
Event-Triggered Communication in Parallel Computing

Soumyadip Ghosh1, Kamal K. Saha2, Vijay Gupta1, and Gretar Tryggvason3

1Department of Electrical Engineering, University of Notre Dame
{sghosh2,vgupta2}@nd.edu

2Center for Research Computing, University of Notre Dame
ksaha@nd.edu

3Department of Mechanical Engineering, Johns Hopkins University
gtryggv1@jhu.edu

Abstract— Communication overhead in parallel systems can
be a significant bottleneck in scaling up parallel computation. In
this paper, we propose event-triggered communication methods
to reduce such communication overhead for numerical simula-
tion of partial differential equations. As opposed to traditional
communication in which processing elements exchange data
at every iteration of the numerical algorithm, the main idea
behind event-triggered communication is to exchange data only
when necessary as dictated by a suitably defined event. We
show through numerical experiments that these methods have
potential to reduce simulation time. Strong scaling plots show
that the approach may be effective on large machines as well.

I. INTRODUCTION
Communication is typically costlier in terms of time

and energy than computation and has been identified as a
bottleneck for scaling up numerical simulations on parallel
computing systems [1]. In this paper, we are interested in ad-
dressing this problem in the context of numerical simulation
of partial differential equations (PDEs). A straight-forward
and popular approach is to discretize the spatial domain and
assign various parts of the domain to different processing
elements (PEs). Different PEs then execute the algorithm
being used to solve the PDE numerically on its own assigned
sub-domain. However, in a typical implementation, the PEs
carry out two types of communication at every iteration:

• Local communication of the values of the physical vari-
ables on the boundary of their sub-domain to the PEs
that are assigned neighboring sub-domains to ensure
that the spatial derivatives are correctly calculated. This
is popularly known as halo exchange.

• Global communication of the convergence criterion with
every other PE to check if the specified tolerance of the
numerical algorithm has been met on the entire domain.
Computation of dot products for basis vectors in Krylov
subspace methods also requires global communication.

Each such communication event is typically accompanied
by a synchronization event that ensures that all the values
needed by a PE from other PEs have been successfully
received before it carries out its next iteration. In other words,
even if a PE carries out its computations quickly, it must
wait for the other PEs to complete their computations and
communicate all values needed by it before it can proceed
to the next iteration.

Reducing communication overhead in parallel computing
systems has received much attention in literature. Two main
approaches seem to have been proposed. One approach is
that of asynchronous algorithms proposed in the context
of local communication. These algorithms still carry out
the local communication at every iteration, but relax the
synchronization due to local communication. This means
that the PEs still transmit data at every iteration for local
communication, however they do not wait for the most
updated values to be successfully received from the other PEs
before starting the next iteration. Instead they proceed with
the last values that were successfully received. Chazan [2]
pioneered this direction in the 1960s by introducing chaotic
relaxation, with further generalizations introduced by Baudet
[3]. Bru [4] proposed new asynchronous methods by com-
bining relaxation and matrix splitting techniques. For surveys
of asynchronous methods, the reader is referred to Amitai
[5] and Frommer [6], with a more recent survey by Jimack
[7]. For the problem of interest to this paper, asynchronous
methods have recently been applied to numerical solution of
PDEs by Donzis [8] and Aditya [9].

The second approach is that of communication-avoiding
(CA) algorithms that relax the requirement of communica-
tion at every iteration. Because of reduced communication,
synchronization requirements are also reduced. In compari-
son to asynchronous algorithms which only save time, CA
algorithms also save energy expended for data movement.
Besides reducing communication between PEs, these algo-
rithms have also been proposed for reducing communication
between levels of memory hierarchy. A lot of work has
been performed to relax the global communication in Krylov
subspace methods. We can point to Van Rosendale [10] and
Chronopoulos [11], who pioneered the development of s-
step methods in Krylov subspace algorithms in which the
basis vectors needed for orthogonalization are computed
once every s steps. Toledo [12] proposed a way to optimize
the computation of the s-step basis in the s-step conjugate
gradient (CG) method so as to reduce the number of words
transferred between levels of memory hierarchy. Hoemmen
[13] proposed a CA-CG method that reduced communication
both between levels of memory hierarchy and between
processors in a network. Carson [14] studied the performance

1

2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)

978-1-7281-0176-7/18/$31.00 ©2018 IEEE

of the CA-CG method on the Hopper supercomputer using
a simple Poisson model problem. Yamazaki [15] improved
the performance of CA-GMRES on multicores with multiple
GPUs. Examples of CA techniques applied to numerical
algorithms other than Krylov subspace methods include
Basu [16], who applied a compiler-optimized CA scheme
to geometric multigrid, and Baboulin [17], who used a CA-
partial pivoting scheme to speed up Gaussian Elimination.
Ballard [18] designed a communication-optimal parallel al-
gorithm for Strassen’s matrix multiplication that achieves
some theoretical lower bounds on communication costs. As
a follow-up, Lipshitz [19] showed that the communication-
avoiding parallel Strassen method proposed in [18] achieves
better performance than tuned implementations of other
classical matrix multiplication algorithms. Recently, Murthy
[20] designed a CA compiler that analyzes data dependence
patterns in a program to reduce communication.

Communication avoiding algorithms have, thus, emerged
as powerful tools to reduce the communication overhead
in parallel simulations. Abstractly, these algorithms can be
viewed as relaxing the requirement to communicate at every
iteration (i.e., time-triggered) to communicating only when
a certain event is satisfied (i.e. event triggered). Thus, for
instance, in the CA-CG method of Hoemmen [13], the event
is the completion of s iterations, so that communication
occurs once every s iterations. In this paper, we design a
new class of CA algorithms in which the events that trigger
local communication are dependent on the values in the
local domain of the sending PE. The specific event that we
consider in this paper is that communication happens when
the boundary value being communicated by the sending PE
has changed from the last communicated value by more than
a user specified threshold. This condition is representative of
the state of a PE. Such state dependent events can modulate
the communication frequency according to how quickly the
values at any PE are changing; thus, intuitively achieving
better reductions in communication overhead than those
achieved using state independent events (such as periodic
communication [13]). However, communication with such
state dependent events is aperiodic and largely unpredictable,
thus requiring implementations with MPI one-sided, which
are significantly more complicated. For completeness, we
also consider communication being triggered by events that
are not dependent on the state by considering periodic
communication. While we choose numerical solution of
partial differential equations (PDE) as our example, the tech-
niques can be extended to other problems like optimization
which also involve solving algebraic system of equations
like PDEs. Similarly, while we focus on the case where
the Jacobi method is being used for the sake of simplicity,
extensions to other algorithms like Krylov subspace methods,
geometric multigrid, etc. are possible. We confine ourselves
to communication between PEs in a network rather than
communication involved in accessing memory and show that
the proposed event-triggered methods can effectively reduce
the simulation time.

The paper is organized as follows :- Section II formulates

the model PDE that we use for experiments described in
the paper. Section III introduces the main idea behind our
approach to CA algorithms with implementation details in
Sections IV and V. Section VI concludes the paper with
directions for future work.

II. PROBLEM FORMULATION

For the experiments described in this paper, we consider
a 2D Poisson PDE used to express the electric potential
resulting from a distribution of electric charges. In our
simulations, we consider the charge distribution to be an
electric dipole - a point positive charge and a point negative
charge at specified locations in the domain. The PDE is given
by

∂2V

∂x2
+
∂2V

∂y2
= −ρ

ε
, (1)

where V is the electric potential, ρ is the electric charge
and ε is the permittivity of free space equal to 8.854 ×
10−12m−3kg−1s4A2. Using the finite-difference method,
the PDE in (1) is discretized as follows:

Vi−1,j + Vi+1,j − 2Vi,j
∆x2

+
Vi,j−1 + Vi,j+1 − 2Vi,j

∆y2
= −ρi,j

ε
,

(2)

where ∆x,∆y are the grid resolutions and i, j are the grid
indices in the two dimensions. For convenience, we consider
a square 2D domain and set ∆x = ∆y. We consider
Dirichlet boundary conditions - meaning the values along
the boundaries at the four edges are maintained at a constant
value throughout the numerical solution.

Fig. 1. Electric potential due to a dipole calculated after convergence when
the numerical scheme discussed in Section II is implemented on a single PE.
Positive charge of the dipole is located at (90,60) and the negative charge
at (30,60)

To numerically solve (2), a variety of iterative techniques
can be used. We choose the Jacobi method which is the
simplest relaxation-type iterative solver for solving a system
of equations. The numerical solver using Jacobi method is

2

given by a recurrence relation in which the values of the
potential at every grid point at iteration k + 1 are computed
from the values at iteration k according to the relation

Vi,j(k + 1) =
1

4

(
Vi−1,j(k) + Vi+1,j(k) + Vi,j−1(k)

+ Vi,j+1(k) +
∆x2ρi,j

ε

)
.

(3)

This solver thus sets up a fixed-point iterative problem. As
a stopping condition for the numerical scheme, we use the
residual at any iteration. The residual starts from a non-
zero value and is monotonically non-increasing. For our
simulations, we use the stopping criterion that the maximum
value of the residual in the 2D domain is less than the
tolerance of 10−5. Fig 1 shows the resulting electric potential
V after convergence when the scheme described above is
implemented on a single PE.

For numerical solution of the PDE in a parallel setting,
the domain needs to be decomposed first. We consider a
1D domain decomposition parallel to the horizontal axis.
Decomposition of the domain leads to two forms of com-
munication among the PEs. The first is the local communi-
cation involving the halo exchange where the PEs have to
communicate the entire boundary row to the neighboring PE.
The second is the global communication arising due to the
requirement for monitoring the residual-based convergence
criterion. In a traditional implementation, both these forms
of communication would occur at every iteration k and
may become bottlenecks in a large scale implementation.
In Section III, we describe the main idea behind our pro-
posed approach to relax these communication requirements.
Detailed experimental results with the proposed approach are
presented in Sections IV and V.

For all our simulations, we use an HPC cluster of nodes
with each node having 2 CPU Sockets of AMD’s EPYC 24-
core 2.3 GHz processor and 128 GB RAM per node. The
cluster uses Mellanox EDR interconnect. The MPI library
chosen is mvapich2 built with Intel compiler. The length
of the 2D domain is considered to be 1 unit and the grid
resolution is chosen to be 5760 in both dimensions.

III. MAIN IDEA OF THE PROPOSED APPROACH
The main idea behind our approach is to relax the require-

ment to communicate at every iteration. Instead, we propose
to trigger communication in events when a certain condition
is satisfied. This condition can be quite general. In this paper,
we study two types of conditions. In the first case, the event
triggering the communication depends on the state of the PE,
and in the second case, the event does not depend explicitly
on the state of the PE. As a reminder, the state of the PE
refers to the values of the grid points in the sub-domain
allocated to the PE.

a) State dependent triggering events: The main intu-
ition behind communication based on state-dependent events
is to communicate ‘only when necessary’. In other words,
if the value of a variable has not varied much from the
value last communicated, we can choose not to communi-
cate, and instead, the intended recipient could use the last

communicated value without incurring much error in its
computation. While the event triggering the communication
can be designed in a variety of ways, for specificity, in this
paper, we design it based on the change in values (from
the last communicated values) of the points on the boundary
of the sub-domain allocated to the sending PE. When this
change exceeds some user specified threshold, the values are
communicated; otherwise, the intended receiver PEs use the
values last communicated from the sender PE.

Remark 1: The boundary in the two-dimensional PDE
that we consider in this paper is a row vector. The evolution
of every grid point in this row may exceed the threshold
criterion at different times. Rather than allowing every grid
point along the boundary to start an MPI message of unit
length independently, it is more efficient to monitor some
norm of the values of the grid points of the entire boundary
row and communicate the values for the entire row as a
single large MPI message when the norm satisfies the event
condition. We use the infinity norm of the vector, i.e., its
maximum value, in this work.

Fig. 2. The basic idea behind communicating only when the value
of the boundary points changes by some threshold from the previously
communicated value. The left plot shows the maximum value of the
boundary vector at the sending PE. The asterisks show the points at which
the threshold criterion triggers the communication. The right plot shows the
values used by the receiving PE.

Fig 2 illustrates the basic idea discussed above considering
a threshold of 0.1. The left plot shows the evolution of
the maximum value of the boundary vector at the sending
PE. When the value changes by more than 0.1 from the
previously communicated values, a communication event is
triggered as marked by an asterisk. The right plot shows the
corresponding ghost row values in the receiving PE. When
a communication event happens, the most current value is
used by the receiving PE for computation. Otherwise, the
last communicated value is used. Note that this leads to a
staircase type evolution of the value of the ghost points at
the receiving PE.

Remark 2: In the above discussion, we have focused on
local communication among PEs. While the global com-
munication to check if the convergence criterion has been
met may also be made dependent on similar events, in this
paper, we make the global communication independent of
the state for simplicity. Instead, we consider the global com-
munication to happen periodically, once every r iterations
for various values of r, similar to that in the case of state-
independent triggering events.

3

An algorithmic description of the proposed approach is
given as Algorithm 1.

Algorithm 1 Communication Triggered by State Dependent
Events

1: do
2: Compute Vi,j(k + 1) as in (3)
3: if Change in boundary values of PE ≥ threshold then
4: Communicate boundary values to neighbor(s)
5: end if
6: if k mod r == 0 then
7: Compute Local residual
8: Global residual ← max(All local residuals)
9: end if

10: while Global residual > tolerance

Note that the event we have considered is quite ba-
sic. More sophisticated event choices may include adaptive
thresholds based on the derivatives of boundary values.
The ghost points in the recipient PE may also be extrap-
olated using history of last communicated values, instead
of following a staircase evolution. We note that the concept
of state-dependent communication described here has been
proposed under the name of event-triggered communication
in networked control systems [21] and wireless networks
[22].

b) State-independent triggering events: As discussed
more fully in Section IV, the implementation of state-
dependent triggering events requires the use of MPI one-
sided, which is significantly more complicated than the usual
implementations. For comparison, we also consider a class of
algorithms in which the triggering events do not depend on
the values of a PE’s sub-domain, i.e., the state of a PE. In this
work, we focus on the algorithm in which local and global
communication happens periodically with a user specified
period r. Once again, the receiver PE uses the value that
was last communicated to it in between iterations involving
communication.

Fig. 3. Communication events when a periodic communication scheme is
adopted for local communication. Period of two is shown here.

Fig 3 illustrates the timeline for local communication
among PEs when the period is set to be two. The global
communication to check the convergence criterion is also

made periodic. This allows us to compare the performance
of the algorithms when the local communication is triggered
by events that are state-independent and events that are state-
dependent.

Remark 3: Hoemmen [13] proposed a periodic CA al-
gorithm similar to the one proposed above in the context
of computation of basis vectors for the orthogonalization
procedure in Krylov subspace methods which requires global
communication. We propose that local communication be
made periodic in addition to global communication and
illustrate this on Jacobi iteration methods to solve PDEs
numerically.

An algorithmic description of the proposed approach is
given as Algorithm 2.

Algorithm 2 Communication Triggered by State Indepen-
dent Events

1: do
2: Compute Vi,j(k + 1) as in (3)
3: if k mod r == 0 then
4: Communicate boundary values to neighbor(s)
5: Compute Local residual
6: Global residual ← max(All local residuals)
7: end if
8: while Global residual > tolerance

IV. STATE-DEPENDENT TRIGGERING EVENTS
A. Implementation

Events that trigger communication depend on the state of
the sending PE. Thus, when the sending PE wants to initiate
a communication, it can issue an MPI Send operation. How-
ever, since the receiving PE is not aware of the state of the
sending PE, it does not know when to issue an MPI Recv
operation. Hence standard two-sided communication cannot
be used to implement communication triggered by state-
dependent events.

We select one-sided communication for this purpose [23].
In one-sided communication, only the sending PE has to
know all the parameters of the message for both the sending
and receiving side - the receiving PE plays no role (hence
the alternate name of Remote Memory Access (RMA)). This
property makes only one-sided communication suitable for
our purpose since with state-dependent triggering events,
communication is dependent only on the state of the sending
PE without any involvement of the receiving PE.

Before the start of iterations in the numerical solver,
every PE defines a region of memory called window using
MPI Win allocate which is public, meaning that other PEs
have permission to access this window. This window rep-
resents the ghost cells of a PE. So, when a communication
event is triggered in the sending PE, it uses MPI Put to write
the message directly in the window of the receiving PE.

However, one-sided communication decouples data trans-
fer from synchronization. Hence it is the programmer’s
responsibility to synchronize explicitly to ensure that RMA
operations have completed. The MPI standard defines two

4

methods for this purpose. In active target synchronization
based methods, all the PEs define a time window within
which RMA access to any PE is permitted. This can be
done through implementation of a collective concept of fence
which signifies the beginning and end of an access epoch. All
PEs collectively call MPI Win fence at the start and the end
of RMA access. Between the two fences, all RMA operations
in the entire communicator must complete. There is a more
general form of active target synchronization where there
is no collective concept of fence - instead only a subgroup
of PEs synchronize by a post/start/complete/wait (PSCW)
mechanism.

However, such active target synchronization requires MPI
calls from the receiving PE. In our proposed approach,
communication is dependent only on the state of the sending
PE. Thus, the receiving PE is not aware of when a neighbor
PE will send a message, and so it cannot invoke an MPI call.
This makes active target synchronization unsuitable for our
application.

Instead, we utilize passive target synchronization, that
does not require any MPI calls from the receiving PE. The
sending PE performs communication operations in access
epochs demarcated by MPI Win lock and MPI Win unlock
calls as illustrated in Fig 4. Note that the word “lock” is
a misnomer here because these routines do not provide a
traditional lock or mutex. MPI Win lock means that the
origin PE can begin access on the target PE. Similarly,
MPI Win unlock means that the origin PE can end access
on the target PE. Since passive target synchronization does
not require any MPI calls from the receiver, we utilize it
for our implementation of state-dependent communication
triggering events.

Fig. 4. Illustration of timeline of event-triggered local communication
using passive target synchronization.

The above discussion focuses on local communication for
halo exchange. For global communication of the conver-
gence criterion, all the PEs need to exchange information
among each other at the same time. Since every PE triggers

events at different times based on its own state, there is no
structured way to relax the MPI Allreduce involving global
communication here. While we have some initial ideas on
how to make global communication triggering events state
dependent as well, we do not implement them in this paper.
Instead, global communication happens periodically with a
user-specified period similar to that in the state-independent
communication scheme described in Section V.

B. Numerical Stability

Stability of a numerical scheme implies approaching the
fixed point solution of the discretized system of equations
given in (3). We note that the Jacobi solver with commu-
nication in every iteration as in (3) is numerically stable.
However, with state-dependent event-triggered communica-
tion, the final solution may be different depending on the
value of threshold. To measure the error in the solution, we
consider the solution with threshold 0 as the benchmark and
compare the solution with any threshold against the bench-
mark solution. Note that the case of threshold 0 yields the
original numerical scheme where communication happens at
every iteration.

Fig 5 shows the log-log plot of the error from benchmark
solution for various thresholds. Specifically, we quantify the
error as the maximum of the absolute difference of the
domain values for a particular threshold after convergence
with the domain values of the benchmark solution after con-
vergence. We see that for a certain range of low thresholds,
the error stays the same, implying that the quality of solution
is the same in this range. As threshold starts increasing, the
error grows in order. This is explained by the fact that very
few messages are exchanged in higher thresholds. In the
region of very high thresholds, no communication happens
between PEs, so they treat their sub-domain boundaries as
local boundary conditions and converge in isolation. Hence
the error from the benchmark solution starts approaching a
limiting value.

Fig. 5. Effect of threshold for event-triggered communication on error
from benchmark solution.

5

C. Time Reduction

Fig 6 shows the reduction in time for simulations run
with parameters already mentioned in Section II. Since
convergence to the correct solution is dependent on the value
of the threshold as stated above, we select the threshold to be
10−14. Using this threshold, we observe the simulation time
across various periods of global communication. Since the
state-independent communication scheme in Section V also
implements periodic global communication, we can compare
the effect of just local communication in the state-dependent
scheme in Fig 6 with that in the state-independent scheme
in Fig 9 for the same period. We note that the time taken in
Fig 6 is overall lesser than that in Fig 9.

Fig. 6. Reduction in simulation time for state-dependent local communi-
cation across various periods of global communication.

D. Scaling

We show the strong scaling of this scheme for threshold
10−14 across various periods of global communication in Fig
7 and the corresponding speedup plot in Fig 8. These results
are found to be better than the strong scaling of the state-
independent communication scheme shown later in Fig 10
and Fig 11. Note that we run our simulations on multiples
of entire nodes each of which has 48 cores.

V. STATE-INDEPENDENT TRIGGERING EVENTS

A. Implementation

Now we describe the implementation details of the state-
independent periodic communication. The local communica-
tion due to halo exchange is done using standard MPI point-
to-point communication where the transmitting PE posts
an MPI Send while the receiving PE posts an MPI Recv.
In order to do periodic communication, the MPI Send and
MPI Recv are called periodically. Since the period is known
to every PE before the start of the simulation, every PE
knows when to call MPI Send/MPI Recv and when to skip
it.

For global communication involving computation of the
convergence criterion, MPI Allreduce is also called with

Fig. 7. Strong Scaling of state-dependent communication. The simulations
are run on {48, 96, 144, 192} PEs.

Fig. 8. Speedup of Strong Scaling results in Fig 7. Since we run our
simulations in multiples of 48 PEs from 48 to 192, the ideal scaling ranges
from 1 to 4.

the same period to perform the reduction operation on the
residual across all the PEs and check for convergence.

B. Numerical Stability

In our previous work, we showed that the numerical
scheme with periodic communication asymptotically con-
verges to the same solution for any period under Dirichlet
boundary conditions [24]. Note that a period of 1 is the tra-
ditionally implemented numerical scheme where both local
and global communication happens at every iteration. So, for
any value of period r, the numerical scheme asymptotically
approaches the same solution.

C. Time Reduction

Fig 9 shows the reduction in time across different periods
of local and global communication with the parameters
already described in Section II. As the period of com-
munication becomes higher, time is saved due to lesser
communication. However, to compensate for this reduced
communication, the numerical scheme takes more iterations

6

to converge to the same solution. Upto period 2, the effect
of lesser time due to communication-avoiding iterations
dominates the effect of increased iterations. At higher periods
beyond 2, the effect of increased number of iterations become
dominant, resulting in an overall increasing trend in time.

Fig. 9. Reduction in simulation time for state-independent periodic local
communication. The global communication also happens with the same
period.

D. Scaling
Strong scaling time and speedup plots across various

periods of local and global communication are shown for
this scheme in Fig 10 and Fig 11 respectively.

Fig. 10. Strong Scaling of state-independent communication. The simula-
tions are run on {48, 96, 144, 192} PEs.

From Fig. 11, we see that the strong scaling speedup
performance improves with increase in period. To explain
this, consider the case where there is no local communication
at all between the PEs (period = ∞) - the speedup for this
scenario would be ideal due to no overhead of communica-
tion, even though the numerical solver would not converge
correctly. Now, as the period increases, communication keeps
on decreasing. So the corresponding speedup plot starts
approaching the ideal scaling line in an asymptotic sense.

Fig. 11. Speedup of Strong Scaling results in Fig 10. Since we run our
simulations in multiples of 48 PEs from 48 to 192, the ideal scaling ranges
from 1 to 4.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we describe event-triggered communication
methods to speed up simulations in parallel computing
environments. We show that state-dependent event-triggered
communication methods reduce time due to communication
by communicating only when necessary. Strong scaling
shows the effectiveness of such methods.

In our future work, we are planning to make signif-
icant improvements to the state-dependent event-triggered
communication. Firstly, we can design a way to make the
threshold for communication adaptive to the change in the
boundary values. Secondly, we can also extrapolate the
ghost cell values in the receiving PE between instances of
communication instead of maintaining them at a constant
value until the next communication event happens. Finally,
we can remove the global communication for convergence
criterion, and communicate the residual information locally
to the neighbors.

VII. ACKNOWLEDGEMENT

This research was supported in part by the Notre Dame
Center for Research Computing through its computing re-
sources. The work of the first and third authors was supported
in part by NSF grants NSF CNS-1544724 and NSF CNS-
1739295, and ARO grant Army W911NF-17-1-0072.

REFERENCES

[1] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson,
William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry
Hill, Jon Hiller, et al. Exascale computing study: Technology chal-
lenges in achieving exascale systems. Defense Advanced Research
Projects Agency Information Processing Techniques Office (DARPA
IPTO), Tech. Rep, 15, 2008.

[2] Daniel Chazan and Willard Miranker. Chaotic relaxation. Linear
algebra and its applications, 2(2):199–222, 1969.

[3] Gérard M Baudet. Asynchronous iterative methods for multiproces-
sors. Journal of the ACM (JACM), 25(2):226–244, 1978.

[4] Rafael Bru, Ludwig Elsner, and Michael Neumann. Models of
parallel chaotic iteration methods. Linear Algebra and its Applications,
103:175–192, 1988.

7

[5] Dganit Amitai, Amir Averbuch, Moshe Israeli, Samuel Itzikowitz, and
Eli Turkel. A survey of asynchronous finite-difference methods for
parabolic pdes on multiprocessors. Appl. Numer. Math, 12:27–45,
1993.

[6] Andreas Frommer and Daniel B Szyld. On asynchronous iterations.
Journal of computational and applied mathematics, 123(1-2):201–216,
2000.

[7] Peter K Jimack and Mark A Walkley. Asynchronous parallel solvers
for linear systems arising in computational engineering. Computa-
tional technology reviews, 3:1–20, 2011.

[8] Diego A Donzis and Konduri Aditya. Asynchronous finite-difference
schemes for partial differential equations. Journal of Computational
Physics, 274:370–392, 2014.

[9] Konduri Aditya and Diego A Donzis. High-order asynchrony-tolerant
finite difference schemes for partial differential equations. Journal of
Computational Physics, 350:550–572, 2017.

[10] John Vanrosendale. Minimizing inner product data dependencies in
conjugate gradient iteration. 1983.

[11] AT Chronopoulos and Charles William Gear. s-step iterative methods
for symmetric linear systems. Journal of Computational and Applied
Mathematics, 25(2):153–168, 1989.

[12] Sivan Avraham Toledo. Quantitative performance modeling of scien-
tific computations and creating locality in numerical algorithms. PhD
thesis, Massachusetts Institute of Technology, 1995.

[13] Mark Hoemmen. Communication-avoiding Krylov subspace methods.
PhD thesis, UC Berkeley, 2010.

[14] Erin Claire Carson. Communication-avoiding Krylov subspace meth-
ods in theory and practice. PhD thesis, UC Berkeley, 2015.

[15] Ichitaro Yamazaki, Hartwig Anzt, Stanimire Tomov, Mark Hoemmen,
and Jack Dongarra. Improving the performance of ca-gmres on
multicores with multiple gpus. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, pages 382–391. IEEE,
2014.

[16] Protonu Basu, Anand Venkat, Mary Hall, Samuel Williams, Brian
Van Straalen, and Leonid Oliker. Compiler generation and autotuning
of communication-avoiding operators for geometric multigrid. In
2013 20th International Conference on High Performance Computing
(HiPC), pages 452–461. IEEE, 2013.

[17] Marc Baboulin, Simplice Donfack, Jack Dongarra, Laura Grigori,
Adrien Rémy, and Stanimire Tomov. A class of communication-
avoiding algorithms for solving general dense linear systems on
cpu/gpu parallel machines. Procedia Computer Science, 9:17–26,
2012.

[18] Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and
Oded Schwartz. Communication-optimal parallel algorithm for
strassen’s matrix multiplication. In Proceedings of the twenty-fourth
annual ACM symposium on Parallelism in algorithms and architec-
tures, pages 193–204. ACM, 2012.

[19] Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz.
Communication-avoiding parallel strassen: Implementation and per-
formance. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 101.
IEEE Computer Society Press, 2012.

[20] Karthik Murthy and John Mellor-Crummey. Communication avoiding
algorithms: Analysis and code generation for parallel systems. In 2015
International Conference on Parallel Architecture and Compilation
(PACT), pages 150–162. IEEE, 2015.

[21] WPMH Heemels, Karl Henrik Johansson, and Paulo Tabuada. An
introduction to event-triggered and self-triggered control. In Decision
and Control (CDC), 2012 IEEE 51st Annual Conference on, pages
3270–3285. IEEE, 2012.

[22] Manuel Mazo and Paulo Tabuada. Decentralized event-triggered
control over wireless sensor/actuator networks. IEEE Transactions
on Automatic Control, 56(10):2456–2461, 2011.

[23] James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William
Gropp, and Rajeev Thakur. An implementation and evaluation of
the mpi 3.0 one-sided communication interface. Concurrency and
Computation: Practice and Experience, 28(17):4385–4404, 2016.

[24] Soumyadip Ghosh, Jiacai Lu, Vijay Gupta, and Gretar Tryggvason.
Fast parallel computation using periodic synchronization. In 2018
Annual American Control Conference (ACC), pages 1659–1664. IEEE,
2018.

8

