formulae
that make SPRT realizable. SPRT has since been extended in mul-
tiple directions. Particularly relevant to sensor networks is the de-
centralized SPRT studied by Veeravalli et al. [2][3] and Hussain
[4]. Moreover, the problem of sensor selection for SPRT has been
considered before. Srivastava et al. [5] propose randomized sensor
selection rules for sequential testing of multiple hypotheses under
several criteria. Polyanskiy et al. [6] focus on the binary hypothesis
testing with a feedback controller. However, both of their works are
based on asymptotic analysis. The sensor selection rule with finite
sensor usage constraints can not be obtained by their approaches.

We consider a set-up in which several sensors are controlled by
a fusion center. The fusion center applies a sequential decision rule
for a binary hypothesis testing problem. At each time step, the fu-
sion center assigns a sensor based on a sensor selection rule to take
a measurement. We propose a stochastic sensor selection rule, in
particular, an independent, identically distributed (i.i.d.) random-
ized off-line selection strategy that is analytically tractable. We call
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the proposed scheme an off-line selection scheme because the prob-
ability of selecting each sensor is preassigned and not updated. In
practice, however, different sensors may take samples with different
statistical characteristics. For example, the signal received by dif-
ferent sensors may have different signal-to-noise ratios (SNR). Our
objective is to design a sequential test and a sensor selection rule
that minimize the overall measurement cost (which is due to e.g.,
making a measurement and the power required for data transmission
to the fusion center) subject to certain reliability and sensor usage
constraints.

2. MATHEMATICAL FORMULATION

Suppose that a binary, parametric, simple hypothesis {H0, H1}
whose realizations are observed by J sensors in a sensor network.
Conditioned on each hypothesis, we assume that the samples taken
by a sensor are conditionally i.i.d., and the observations are condi-
tionally independent from one sensor to another. Let the random
variable Xn represent the sample collected by the fusion center at
the n-th time step. Denote the probability density function (pdf)
of Xn, conditioned on Hi with sensor j being selected, by f j

i (x),
which is assumed to be perfectly known to the fusion center. Define
{Sn}∞n=1 to be a random sequence where the event {Sn = j}
indicates that sensor j is selected at time step n. For the off-line
sensor selection strategy, {Sn}∞n=1 is an i.i.d. random sequence with

P [Sn = j] = pj and
∑J

j=1 pj = 1. Also, let 0 < cj < ∞ be the

cost of sensor j taking a measurement and {Cn}∞n=1 be a random
sequence of the measurement cost at each time step. Obviously,
Cn = cj if Sn = j. Thus {Cn}∞n=1 is an i.i.d. random sequence as
well.

The expected total measurement cost of the sequential test
can be expressed as E[

∑N
n=1 Cn] where N , a random variable, is

the stopping time of the sequential test. By Wald’s identity [7],
E[
∑N

n=1 Cn] is the product of E [Cn] and E [N ], namely,

E

[
N∑

n=1

Cn

]
= E [Cn] E [N ] . (1)

Moreover, let Nj be the total number of samples taken by sensor j.
From Wald’s identity, we can show that E[Nj ] = pjE[N ] by con-
structing an i.i.d. Bernoulli random sequence {Yn}∞n=1 such that
Yn = 1 if Sn = j and zero otherwise.

Now the fusion center performs a sequential hypothesis test with
an off-line sensor selection strategy that minimizes the expected to-
tal measurement cost E [Cn] E [N ]. We define α ≤ α0, β ≥ β0 as
the reliability constraints of the test, where α, β are the probability
of false alarm and probability of detection, respectively. Further-
more, there is an additional set of constraints of the usage of indi-
vidual sensors that E[Nj ] ≤ nj , nj > 0, j = 1, . . . , J , motivated
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by the limitation of the battery life of a sensor. We observe that,
however, E [Cn] is not a function of the stopping rule and terminal
decision rule of the sequential test. By the Wald-Wolfowitz theorem
[1], SPRT is the optimal sequential test that minimizes E [N ] subject
to the constraints, which implies that an SPRT(a, b) remains optimal
in this scenario.

3. SPRT WITH OFF-LINE RANDOMIZED SENSOR
SELECTION STRATEGY

Suppose that sensor j is selected at time step n, the log-likelihood ra-
tio (LLR) of Xn is given by L(Xn|Sn = j) = log[f j

1 (Xn)/f j
0 (Xn)].

The LLR of Xn
1 = {X1, . . . , Xn}, conditioned on the sen-

sor selection pattern Sn
1 = sn

1 , is the sum of individual LLR,
i.e., L (Xn

1 |Sn
1 = sn

1 ) =
∑n

i=1 L(Xi|Si = si), where sn
1 =

{s1, . . . , sn}. Thus the test is of the following form: continue
sampling if a < L (Xn

1 |Sn
1 = sn

1 ) < b, otherwise, terminate and
choose a hypothesis.

The exact values of the thresholds a, b for given α0, β0 seem
intractable in general. Fortunately, Wald’s approximations [1] can
be easily generalized to suit this case. The approximate thresholds
are given by

a ∼= log

(
1− β0

1− α0

)
and b ∼= log

(
β0

α0

)
. (2)

Notably, the approximate values of a, b are not functions of p =
[p1, . . . , pJ ]T , which implies that, under Wald’s approximations, the
jointly optimization problem with respect to the triplet (a, b, p) can
be separated into two parts, i.e.,

min
p

{
cT p ×

{
min
{a,b}

, E[N ]

}}
, (3)

subject to α ≤ α0, β ≥ β0 and E[Nj ] ≤ nj , j = 1, . . . , J ,
where c = [c1, . . . , J ]T , and the inner minimization is approx-
imately solved by (2). Define di = [d1

i , . . . , d
J
i ]T , i ∈ {0, 1},

where dj
0 = −D(f j

0 ||f j
1 ), dj

1 = D(f j
1 ||f j

0 ), and D(f ||g) denotes
the Kullback-Leibler divergence between the pdf f and g. Because
{L(Xn|Sn)}∞n=1 is a conditional i.i.d. random sequence, by Bayes
rule, Wald’s identity and Wald’s approximations, an approximate av-
erage sample number can be obtained by

E[N ] = (1− π1)
E
[
L
(
XN

1

∣∣SN
1

) |H0

]
E [L (Xn|Sn) |H0]

+ π1

E
[
L
(
XN

1

∣∣SN
1

) |H1

]
E [L (Xn|Sn) |H1]

∼= (1− π1)A0

dT
0 p

+
π1A1

dT
1 p

, (4)

where π1 is the a priori probability of H1, A0 = (1− α0)a + α0b,

A1 = (1−β0)a+β0b. Here we have assumed that−∞ < dj
0 < 0,

0 < dj
1 <∞, ∀j ∈ {1, . . . , J} and A0 < 0, A1 > 0.

4. THE CASE OF SYMMETRIC HYPOTHESES

For the rest of the paper, we concentrate on the class of binary hy-
pothesis with symmetric Kullback-Leibler divergence. As an exam-
ple, consider the following binary hypothesis testing problem,

H0 : f j
0 (xn) = N (0, σ2

j ) versus H1 : f j
1 (xn) = N (θj , σ

2
j ), (5)

where N (θ, σ2) denotes to a Gaussian pdf with mean θ and vari-
ance σ2. This problem arises in, e.g., the detection of amplitude in

an additive white Gaussian noise channel. In this problem, dj
0 =

−θ2
j /(2σ2

j ) and dj
1 = θ2

j /(2σ2
j ). If the condition d1 = −d0 is sat-

isfied, we say that the hypotheses are symmetric. In this case, from
(4), the minimization problem in (3) can be simplified to

min
p

f(p) =
cT p

dT p
(6)

Subject to dT p − A

nj
pj ≥ 0, j = 1, . . . , J

p ∈ PJ

where d = [d1, . . . , dJ ]T = d1, A = −(1 − π1)A0 + π1A1 > 0
and PJ denotes to the probability simplex in RJ . In (6), the objec-
tive function is a linear fractional function, and the feasible region is
a polyhedron in RJ . Thus the optimization problem for the symmet-
ric hypotheses is a linear fractional programming (LFP). It is known
that an LFP can be converted to a linear programming problem [8].
Hence, (6) can be solved by, for example, simplex method or inte-
rior point method. However, because of the special structure of our
LFP problem, we propose a computationally efficient algorithm for
solving (6) in the subsequent subsection.

4.1. Sufficient Conditions of an Optimal Solution to the LFP

If the sensor network consists of only a single sensor j, the average
total measurement cost of the single sensor SPRT is Acj/dj . There-
fore the ratio cj/dj plays an important role in SPRT. To generalize
this concept, we define the efficiency of sensor j to be ej = dj/cj .
Accordingly, we say that sensor i is more efficient than sensor j if
ei > ej . Finally, the sensors are said to be degenerate if they have
the same efficiency. Without loss of generality, we assume that the
indices of the sensors are ordered by their efficiency, i.e.,

e1 ≥ e2 ≥ . . . ≥ eJ . (7)

We next develop sufficient conditions for an optimal solution based
on the following four lemmas.

Lemma 1. If C �= Ø, there exists a vertex point of C which is an
optimal solution to the LFP in (6), where C denotes to the feasible
region in (6).

Proof. Since C is bounded, this lemma follows easily from the qua-
siconvexity of linear fractional functions [9].

It is well known that linear inequality and equality constraints
can be converted to linear constraints in the standard form considered
in linear programming by introducing slack variables. By Lemma 1,
there is an optimal solution occurring at a vertex point of C. In other
words, there must be a basic feasible solution to the standard form
that is optimal. The following lemma provides a way to determine
those basic variables.

Lemma 2. If p = [p1, . . . , pJ ]T is a minimum feasible solution to
(6) and there exists j, where 0 < j ≤ J, pj > 0, then for every
k ∈ {i : ei > ej}, the equation dT p −Apk/nk = 0 holds.

Proof. Assume that p = [p1, . . . , pJ ]T is a minimum feasible solu-
tion and there exists k ∈ {i : ei > ej} such that dT p−Dpk/nk >
0. Let p′ = [p′

1, . . . , p
′
J ]T , where p′

j = (pj − ε1)/ζ, p′
k = (pk +

ε2)/ζ, ε1, ε2 > 0 and p′
i = pi/ζ, i �= j, k. ζ is the normal-

ization constant that guarantees
∑J

i=1 pi = 1 and it is given by

ζ = 1 + ε2 − ε1. We further let dT p′ = dT p/ζ, then we have

dT p′ =
1

ζ
(dT p − ε1dj + ε2dk) =

1

ζ
dT p
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which yields

ε1dj = ε2dk. (8)

Next, we need to check the feasibility of p′.

Api
′

dT p′ =
A(pi/ζ)

dT p/ζ
=

Api

dT p
≤ ni, (i �= j, k) (9)

Apj
′

dT p′ =
pj − ε1

ζ

A

dT p/ζ
=

Apj

dT p
− Aε1

dT p
< nj (10)

Apk
′

dT p′ =
pk + ε2

ζ

A

dT p/ζ
=

Apk

dT p
+

Aε2

dT p
(11)

Since dT p−Apk/nk > 0, we can always select a sufficient small ε2

such that (11) is still less or equal to nk and pj ≥ 0. Consequently,
from (9), (10), (11), p′ is feasible. Finally, by (8),

f(p′) =
(cT p − cjε1 + ckε2)/ζ

dT p/ζ
=

cT p − ε2dk

(
e−1

j − e−1
k

)
μT p

<
cT p

dT p
= f(p)

which contradicts to the assumption that p is a minimum solution.
Hence the statement holds.

Lemma 2 indicates that, for an optimal p, if pj > 0 is a basic
variable, then every pk is also a basic variable, where sensor k is
more efficient than sensor j, and the slack variable associated with
dT p − Apk/nk ≥ 0 must be nonbasic. In other words, we must
never skip a more efficient sensor to use a less efficient one. More-
over, we should continue using an efficient sensor until it meets the
equality of E[Nj ] ≤ nj . As a result, from Lemma 2, an optimal
solution to (6) is in the form of

p = [p1, . . . , pj , pj+1, . . . , pj+l,0
T
J−(j+l)]

T , (12)

that satisfies dT p−Apk/nk = 0, k = 1, . . . , j where ej > ej+1 =
. . . = ej+l, and 0i denotes to an (i × 1) zero vector. However,
Lemma 2 does not show how to determine the basic variables for the
l degenerate sensors. Lemma 3 will show that there is no difference
between those degenerate sensors.

Lemma 3. Every feasible p in the form of (12) that satisfies the
equations dT p−Apk/nk = 0, k = 1, . . . , j, has the same value of
f(p).

Proof. Note that pk = nkdT p/A, k = 1, . . . , j. Then we have

f(p) =

∑j
i=1 cipi +

∑j+l
i=j+1 cipi

μT p

=

∑j
i=1 cipi + e−1

j+1

∑j+l
i=j+1 dipi

dT p

=

∑j
i=1 cipi + e−1

j+1(d
T p −∑j

i=1 dipi)

dT p

=

∑j
i=1 cinid

T p/A + e−1
j+1(d

T p −∑j
i=1 dinid

T p/A)

dT p

= e−1
j+1 −

j∑
i=1

dini

A

(
e−1

i − e−1
j+1

)
(13)

which is a constant.

Lemma 4. Let j, k be two indices such that ej > ek. Define p =
[p1, . . . , pj ,0

T
J−j ]

T where dT p − Api/pi = 0, i = 1, . . . , j − 1

and p′ = [p1
′, . . . , pk

′,0T
J−k]T where dT p′ − Api

′/ni = 0, i =
1, . . . , k − 1. Then f(p) < f(p′).

Proof. We rewrite f(p) and f(p′) by (13), then we obtain

f(p)− f(p′)

=
(
e−1

j − e−1
k

) − j−1∑
i=1

dini

A

(
e−1

i − e−1
j

)
+

k−1∑
i=1

dini

A

(
e−1

i − e−1
k

)

=
(
e−1

j − e−1
k

)(
1 +

j−1∑
i=1

dini

A

)
+

k−1∑
i=j

dini

A

(
e−1

i − e−1
k

)
< 0

Using Lemma 1, 2, 3 and 4, we can now state the main result of
the section.

Theorem 1. If a vector p(j) ∈ RJ satisfies all the following three
conditions, then it is a minimum solution to the LFP in (6).

1. p(j) is in the form of p(j) = [p
(j)
1 , . . . , p

(j)
j ,0T

J−j ]
T where

dT p(j) −Ap
(j)
i /ni = 0, i = 1, . . . , j − 1.

2. p(j) ∈ C.

3. There exists no k < j such that p(k) is feasible where p(k) is
in the same form of the first condition.

4.2. An Efficient Algorithm for Solving the LFP

By Theorem 1, an optimal solution to the LFP can be found by
the following algorithm. Initially, we start by selecting the most
efficient sensor with probability one. At the j-th iteration, we se-
lect the j most efficient sensors and solve p(j) from the equations

dT p(j) − Ap
(j)
i /ni = 0, i = 1, . . . , j − 1 and

∑j
i=1 p

(j)
i = 1.

If it is feasible, it must be optimal and the algorithm is terminated.
Otherwise we try to use j +1 sensors and repeat the same procedure
until a feasible solution is obtained. If all J sensors are included and
p(J) is still infeasible, it implies that the feasible region is an empty
set. Nevertheless, at each iteration j, we need to solve a j×j system

of linear equations. We note that p
(j)
k = nk/E[N ], k = 1, . . . , j−1.

Thus the j × j system of linear equations can be reduced into two

variables E[N ], p
(j)
j and two equations

dT p(j) =

j−1∑
i=1

dini

E[N ]
+ djp

(j)
j =

A

nk
p
(j)
k =

A

E[N ]
(14)

j∑
i=1

p
(j)
i =

j−1∑
i=1

ni

E[N ]
+ p

(j)
j = 1. (15)

The solutions to (14), (15) are given by,

E[N ] =
A− Σdn(j − 1)

dj
+ Σn(j − 1), (16)

p
(j)
j = 1− Σn(j − 1)

E[N ]
, (17)

where Σn(j) =
∑j

i=1 ni and Σdn(j) =
∑j

i=1 dini. Furthermore,

the feasibility test of p(j) consists of two parts, the tests of p
(j)
i ≥ 0

and dT p(j) − Ap
(j)
i /ni ≥ 0, i = 1, . . . , j. For the first part, we
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Table 1. Numerical results of SPRT with optimal sensor selection

p [0.257, 0.343, 0.214, 0.171, 0.015, 0, 0, 0]T

E[N ] 23.36 (Wald’s apx.), 24.48 (Sim.)

E[Nj ] {6, 8, 5, 4, 0.36, 0, 0, 0} (Wald’s apx.)

{6.29, 8.39, 5.24, 4.19, 0.38, 0, 0, 0} (Sim.)

E[
∑N

n=1 C(n)] 55.76 (Wald’s apx.), 58.45 (Sim.)

Table 2. Numerical results of SPRT with equally likely selection

p [0.125, 0.125, . . . , 0.125]T

E[N ] 29.14 (Wald’s apx.), 30.39 (Sim.)

E[Nj ] {3.64, 3.64, . . . , 3.64} (Wald’s apx.)

{3.80, 3.80, . . . , 3.80} (Sim.)

E[
∑N

n=1 C(n)] 65.09 (Wald’s apx.), 67.88 (Sim.)

only need to check E[N ] > 0 and pj ≥ 0. By (14), E[N ] can be al-

ternatively represented by E[N ] = [A−Σdn(j−1)]/(djp
(j)
j ). Then

we have p
(j)
i ≥ 0, i = 1, . . . , j, if and only if A− Σdn(j − 1) ≥ 0

and p
(j)
j > 0. For the second part, since dT p(j) − Ap

(j)
i /ni = 0,

i = 1, . . . , j − 1, always satisfies the constraint, we only need

to examine whether E[Nj ] = p
(j)
j E[N ] ≤ nj or not. Hence the

solution to the LFP in (6) can be iteratively solved by the efficient
algorithm as follows.

Algorithm
Order the indices of the sensors such that (7) is satisfied.
Σdn ← 0
Σn ← 0
if A/d1 ≤ n1 then

p(1) ← [1,0T
J−1]

T

return p(1)

else
for j = 2→ J do

Σdn ← Σdn + dj−1nj−1

Σn ← Σn + nj−1

if A− Σdn ≥ 0 then
E[N ]← (A− Σdn)/dj + Σn

p
(j)
j ← 1− Σn/E[N ]

if p
(j)
j > 0 and p

(j)
j E[N ] ≤ nj

p(j) ← [n1/E[N ], . . . , nj−1/E[N ], p
(j)
j ,0T

J−j ]
T

return p(j)

end if
end if

end for
end if

If the indices have been ordered, the time complexity of the algo-
rithm is ofO(J) which is much more computationally efficient than
general algorithms of linear programming.

5. NUMERICAL RESULTS

For the hypothesis testing problem given in (5), we define the
SNR of the sample of sensor j to be SNRj = θ2

j /σ2
j . Let

J = 8 and the SNR’s be {3.5, 3, 2.5, 2, 1.5, 1, 0.5, 0} dB, re-

spectively. Let the measurement cost be cj = 1 +
√

SNRj

where SNRj is in linear scale. Moreover, the constraints are set
by nj = {6, 8, 5, 4, 8, 4, 8, 6}. Suppose π1 = 0.2, and we require
α ≤ α0 = 10−9, β ≥ β0 = 1 − 10−10. We perform SPRT with
two different off-line sensor selection schemes, the sensor selection
probabilities obtained by (6) and the equally likely selection strat-
egy. Notice that the equally likely scheme is not always feasible for
arbitrary constraints. The comparisons between the two schemes are
summarized in Table 1 and 2. We present numerical results obtained
by both simulations and Wald’s approximation. Compared with the
equally likely selection, around 14% of average measurement cost
is reduced by adopting the optimal sensor selection probabilities.
Nevertheless, there is a slight discrepancy between the simulations
and analytical results due to the error of Wald’s approximation. The
discrepancy causes the violation of constraints since Wald’s approx-
imation underestimates the average sample number. A possible way
to avoid the violation is to set a safety margin for nj by considering
an upper bound of the actual value of E[N ].

6. CONCLUDING REMARKS

Employing Wald’s approximation, an SPRT with off-line sensor se-
lection rule is presented. For the case of symmetric hypotheses, the
problem is equivalent to an LFP. It is shown that an optimal solution
can be obtained by making the number of relatively efficient sensors
that meet their corresponding usage constraints as small as possible.
An algorithm with linear computational complexity for solving the
LFP is also proposed. Numerical results show that selecting sen-
sors with our proposed optimal strategy will significantly reduce the
average total measurement cost, compared with the equally likely
selection scheme.
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