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Abstract— This work proposes a novel metric to characterize
the resilience of stochastic cyber-physical systems to attacks
and faults. Specifically, we consider a single-input single-output
plant regulated by a control law based on the estimate of a
Kalman filter. We allow for the presence of an attacker able
to hijack and replace the control signal. The objective of the
attacker is to maximize the estimation error of the Kalman filter
– which in turn quantifies the degradation of the control perfor-
mance – by tampering with the control input, while remaining
undetected. We introduce a notion of ε-stealthiness to quantify
the difficulty to detect an attack when an arbitrary detection
algorithm is implemented by the controller. For a desired value
of ε-stealthiness, we quantify the largest estimation error that
an attacker can induce, and we analytically characterize an
optimal attack strategy. Because our bounds are independent
of the detection mechanism implemented by the controller,
our information-theoretic analysis characterizes fundamental
security limitations of stochastic cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems offer a variety of attack surfaces
arising from the interconnection of different technologies and
components. Depending on their resources and capabilities,
attackers generally aim to deteriorate the functionality of the
system, while avoiding detection for as long as possible [1].

Security of cyber-physical systems is a growing research
area where, recently, different attack strategies and defense
mechanisms have been characterized. While simple attacks
have a straightforward implementation and impact, such as
jamming control and communication channels [2], sophisti-
cated ones may degrade the functionality of a system more
severely [3], [4], and are more difficult to mitigate. In this
work we measure the severity of attacks based on their effect
on the control performance and on their level of stealthiness,
that is, the difficulty of being detected from measurements.
Intuitively, there exists a trade-off between the degradation
of control performance and the level of stealthiness of an
attack. Although this trade-off has previously been identified
for specific systems and detection mechanisms [5], [6], [7],
[8], a thorough analysis of the resilience of stochastic control
systems to arbitrary attacks is still missing.
Related works For deterministic cyber-physical systems the
concept of stealthiness of an attack is closely related to the
control-theoretic notion of zero dynamics [9]. In particular,
an attack is undetectable if and only if it excites only the zero
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dynamics of an appropriately defined input-output system
describing the system dynamics, the measurements available
to a security monitors, and the variables compromised by
the attacker [10], [11]. Thus, the question of stealthiness of
an attack has a binary answer in deterministic systems. For
stochastic cyber-physical systems, instead, the presence of
process and measurements noise offers a smart attacker the
additional possibility to tamper with sensor measurements
and control inputs within the acceptable uncertainty levels,
thereby making the detection task arbitrary difficult.

Detectability of attacks in stochastic systems has received
only initial attention from the research community, and
there seem to be no agreement on an appropriate notion of
stealthiness. Most works in this area considers detectability
of attacks with respect to specific detection schemes, such
as the classic bad data detection algorithm [12]. In our
previous work [13], we proposed the notion of ε-marginal
stealthiness to quantify the stealthiness level with respect
to the class of ergodic detectors. However, the notion of
marginal stealthiness defined in [13] is still restricted in the
class of ergodic detectors. Further, the detectability of an ε-
marginally stealthy attack is not explicitly characterized in
[13]. In this work we introduce a novel notion of stealthiness
that is independent of the attack detection algorithm, and thus
provides a fundamental measure of the stealthiness of attacks
in stochastic control systems.
Contributions The contributions of this paper are threefold.
First, we propose the notion of ε-stealthiness to quantify
detectability of attacks in stochastic cyber-physical systems.
Our metric is motivated by the Chernoff-Stein Lemma in
detection and information theories [14], and is universal, in
the sense that it is independent of any specific detection
mechanism employed by the controller. Second, we provide
an achievable bound for the degradation of the minimum-
mean-square estimation error caused by an ε-stealthy attack,
as a function of the system parameters, noise statistics,
and information available to the attacker. Third and finally,
we provide a closed-form expression of optimal ε-stealthy
attacks achieving the maximal degradation of the estimation
error. These results characterize the trade-off between per-
formance degradation that an attacker can induce, versus the
fundamental limit of the detectability of the attack.

We focus on single-input single-output systems with an
observer-based controller. However, our methods are general,
and applicable to multiple-input multiple-output systems via
a more involved technical analysis.
Paper organization Section II contains our mathematical
formulation of the problem and our model of attacker. In
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Section III we discuss our metric to quantify the stealthiness
level of an attack. The main results of this paper are presented
in Section IV, including a characterization of the largest
perturbation caused by an ε-stealthy attack, and a closed-
form expression of optimal ε-stealthy attacks. Section V
contains our illustrative examples and numerical results.
Finally, Section VI concludes the paper.
Notation A sequence {xn}jn=i is denoted by xji . A Gaussian
random variable x with mean µ and variance σ2 is denoted
by x ∼ N (µ, σ2).

II. SYSTEM AND ATTACK MODELS

A. System model

We consider the single-input single-output time-invariant
system described by

xk+1 = axk + uk + wk, yk = cxk + vk, (1)

where a, c ∈ R, c 6= 0, w∞1 and v∞1 are random sequences
representing process and measurement noise, respectively.
We assume the sequences w∞1 and v∞1 to be independent and
identically distributed (i.i.d.) Gaussian processes with wk ∼
N (0, σ2

w), vk ∼ N (0, σ2
v) for all k > 0. The control input uk

is generated based on a causal observer-based control policy,
that is, uk is a function of the measurement sequence yk1 .
In particular, the controller employes a Kalman filter [15],
[16] to compute the Minimum-Mean-Squared-Error (MMSE)
estimate x̂k+1 of xk+1 from the measurements yk1 . The
Kalman filter reads as

x̂k+1 = ax̂k +Kk(yk − cx̂k) + uk (2)

where the Kalman gain Kk and the MSE Pk+1 , E
[
(ˆ̃xk+1−

xk+1)2
]

can be calculated by the recursions

Kk =
acPk

c2Pk + σ2
v

, Pk+1 = a2Pk + σ2
w −

a2c2P 2
k

c2Pk + σ2
v

.

with the initial condition x̂1 = E[x1] = 0 and P1 = E[x21].
If the system (1) is detectable (i.e., |a| < 1 or c 6= 0),
then the Kalman filter converges to the steady state in the
sense that limk→∞ Pk = P exists [16] where P can be
obtained uniquely through the algebraic Riccati equation.
For ease of presentation, we assume that P1 = P . Hence,
we obtain a steady state Kalman filter with Kalman gain
Kk = K and Pk = P at every time step k. The sequence
z∞1 calculated as zk , yk − cx̂k is called the innovation
sequence. Since we consider steady state Kalman filtering,
the innovation sequence is an i.i.d. Gaussian process with
zk ∼ N (0, c2P + σ2

v).

B. Attack model

We consider an attacker capable of hijacking and replacing
the control input u∞1 with an arbitrary signal ũ∞1 . Assume
that the attacker knows the system parameters a, c, σ2

w, σ
2
v .

The attack input ũ∞1 is constructed based on the system
parameters and the attacker information pattern. Let Ik
denote the information available to the attacker at time k. We
make the following assumptions on the attacker information
patters:

(A1) the attacker knows the control input uk, that is, uk ∈
Ik at all times k;

(A2) the information available to the attacker is non-
decreasing, that is, Ik ⊆ Ik+1;

(A3) Ik is independent of the w∞k and v∞k+1 due to causality.
Attack scenarios satisfying assumptions (A1)–(A3) include:

(i) the attacker knows the control input at time k, that is,
Ik = {uk1}.

(ii) the attacker knows the control input and the state at
time k, i.e., Ik = {uk1 , xk1}.

(iii) the attacker knows the control input and the (delayed)
measurements received by the controller at time k, that
is, Ik = {uk1 , ỹk−d1 } with d ≥ 0.

(iv) the attacker knows the control input and take additional
measurements ȳk at time k, that is, Ik = {uk1 , ȳk1}.

Let ỹ∞1 be the sequence of measurements received by the
controller in the presence of the attack ũ∞1 . Then, ỹ∞1 is
generated by the system dynamics

xk+1 = axk + ũk + wk, ỹk = cxk + vk. (3)

Notice that, because the controller is unaware of the attack,
the corrupted measurements ỹ∞1 , and hence the attack input
ũ∞1 , drive the Kalman filter (2) as an external input. Let ˆ̃x∞1
be the estimate of the Kalman filter (2) in the presence of
the attack ũ∞1 , which is obtained from the recursion

ˆ̃xk+1 = aˆ̃xk +Kz̃k + uk,

where the innovation is z̃k , ỹk − cˆ̃xk. Notice that (i)
the estimate ˆ̃xk+1 is sub-optimal, because it is obtained by
assuming the nominal control input, whereas the system is
driven by the attack input, and (ii) the random sequence z̃∞1
need neither be zero mean, nor white or Gaussian, because
the attack input is arbitrary.

Let P̃k+1 = E[(ˆ̃xk+1 − xk+1)2] be the second moment
of the estimation error ˆ̃xk+1 − xk+1, and assume that the
attacker aims to maximize P̃k+1. We consider the asymptotic
behavior of P̃k+1 to measure the performance degradation
induced by the attacker. Since the attack sequence is ar-
bitrary, the sequence P̃∞1 may not converge. Accordingly,
we consider the limit superior of arithmetic mean of the
sequence P̃∞1 as given by

P̃ , lim sup
k→∞

1

k

k∑
n=1

P̃n.

Notice that if the sequence P̃∞1 is convergent, then
limk→∞ P̃k+1 = P̃ , which equals the Cesàro mean1 [14].

III. THE NOTION OF STEALTHINESS FOR STOCHASTIC
SYSTEMS

In this section we motivate and define our notion of ε-
stealthiness of attacks. We begin with the standard definition

1The steady state assumption is made in order to obtain an i.i.d. innovation
sequence. If the Kalman filter starts from an arbitrary initial condition P1,
then the innovation sequence is an independent, asymptotically identically
distributed, Gaussian process. This identity guarantees that the results for
non-steady state Kalman filter coincide with the main result in this paper.
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of Kullback-Leibler divergence (or relative entropy) [14],
[17], which plays an important role in our notion of stealth-
iness.

Definition 1: (Kullback-Leibler divergence) Let xk1 and
yk1 be two random sequences with joint probability density
functions (pdf) fxk

1
and fyk1 , respectively. The Kullback-

Leibler Divergence (KLD) between xk1 and yk1 equals

D
(
xk1
∥∥yk1) =

∫ ∞
−∞

log
fxk

1
(ξk1 )

fyk1 (ξk1 )
fxk

1
(ξk1 )dξk1 . (4)

�
The KLD is a non-negative quantity that gauges the

dissimilarity between two probability density functions. It
should be observed that D

(
xk1
∥∥yk1) = 0 if fxk

1
= fyk1 . Also,

the KLD is generally not symmetric, that is, D
(
xk1
∥∥yk1) 6=

D
(
yk1
∥∥xk1).

Notice that the system (3) with σ2
w = 0 and σ2

v = 0
(i.e., deterministic single-input single-output system) features
no zero dynamics. Hence, every attack would be detectable
[10]. However, the stochastic nature of the system provides
an additional degree of freedom to the attacker, because
the process noise and the measurement noise induce some
uncertainty in the measurements. Building on this idea,
we now formally define attack stealthiness. Consider the
problem of detecting an attack from measurements. Note
that the detector must rely on the statistical properties of
the received measurement sequence as compared with their
expected model in (1). This can be formulated by the
following binary hypothesis testing problem:

H0 : No attack is in progress (the controller receives yk1 );

H1 : Attack is in progress (the controller receives ỹk1 ).

Suppose that a detector is employed by the controller. Let
pFk be the probability of false alarm (decide H1 when H0

is true) at time k and let pDk be the probability of detection
(decide H1 when H1 is true) at time k. In detection theory,
the performance of the detector can be characterized by the
trade-off between pFk and pDk , namely, the Receiver Operat-
ing Characteristic (ROC) [18]. From the ROC perspective,
the attack that is hardest to detect is the one for which, at
every time k, there exists no detector that performs better
than a random guess (e.g., to make a decision by flipping a
coin) independent of the hypothesis. If a detector makes a
decision via a random guess independent of the hypothesis,
then the operating point of the ROC satisfies pFk = pDk .
This motivates us to define a binary notion of stealthiness
as follows.

Definition 2: (Strict stealthiness) An attack ũ∞1 is said
to be strictly stealthy if there exists no detector such that
pFk < pDk for any k > 0. �

Remark 1: (Strictly stealthy attack) Using Neyman-
Pearson Lemma [18], an attack ũ∞1 is strictly stealthy if and
only if D

(
ỹk1
∥∥yk1) = 0 for all k > 0. �

The reader may argue that strict stealthiness is a too
restrictive notion of stealthiness for an attacker, and it signif-
icantly limits the set of stealthy attacks. In fact, the attacker

may be satisfied with attack inputs that are difficult to detect,
in the sense that the detector would need to collect more
measurements to make a decision with a desired operating
point of ROC. Although it is impractical to compute the exact
values of these two probabilities for an arbitrary detector at
every time k, we are able to apply the techniques in detection
theory and information theory to obtain bounds for pFk and
pDk . A classical example is the Chernoff-Stein Lemma [14].
This lemma characterizes the asymptotic exponent of pFk ,
while pDk can be arbitrary. Motivated by Chernoff-Stein
Lemma, we propose the following notion of ε-stealthiness.

Definition 3: (ε-stealthiness) Let ε > 0. An attack ũ∞1 is
ε-stealthy if, given any 0 < δ < 1, there exists no detector
such that 0 < 1−pDk ≤ δ for all time k and pFk converges to
zero exponentially fast with rate greater than ε as k → ∞.
Namely, for any detector that satisfies 0 < 1 − pDk ≤ δ for
all times k, we have

lim sup
k→∞

−1

k
log pFk ≤ ε. (5)

�
In fact, using Chernoff-Stein Lemma, we can provide a

sufficient condition for an attack to be ε-stealthy.
Lemma 1: (Sufficient condition for ε-stealthiness) Sup-

pose that an attack ũ∞1 is such that the random sequence ỹ∞1
is ergodic and satisfies

lim
k→∞

1

k
D
(
ỹk1
∥∥yk1) ≤ ε. (6)

Then the attack ũ∞1 is ε-stealthy.
Proof: We apply the Chernoff-Stein Lemma for ergodic

measurements (see, e.g. [19]). For such an attack ũ∞1 , given
0 < 1 − pDk ≤ δ where 0 < δ < 1, the best achievable
exponent of pFk is given by limk→∞

1
kD
(
ỹk1
∥∥yk1). For any

detector, we obtain

lim sup
k→∞

−1

k
log pFk ≤ lim

k→∞

1

k
D
(
ỹk1
∥∥yk1) ≤ ε.

By Definition 3, the attack is ε-stealthy.
Clearly, the measurement sequence ỹ∞1 to be ergodic is a

limiting assumption on the attacker. Characterizing the level
of stealthiness of a general non-ergodic attack seems to be
hard because the Chernoff-Stein Lemma is not applicable
in this case. Instead, we provide a necessary condition for
an attack to be ε-stealthy regardless of the ergodicity of the
measurement sequence.

Lemma 2: (Necessary condition for ε-stealthiness) If an
attack ũ∞1 is ε-stealthy, then

lim sup
k→∞

1

k
D
(
ỹk1
∥∥yk1) ≤ ε. (7)

The proof of Lemma 2 is postponed to the Appendix.
Remark 2: Lemma 2 only provides a necessary condition

of ε-stealthiness. If an attack satisfies (7), then it may not be
ε-stealthy in general. �

We conclude this section with a method to compute the
KLD between the sequences ỹk1 and yk1 . For observed-based
controllers, note that zk and z̃k are functions of yk1 and ỹk1 ,
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respectively. Using the invariance properties of KLD [17],
we have

D
(
ỹk1
∥∥yk1) = D

(
z̃k1
∥∥zk1),

for every k > 0. Recall that z∞1 is an i.i.d. Gaussian random
sequence with zk ∼ N (0, σ2

z). From (4) we obtain

1

k
D
(
z̃k1
∥∥zk1) = −1

k
h
(
z̃k1
)

+
1

2
log(2πσ2

z) +
1

k

k∑
n=1

E
[
z̃2n
]

2σ2
z

,

(8)
where h

(
z̃k1
)

=
∫∞
−∞−fz̃k1 (ξk1 ) log fz̃k1 (ξk1 )dξk1 is the differ-

ential entropy [14] of zk1 .

IV. MAIN RESULTS

We are interested in the maximal performance degradation
P̃ that an ε-stealthy attack may induce. We present such a
fundamental limit in two parts: 1) the converse statement
that gives an upper bound for P̃ as induced by the attacker,
and 2) the achievability result that provides an attack that
achieves the upper bound of the converse result.

Theorem 1: (Converse) Suppose that I∞1 satisfies (A1)–
(A3). For any ε-stealthy attack ũ∞1 generated by I∞1 , we
have

P̃ ≤ δ̄(ε)P +
(δ̄(ε)− 1)σ2

v

c2
(9)

where the function δ̄ : [0,∞)→ [1,∞) is such that

δ̄(D) = 2D + 1 + log δ̄(D). (10)

Proof: Observe that z̃k = ỹk− cˆ̃xk = c(xk− ˆ̃xk) + vk,
and (xk − ˆ̃xk) is independent of vk. We have

E[z̃2k] = c2P̃k + σ2
v . (11)

Since σ2
v is a constant and c2 > 0, we can represent P̃ in

terms of E[z̃2k]. From (8), we have

1

2
· 1

k

k∑
n=1

E[z̃2n]

σ2
z

=
1

k
D
(
z̃k1
∥∥zk1)− 1

2
log(2πσ2

z) +
1

k
h
(
z̃k1
)

≤ 1

k
D
(
z̃k1
∥∥zk1)− 1

2
log(2πσ2

z) +
1

k

k∑
n=1

h(z̃n) (12)

≤ 1

k
D
(
z̃k1
∥∥zk1)− 1

2
log(2πσ2

z) +
1

k

k∑
n=1

1

2
log
(
2πeE[z̃2n]

)
(13)

=
1

k
D
(
z̃k1
∥∥zk1)+

1

2
+

1

2
log

(
k∏

n=1

E[z̃2n]

σ2
z

) 1
k

≤ 1

k
D
(
z̃k1
∥∥zk1)+

1

2
+

1

2
log

(
1

k

k∑
n=1

E[z̃2n]

σ2
z

)
, (14)

where the inequalities (12) is due to the subadditivity of
differential entropy [14, Corollary 8.6.1], the inequality (13)
is a consequence of the maximum entropy theorem [14,
Theorem 8.6.5], and the inequality (14) follows from the

Arithmetic Mean and Geometric Mean (AM-GM) inequality.
Consider the following maximization problem

max
x∈R

x subject to
1

2
x−D − 1

2
≤ 1

2
log x (15)

where D ≥ 0. Since a logarithm function is concave, the
feasible region of x in (15) is a closed interval upper bounded
by δ̄(D) as defined in (10); see Fig. 1. Thus, the maximum
in (15) is δ̄(D). By (14) and the maximization problem (15),
we obtain

1

k

k∑
n=1

E[z̃2n]

σ2
z

≤ δ̄
(1

k
D
(
z̃k1
∥∥zk1)) (16)

Using (11) and (16) gives

P̃ = lim sup
k→∞

1

k

k∑
n=1

P̃n = lim sup
k→∞

1

k

k∑
n=1

E[z̃2n]− σ2
v

c2

= lim sup
k→∞

1

k

k∑
n=1

δ̄
(

1
nD
(
z̃n1
∥∥zn1 ))σ2

z − σ2
v

c2

≤ lim sup
k→∞

δ̄
(

1
kD
(
z̃k1
∥∥zk1))σ2

z − σ2
v

c2
(17)

=
δ̄
(

lim supk→∞
1
kD
(
z̃k1
∥∥zk1))σ2

z − σ2
v

c2
(18)

≤ δ̄(ε)σ2
z − σ2

v

c2
(19)

where the inequality (17) can be obtained by the definition
of limit superior, the equality (18) is due to the continuity
and monotonicity of the function δ̄, and the inequality (19)
follows from Lemma 2. Finally, plugging σ2

z = c2P + σ2
v

into (19) yields the desired result.

0 1

0
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(D
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δ̄(D)

1
2 log x

1
2x−D −

1
2

Fig. 1. Illustrations for the optimization problem (15) and the function
δ̄ : [0,∞) defined in (10). Notice that the function δ̄ is continuous and
monotonically increasing.

Remark 3: (Effect of strictly stealthy attacks) Using (16),
(11) and the fact that δ̄(0) = 1, if D

(
z̃k1
∥∥zk1) = 0 is true for

all k > 0, then E[z̃2k] = c2P̃k +σ2
v ≤ c2P +σ2

v , which gives
P̃k ≤ P . From Remark 1, we can conclude that an attack
ũ∞1 that is strictly stealthy can not degrade the MSE of the
Kalman filter by any amount. �

We now present an ε-stealthy attack that achieves the upper
bound in Theorem 1.

Theorem 2: (Achievability) The upper bound (9) in The-
orem 1 is achievable by the attack ũ∞1 generated by

ũk = uk − (a−Kc)ζk−1 + ζk, (20)
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where ζ∞1 is an i.i.d. sequence of random variables ζk ∼
N
(
0,

σ2
z

c2 (δ̄(ε) − 1)
)

independent of the system dynamics,
and the initial condition is given by ζ0 = 0.

Proof: Notice that the attack in (20) can be generated
by any information pattern satisfying (A1)–(A3). For ease
of analysis, we assume that the attack ũ∞1 is generated by
an attacker with the information pattern I∞1 where Ik =
{uk1 , ζk1 , ỹk1} for every k > 0.

We first show that the upper bound (9) is achieved by
the attack. Moreover, the attacker implements the Kalman
filter x̂Ak+1 = ax̂Ak + KzAk + ũk with the initial condition
x̂A1 = 0 where zAk = ỹk−cx̂Ak . Therefore, x̂Ak+1 is the MMSE
estimate of the state with the MSE E[(x̂Ak+1 − xk+1)2] = P
when Ik is given. Note that z̃k can be expressed as

z̃k = ỹk − cˆ̃xk = ỹk − cx̂Ak + c(x̂Ak − ˆ̃xk) = zAk − cẽk (21)

where ẽk = ˆ̃xk − x̂Ak . In addition, the dynamics of ẽk are
given by

ẽk+1 = (aˆ̃xk +Kz̃k + uk)− (ax̂Ak +KzAk + ũk)

= (a−Kc)ẽk + (a−Kc)ζk−1 − ζk (22)

and the initial condition is ẽ1 = 0. By induction, the equation
(22) implies that ẽk+1 = −ζk for every k > 0. Further, for
every k > 0, P̃k+1 can be expressed as

P̃k+1 = E
[
(ˆ̃xk+1 − x̂Ak+1 + x̂Ak+1 − xk+1)2

]
= E

[
(ˆ̃xk+1 − x̂Ak+1)2

]
+ E

[
(x̂Ak+1 − xk+1)2

]
+ 2E

[
(ˆ̃xk+1 − x̂Ak+1)(x̂Ak+1 − xk+1)

]
(23)

= E
[
(ẽk+1)2

]
+ P

=
σ2
z

c2
(δ̄(ε)− 1) + P

= δ̄(ε)P +
(δ̄(ε)− 1)σ2

v

c2
. (24)

In (23), the fact E
[
(ˆ̃xk+1 − x̂Ak+1)(x̂Ak+1 − xk+1)

]
= 0 is

due to the principle of orthogonality, i.e., all the random
variables generated by Ik is independent of the estimation
error (x̂Ak+1−xk+1) of the MMSE estimate. Hence, the upper
bound of P̃ in (9) is achieved by this attack.

Now we show that the attack ũ∞1 is ε-stealthy. From (21)
and (22), we obtain z̃k = zAk − cζk−1. Since {zAk }∞k=1 is
an i.i.d. random sequence with zAk ∼ N (0, σ2

z), the random
sequence z̃∞1 is i.i.d. Gaussian with z̃k ∼ N (0, δ̄(ε)σ2

z). For
every k > 0, we can calculate the KLD by

1

k

k∑
n=1

D
(
ỹk1
∥∥yk1) =

1

k

k∑
n=1

D
(
z̃k1
∥∥zk1)

=
1

k

k∑
n=1

−1

2
log
(
2πeδ̄(ε)σ2

z

)
+

1

2
log(2πσ2

z) +
δ̄(ε)σ2

z

2σ2
z

= −1

2
− 1

2
log δ̄(ε) +

1

2
δ̄(ε)

= ε

where the differential entropy of z̃k1 is given by h(z̃k1 ) =∑k
n=1 h(z̃n) = k

2 log
(
2πeδ̄(ε)σ2

z

)
because z̃∞1 is an i.i.d.

Gaussian sequence. In this case, ỹ∞1 is ergodic. From
Lemma 1, the attack ũ∞1 is ε-stealthy.

Finally, notice that the attack (20) can be generated by any
information pattern that satisfies (A1)–(A3). Therefore, the
converse result in Theorem 1 is achievable.

Remark 4: (Properties of attack (20)) In the proof of
Theorem 1, the inequalities (12), (13), and (14) hold with
equalities if and only if z̃k1 is a sequence of independent,
Gaussian with mean zero, random variables stationary in the
second moment, respectively. Clearly, the attack (20) satisfies
all these conditions. �

Remark 5: (Attacker information pattern) Intuitively, the
more information about the state variables an attacker has,
the larger performance degradation it can induce. However,
Theorem 1 and Theorem 2 imply that the only critical piece
of information for the attacker is the nominal control input
u∞1 , due to the causality assumption of the information
pattern and the i.i.d. property of the innovation z̃∞1 required
to achieve the upper bound (9). Note that knowledge of the
nominal control input may not be necessary for different
attack models. For instance, in the case the control input is
transmitted via an additive channel, the attacker may achieve
the upper bound (9) exploiting the linearity of the system,
and without knowing the nominal control input. �

V. NUMERICAL RESULTS

We present numerical results to illustrate the fundamental
performance bounds derived in Section IV. The following
numerical results are in terms the ratio P̃ /P , which can be
interpreted as the attacker’s gain. If the ratio P̃ /P = 1, then
the attacker can induce no degradation of the MSE.

Theorems 1 and Theorem 2 have formalized the notion
that the stealthiness of an attacker can be a traded-off with
the performance degradation it can induce. To illustrate such
a trade-off numerically, we plot in Figure 2 the ratio P̃ /P
as a function of ε where the system parameters are given by
a = 2, c = 1, σ2

w = 0.5, σ2
v = 0.1, and P̃ is induced by the

optimal attack in (20). We can see that if the attacker induces
a larger performance degradation of the Kalman filter, then
the attacker is detectable in fewer time steps.

0 1 2 3 4 5
0

4

8

12

16

ε

P̃
/
P

Fig. 2. P̃ /P vs. ε, where a = 2, c = 1, σ2
w = 0.5, σ2

v = 0.1 and P̃ is
induced by the optimal ε-stealthy attack in (20).

Now we vary the quantity c2/σ2
v and plot the ratio P̃ /P .

The quantity c2/σ2
v can be viewed as the quality of the
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measurements taken by the sensor, i.e., the signal-to-noise
ratio. In Fig. 3, we set a = 2, σ2

w = 0.5 and P̃ is induced
by the optimal ε-stealthy attack in (20). Note that P is
a function of c2/σ2

v as well. We can see that a sensor
taking measurements with a large value of c2/σ2

v can lower
the attacker’s gain P̃ /P . Consider the limiting condition
c2/σ2

v → 0+, i.e., the system becomes unobservable. In
this case, the open loop unstable system is non-detectable
and hence P → ∞. In addition, we can take the limit of
(9) and obtain P̃ → ∞ as c2/σ2

v → 0+. Nevertheless, in
Fig. 3, the attacker’s gain P̃ /P remains bounded even if P̃
is unbounded as c2/σ2

v → 0+.
On the other hand, we consider an open loop stable system

(|a| < 1) with a = 0.5 and σ2
w = 0.5. The attacker’s gain

P̃ /P versus c2/σ2
v for the system is presented in Fig. 4.

We can see the similar effect if the quantity c2/σ2
v is large.

However, Fig. 4 shows that the attacker’s gain for a stable
system behaves differently from what we found in Fig. 3
as c2/σ2

v → 0+. The stability assumption (|a| < 1) of the
open loop system implies the boundedness of the MSE of
the Kalman filter P for all c2/σ2

v ≥ 0. Taking the limit of
(9), we find that P̃ goes to infinity as c2/σ2

v → 0+. This
explains the unboundedness of the attacker’s gain P̃ /P as
c2/σ2

v → 0+.

0 2 4 6 8 10
2

4

6

8

10

12

14

16

c
2
/σ

2
v

P̃
/
P

 

 
ε = 0.5
ε = 1
ε = 2
ε = 4

Fig. 3. P̃ /P vs. c2/σ2
v , where a = 2, σ2

w = 0.5 and P̃ is induced by
the optimal ε-stealthy attack in (20).

VI. CONCLUSION

This work characterizes fundamental limitations and per-
formance bounds for the security of stochastic control sys-
tems. The scenario is considered where the attacker knows
the system parameters and noise statistics, and is able to
hijack and replace the nominal control input. We propose a
notion of ε-stealthiness to quantify the difficulty to detect an
attack from measurements, and we characterize the largest
degradation of the control performance induced by an ε-
stealthy attack. Finally, our study reveals that an ε-stealthy
attacker must know the nominal control input to cause the
largest performance degradation of the control performance.
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Fig. 4. P̃ /P vs. c2/σ2
v , where a = 0.5, σ2

w = 0.5 and P̃ is induced by
the optimal ε-stealthy attack in (20).

APPENDIX
PROOF OF LEMMA 2

We prove the lemma by contradiction. Assume
that there exists an ε-stealthy attack ũ∞1 such that
lim supk→∞

1
kD
(
ỹk1
∥∥yk1) > ε. Suppose that the detector

employs the log-likelihood ratio test with a certain threshold
λk at every time k, i.e.,

Lk(ηk1 )
H0
<
≥
H1

λk, where Lk(ηk1 ) = log
fỹk1 (ηk1 )

fyk1 (ηk1 )

is the log-likelihood ratio and ηk1 = yk1 (resp. ηk1 = ỹk1 )
if H0 (resp. H1) is true. We now use the technique due
to Chernoff to bound pFk . Define the conditional cumu-
lant generating function for the log-likelihood ratio to be
gk|0(s) = logE

[
esLk

∣∣H0

]
and gk|1(s) = logE

[
esLk

∣∣H1

]
.

Note that gk|0(s) = gk|1(s − 1). Suppose that λk is chosen
such that 0 < 1 − pDk ≤ δ for every k > 0. Then, for any
sk > 0, applying Chernorff’s inequality yields

pFk = P[Lk ≥ λk|H0] ≤ e−skλk+gk|0(sk),

and hence

− log pFk ≥ skλk − gk|0(sk)

= skλk − gk|1(sk − 1)

= skλk − logE
[
e(sk−1)Lk

∣∣H1

]
≥ skλk + logE

[
e−(sk−1)Lk

∣∣H1

]
(25)

≥ skλk + E[−(sk − 1)Lk|H1] (26)

= D
(
ỹk1
∥∥yk1)+ sk

(
λk −D

(
ỹk1
∥∥yk1)), (27)

where (25) and (26) follow from Jensen’s inequality, and (27)
is due to E[Lk|H1] = D

(
ỹk1
∥∥yk1). We choose sk > 0 to be

sk =
1

2

∣∣∣∣∣D
(
ỹk1
∥∥yk1)− kε

D
(
ỹk1
∥∥yk1)− λk

∣∣∣∣∣. (28)

Using (27), (28) and the fact that lim supk→∞
1
kD
(
ỹk1
∥∥yk1) >

ε, we obtain
lim sup
k→∞

−1

k
pFk > ε
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which contradicts to (5) because of the assumption of ε-
stealthiness. Hence, the condition stated in (7) must be true.
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