
Automatica 42 (2006) 1441–1452
www.elsevier.com/locate/automatica

State estimation over packet dropping networks using multiple
description coding�

Zhipu Jin∗, Vijay Gupta, Richard M. Murray
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, USA

Received 28 July 2005; received in revised form 19 January 2006; accepted 26 March 2006
Available online 9 June 2006

Abstract

For state estimation over a communication network, efficiency and reliability of the network are critical issues. The presence
of packet dropping and communication delay can greatly impair our ability to measure and predict the state of a dynamic pro-
cess. In this paper, multiple description (MD) codes, a type of network source codes, are used to compensate for this effect on
Kalman filtering. We consider two packet dropping models: in one model, packet dropping occurs according to an independent and
identically distributed (i.i.d.) Bernoulli random process and in the other model, packet dropping is bursty and occurs according to a Markov
chain. We show that MD codes greatly improve the statistical stability and performance of Kalman filter over a large set of packet loss
scenarios in both cases. Our conclusions are verified by simulation results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

One of most significant challenges for control theory to-
day is that the control objective is being enlarged from single
physical systems to large-scale, complex systems and networks
(Murray, 2002). Tremendous amounts of information need to
be sensed, processed and transmitted among different subsys-
tems. Examples include congestion control in the Internet, op-
timal operation of power grid, air traffic control networks, and
many others. Communication networks play an important role
in these examples. The theory of networked control systems
(NCS) provides an approach to investigate the impact of com-
munication constraints on feedback control systems by replac-
ing the “ideal” feedback links with communication networks.
Fig. 1 shows a simplified version of a NCS that omits the com-
munication channel from the controller to the dynamic system.

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Ioannis
Paschalidis under the direction of Editor Ian Petersen.

∗ Corresponding author. Tel.: +1 626 395 3367; fax: +1 626 395 6170.
E-mail addresses: jzp@caltech.edu (Z. Jin), vijay@cds.caltech.edu

(V. Gupta), murray@caltech.edu (R.M. Murray).

0005-1098/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.03.020

The link from observer to estimator is not modelled as a single,
exclusive communication channel, but rather as a possible path
through a large, complex communication network shared with
many other users.

Efficient and reliable communication requires improvements
in both source and channel coding. In addition, dynamical evo-
lution of the system and a prior knowledge of the dynamics
can give us extra benefits on top of just using current state-
of-the-art communication theory and technology. This merger
between control and communication has received considerable
interest recently. Some works (Liberzon, 2003; Matveev &
Savkin, 2005; Tatikonda & Mitter, 2004a, 2004b; Walsh, Ye,
& Bushnell, 2002; Wong & Brockett, 1997) have focused on
answering a fundamental question: how much information at
least do we need to achieve stability? The main idea in these
works is that the uncertainty of the dynamic system changes
with respect to time. In order to stabilize the system, the mini-
mum feedback information must be enough to compensate for
the increase in the uncertainty. The sensitivity of the feedback
system to quantization noise has also been studied (Brockett &
Liberzon, 2000; Elia & Mitter, 2001). It has been noticed that
feedback information can be useful even with different levels
of resolution.
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Fig. 1. Diagram of a networked control system.

Most modern communication networks are digital and are
implemented using packet-based protocols. Thanks to the in-
credible developments in communication technology, the ratio
of cost to bandwidth of communication links has dropped dra-
matically. However, the reliability of communication links in
networks has become an important issue. Communication net-
works are not used exclusively for transmitting information be-
tween two single points. Packets have to be dropped whenever
the network becomes congested. Stochastic packet dropping is
very common in large-scale networks (Yajnik, Moon, Kurose,
& Towsley, 1999). For widely used transmission control proto-
col (TCP), dropped packets are resent after certain delays. Us-
ing “recursive state estimator” (Matveev & Savkin, 2003) can
generate minimum variance estimates in the presence of irreg-
ular communication delays. However, extra memory and com-
putation costs are incurred. A multi-vehicle wireless testbed
(MVWT) was built in Caltech (Jin et al., 2004) and user data-
gram protocol (UDP) was adopted to transmit data over a lo-
cal wireless communication network. In this paper, according
to our experiences on MVWT, we assume estimator and con-
troller only use available new, “real-time” data packets to up-
date estimation and control law. This assumption makes the
model simple yet sophisticated enough such that we can focus
on the effects of different coding schemes.

In this paper, we ignore the controller in Fig. 1 and focus
on the problem of state estimation. Rather than worrying about
limited bandwidth, we are concerned about the fact that packets
can be dropped by the communication network. Our goal is
to understand how the packet dropping affects state estimation
and what we can do to compensate for this unreliability?

There are two popular models for packet dropping in large-
scale networks. The Bernoulli model (Yajnik et al., 1999)
describes packet losses according to an independent and
identically distributed (i.i.d.) Bernoulli random process. An-
other model is the Gilbert–Elliott model (Elliott, 1963; Gilbert,
1960) which describes packet dropping as a Markov chain and
is used to handle bursty packet dropping. Sinopoli et al. (2004)
used the Bernoulli model to study the statistical convergence
properties of the estimation error covariance in a Kalman filter
by solving a modified algebraic Riccati equation (MARE).
That work showed that packet dropping degrades the perfor-
mance of Kalman filter. Liu and Goldsmith (2004) extended the

results to the case with partial observation losses in sensor
networks. In this paper, we show that multiple description
(MD) source codes, a type of network source codes (Fleming,
Zhao, & Effros, 2004), can be used to compensate for the un-
reliability of communication networks. MD codes have been
studied in information theory for over 30 years (Gamal &
Cover, 1982; Goyal & Kovacevic, 2001) and successfully used
in transmission of real-time speech and audio/video over the
internet (Goyal, Kovaceric, Arean, & Vetterli, 1998; Lee, Pick-
ering, Frater, & Arnold, 2000). The efficiency of MD codes
has been proved in situations where data can be used at various
resolution levels. To the best of our knowledge, our work is
the first to apply such a coding scheme to NCS.

This paper is organized as follows. In Section 2, state esti-
mation problem in NCS is described and assumptions on com-
munication networks are given. In Section 3, MD source codes
are introduced and theoretical limits are discussed. We formu-
late the state estimation problem with MD coding in Section
4 and present results for the i.i.d. Bernoulli model. In addi-
tion, examples and simulation results are listed. Then the same
estimation problem is studied for the Markov chain model in
Section 5 and conclusions are summarized in Section 6.

2. State estimation problem and assumptions

We study the state estimation problem for the following
discrete-time linear dynamic system:

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rn is the state vector, yk ∈ Rm is the output vec-
tor, wk and vk are Gaussian white noise vectors with zero mean
and covariance matrices are Q�0, and G > 0, respectively. We
assume that A is unstable and a standard discrete-time Kalman
filter is used as the estimator. It is well known that if the pair
(A, Q1/2) is controllable, the pair (A, C) is detectable, and
no measurements are lost, the estimation error covariance of
Kalman filter converges to a unique value from any initial con-
dition.

For the NCS in Fig. 1, the observation data is put into data
packets and is sent through the communication network after
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going through source and channel encoders. We list some as-
sumptions for the network which simplify our problem:

• We ignore channel coding and assume that the packet will
be either received and decoded successfully at the end of the
links or totally lost.

• For the estimator, only the new, “real-time” data is used for
each update cycle. We only consider the transmission delay
that is determined by the network bandwidth and length of
the packet. If a packet arrives too late, it is discarded and
treated as a dropped packet. So the packet transmission is
in a “UPD-like” style which means that lost packets are not
re-sent.

• The network does not provide preferential treatment to any
packet. In other words, the network treats each single packet
equally without inspecting the content. Thus, a multiple res-
olution code or a layered source code is not a good choice
for us since they mark packets with different priorities ac-
cording to the contents.

• There is no feedback from the decoder to the encoder.
• We assume that number of bits in each data packet is rel-

atively large and the network is running at a high bit rate
scenario.

We assume that packet dropping happens according to one of
two following models:

• The i.i.d. Bernoulli model. A Bernoulli random variable �k

indicates whether the packet k is received correctly. If it goes
through the network successfully, then �k=1, otherwise, �k=
0. For any value of k, �k is i.i.d with probability distribution
P(�k =1)=� and P(�k =0)=(1−�). This is the simplest and
often used model for packet dropping in large-scale networks.

• The Gilbert–Elliott model. This model considers the network
as a discrete-time Markov chain with two possible states:
“good” and “bad”. In the “good” state, the packet is re-
ceived correctly, and in the “bad” state, the packet is dropped.
The network jumps between these two states according to a
Markov chain with transition probability matrix Q as

Q =
[
q00 q01
q10 q11

]
, (2)

where 1 is the good state, 0 is the bad state, and qij is the
probability from the previous state j to the next state i. The
model can be easily extended to more possible states with
different packet dropping probabilities. However, for sim-
plicity and without loss of generality, we consider the two-
state model in this paper. Unlike the first model, this one is
able to capture the dependence between consecutive losses,
i.e., bursty packet dropping.

3. Multiple description source coding

For NCS, the traditional source code is actually a quantizer
q : Rm → Z with a state space partition set {Vi} where
Vi ∩ Vj = ∅ for any i, j ∈ [1, 2, . . . , N] with i �= j , and

⋃N
i=1Vi = Rm. For each partition Vi , there exists a centroid

vi ∈ Vi and the set of all the representatives of vi is called
a codebook. The encoder functions are fe(x) = i if x ∈ Vi

and decoder functions are fd(i) = vi . We call the integer i the
description of the state x. The distortion function at the decoder
is defined as d(x, vi)=‖x−vi‖2. Generally, if N is bigger, each
partition will be smaller and the average distortion at decoder
side is smaller. However, the cost is sending more bits through
the network. Rate distortion theory, a part of information theory,
is used to study any possible partition set and the corresponding
average distortion. In this section, we focus on uniform scalar
quantizers and assume that the state of the dynamic system is
uniformly distributed on a state space whose length is L. The
optimal distortion rate function for single description source
codes is

D(R)� L2

12
· 2−2R , (3)

where R = log2(N) is the bits per source sample (bpss) and N
is the number of the quantization levels. For other state distri-
butions, we have similar distortion rate functions that all decay
at the speed 2−2R .

MD source codes are designed to achieve good rate-distortion
performance over lossy links. The unique feature of MD codes
is that instead of using one single description to represent one
source sample, MD codes use two or more descriptions. So at
the end of the link, the decoder has much less chance of losing
all descriptions. The distortion at the decoder depends on how
many descriptions it receives and could be at various quality
levels. Also we would like to keep the total bpss as small as
possible. Thus, the design of a MD code is a problem of min-
imizing the size of the code over the redundancy between the
descriptions. Moreover, MD codes need to be non-hierarchical
so that the receiving order of descriptions is not important.

3.1. Theoretical limits of multiple description codes

In this subsection, we introduce some theoretical limits for
MD codes that fit our discussion on NCS. We start with a two-
description MD code. An encoder is fed by a sequence of source
sample values {Xk}. The output of the encoder is {ik, jk}. The
number of bits for descriptions are Ri and Rj . There are three
cases according to which descriptions are received:

• At step k, the decoder receives none of the descriptions, we
call this the “broken link” case. We will discuss this case in
Section 4.

• At step k, the decoder receives both {ik} and {jk}, we call this
the “central decoder” case. In this case, the average distortion
is Dc.

• At step k, the decoder only receives either {ik} or {jk}, we
call this the “side decoder” case. The average distortions are
Di and Dj , respectively.

The main theoretical problem of MD coding is to deter-
mine the achievable quintuple (Ri, Rj , Dc, Di, Dj ). The
fundamental tradeoff in MD coding is making descriptions
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Fig. 2. Diagram of two-description MD source coding for NCS.

individually good and sufficiently different at the same time
(Gamal & Cover, 1982). If Ri =Rj and Di ≈ Dj , then we say
the MD code is balanced. The achievable rate-distortion region
of a two-description MD code for a memoryless unit variance
Gaussian source with mean-squared error (MSE) distortion
has been given (Ozarow, 1980):{

Di �2−2Ri ,

Dj �2−2Rj ,

Dc �2−2(Ri+Rj ) · �(Di, Dj , Ri, Rj ),

(4)

where

� = 1

1 −
(√

(1 − Di)(1 − Dj) −
√

DiDj − 2−2(Ri+Rj )

)2

for Di +Dj < 1 + 2−2(Ri+Rj ) and �= 1 otherwise. For packet-
based NCS, we use balanced MD codes and assume that
Ri = Rj = R?1 and Di = Dj = 2−2R(1−�)>1 with 0 < � < 1
(Vaishampayan & Batllo, 1998), then we get

1

�
= 1 −

(
(1 − Di) −

√
D2

i − 2−4R

)2

≈ 1 − ((1 − Di) − Di)
2 ≈ 4Di,

and

Dc · Di� 1
4 2−4R . (5)

Inequality (5) shows the tradeoff between central and side
distortions. Compared with inequality (3), it is clear that the
penalty in the exponential rate of decay of Di is exactly the
increase in the rate of decay of Dc.

3.2. Multiple description scalar quantization

In this section we present the actual design method for MD
scalar quantizers (MDSQ). In NCS, each source sample is an
observation of the dynamic system and MDSQ give two de-
scriptions for each source sample. This approach was proposed
and popularized by Vaishampayan (1993) and Fig. 2 shows the
diagram of a two-description MDSQ:

• Step one: Select a uniform quantizer with an appropriate step
size � and the number of step levels N. A source sample Y
is quantized by rounding off to the nearest multiple of a step
size � and the index output of the uniform quantizer is n
which satisfies 0 < n�N .

Table 1
MSE for different MD codes

Description No loss Lost 1 Lost 2 bpss

One 8.33 × 10−6 N/A N/A 10
Two 8.33 × 10−6 1.56 N/A 12
Three 8.33 × 10−6 0.00441 1.53 15

One 4.97 × 10−7 N/A N/A 12
Two 8.33 × 10−6 1.56 N/A 12
Three 9.87 × 10−5 0.0197 2.15 12

• Step two: The index n is assigned a pair of indexes (i, j) by
using an index mapping matrix.

• Step three: The i and j are entropy coded and put into data
packets, respectively.

The index mapping problem in step two is the main part of
MDSQ. We state this problem as follows: there exists a

√
M ×√

M matrix where M �N . We need to arrange all these num-
bers from [1, . . . , N] into the cells of the matrix. Each cell can
hold one number at most and each index n gets a pair of matrix
index (i, j) according to it’s location, i.e., matrix index i is the
row number and j is the column number. By this index mapping
matrix, step two transfers each single description n into two de-
scriptions i and j. Since N �M , the total number of the possible
index assignment methods is

∑M
n=1M!/(M −n)!. By choosing

a proper index mapping matrix (refer to (Vaishampayan, 1993
for details), we get{

Dc ≈ C02−2R(1+�),

Di ≈ Dj ≈ C12−2R(1−�),
(6)

where C0 and C1 are constants that depend on the distribution of
the initial state and uniform quantizer in step one. The parameter
� ∈ [0, 1] is a pre-defined parameter that indicates the tradeoff
between the decay speeds of Dc and Di . It is clear that the
“central decoder” equals a decoder for the uniform quantizer
in step one.

The index mapping method can be extended to three-
description MD codes. Table 1 lists some MD codes. Each
of them provides 1000 codewords for a variable between −5
and 5. The first column of the tables indicates how many
descriptions we use to represent one sample value. The first
part of Table 1 shows some examples of average distortions
for different description loss cases when we keep the central
distortion constant. It shows that more bpss are needed in
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order to get the same central decoder distortion. The second
part shows that, if we keep bpss constant, the distortion in-
creases when the number of descriptions per sample increases.
In the table, “lost k” means k descriptions have been lost, and
“N/A” means not available. The table shows that MD coding
actually provides various quality levels corresponding to how
many descriptions the decoder receives.

Another issue about MD coding is that the computation com-
plexity of decoding increases since the size of the codebook
increases at the decoder side as the number of descriptions in-
creases. For example, for a traditional uniform quantizer with
N levels, the codebook for the corresponding L-description MD
code has (2L − 1)N elements. We need to consider this is-
sue when choosing the number of the descriptions per source
sample.

3.3. Quantization noise of MD codes

As discussed in Marco and Neuhoff (2005), the quantization
noise of a uniform scalar quantizer with the assumptions of
small partition cells, reproduction values at cell’s midpoints,
and large support region can be approximately modelled as
an additive uncorrelated white noise to the quantizer input.
For balanced MD codes, the central decoder case actually is a
uniform scalar quantizer with the midpoints as the outputs and
the average distortion is Dc ≈ �2/12 where � is the length
of partition cells. For the side decoder case, index mapping
introduces a slight asymmetry between the two side distortions
and causes a small increase in distortion. However, for large
bpss, this asymmetry asymptotically disappears. According to
previous analysis, we have

Di ≈ Dj ≈ C1 ·
(

1

12C0

)(1−�)/(1+�)

· (�(1−�)/(1+�))2.

For a balanced two-description MD code, � is a constant and Di

will be asymptotically negligible relative to (�(1−�)/(1+�))2. So
as long as the bit rate Ri(=Rj ) is big enough, the additive noise
model is still a good approximation to represent the quantization
noise in the side decoder case. From now on, we model the MD
quantization noise as Gaussian white noise with zero mean and
covariance Dc for central decoder case and Di for side decoder
case.

4. Kalman filtering utilizing MD with i.i.d. packet
dropping

4.1. Problem formulation

We consider the discrete-time linear dynamical system de-
scribed by Eq. (1) and assume that packet dropping is inde-
pendent and is described by an i.i.d. Bernoulli random pro-
cess. We use two-description balanced MD codes. Each yl

k in
the measurement output Yk = [y1

k , . . . , ym
k ] is encoded by two

descriptions {ilk, j l
k}. We organize these descriptions into two

description vectors as {Ik, Jk} and put them into two different
packets. Variables �I,k and �J,k are used to indicate whether the

description vectors Ik and Jk are received correctly. If Ik is
received correctly, then �I,k = 1, otherwise, �I,k = 0, and simi-
larly for �J,k . We assume that �I,k and �J,k are i.i.d. Bernoulli
random variables with probability distribution P(�I,k = 1) =
P(�J,k = 1) = �.

Since �I,k and �J,k are independent, we have three mea-
surement rebuilding scenarios. First, we may receive both the
descriptions correctly. In this case, the measurement noise is
the white noise vt plus the central distortion noise. We use
G0 = G + Dc to indicate the covariance where G is the ob-
servation noise covariance defined in (1) and Dc is the central
distortion covariance. Second, we may receive only one de-
scription correctly and the measurement noise is G1 = G + Di

where Di is the side distortion covariance. Third, we may re-
ceive none of the descriptions correctly. In this case, we assume
the measurement is corrupted by an infinitely large noise. This
is corresponding to the “broken link” case in Section 3. The
noise is changed into a random variable v̂t after the decoder
and the covariance Ck is:

Ck =
{

G0 with probability �2,

G1 with probability 2(1 − �)�,

�2I with probability (1 − �)2,

(7)

where � → ∞.
The Kalman filter recursion thus becomes stochastic and the

error covariance evolves as

Pk+1 = AP kA
′ + Q

− �I,k�J,kAP kC
′[CP kC

′ + G0]−1CP kA
′

− (1 − �I,k)�J,kAP kC
′[CP kC

′ + G1]−1CP kA
′

− �I,k(1 − �J,k)AP kC
′[CP kC

′ + G1]−1CP kA
′.

Thus, the sequence of the error covariance matrix P ∞
k=0 is a

random process for any given initial value. Using the same
approach as in Sinopoli et al. (2004), we define the MARE for
Kalman filter using balanced two-description MD codes as:

g�(X) = AXA′ + Q

− �2AXC′(CXC′ + G0)
−1CXA′

− 2(1 − �)�AXC′(CXC′ + G1)
−1CXA′ (8)

and the expected value of error covariance matrix E[Pk] evolves
according to this MARE.

4.2. Statistical convergence properties

This subsection lists theorems which describe the conver-
gence properties of the MARE in Eq. (8). These theorems are
based on the lemmas in Appendix A. The first theorem listed
below states the uniqueness of the MARE solution.

Theorem 1. Consider the operator

�(K0, K1, X) = (1 − �)2(AXA′ + Q)

+ �2(F0XF ′
0 + V0)

+ 2(1 − �)�(F1XF ′
1 + V1) (9)

where F0 =A+K0C, F1 =A+K1C, V0 =Q+K0G0K
′
0, and

V1 = Q + K1G1K
′
1. Suppose there exist K0, K1, and P > 0
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such that P > �(K0, K1, P ). Then, for any initial condition
P0 �0, the iteration Pk+1 = g�(Pk) converges to the unique
positive semi-definite solution P̄ of MARE (8), i.e.,

lim
k→∞ Pk = lim

k→∞ gk
�(P0) = P̄ �0,

where P̄ = g�(P̄ ).

Proof. First, we show that the MARE converges with initial
value Q0 =0. Let Qk =g�(Qk−1)=gk

�(Q0), then Q1 �Q0 =0
and

Q1 = g�(Q0)�g�(Q1) = Q2.

By induction, we know that the sequence {Qk} is non-
decreasing. Also by Lemma 13 (most lemmas are listed in the
Appendix), {Qk} is bounded and there exists an MQ0 such that
Qk �MQ0 for any k. Therefore, the sequence converges and

lim
k→∞ Qk = P̄ �0,

where P̄ is a fixed point of the iteration P̄ = g�(P̄ ).
Next we show that the iteration Ḡk = gk

�(Ḡ0) initialized at
G0 � P̄ also converges to P̄ . Since G1 = g�(G0)�g�(P̄ ) = P̄ ,
Gk � P̄ for any k. Also

0�Gk+1 − P̄ = g�(Gk) − g�(P̄ )

= �(KGk0, KGk1, Gk) − �(KP̄ 0, KP̄ 1, P̄ )

��(KP̄ 0, KP̄ 1, Gk) − �(KP̄ 0, KP̄ 1, P̄ )

= L̂(Gk − P̄ ),

where L̂ has a similar form as the operator L in Lemma 12.
Note that

P̄ = g�(P̄ ) > L̂(P̄ ),

thus, L̂ meets all the conditions in Lemma 12. Using the same
argument, we have, for any Y �0,

lim
k→∞ L̂

k
(Y ) = 0.

So we get 0� limk→∞(Gk − P̄ ) = 0, i.e., the sequence Gk

converges to P̄ .
As the last part, we show that, for any initial condition

P0 �0, the iteration Pk = gk
�(P0) converges to P̄ . Let G0 =

P0 + P̄ � P̄ , then 0�Q0 �P0 �G0, by induction, we have
0�Qk �Pk �Gk . Since {Qk} and {Gk} converges to P̄ , {Pk}
also converges to P̄ and the result follows. �

The following theorem states the conditions for MARE con-
vergence.

Theorem 2. If (A, Q1/2) is controllable, (A, C) is detectable,
and A is unstable, then there exists a �c ∈ [0, 1) such that

(a) For 0����c, there exists some initial condition P0 �0
such that E[Pk] diverges when k → +∞, i.e., there does
not exist a matrix MP0 such that E[Pk]�MP0 for any k > 0;

(b) For �c < ��1, E[Pk]�MP0 for any k > 0 and any initial
condition P0 �0;

where MP0 > 0 depends on the initial condition P0.

Proof. Please refer to Appendix A.

This theorem claims that there exists a critical value �c of the
packet receiving probability. If � is smaller than �c, MARE (8)
does not converge and the expected value of error covariance
matrix will diverge.

Theorem 3. Let

� = arg inf
�

[∃Ŝ�0|Ŝ = (1 − �)2AŜA′ + Q] = 1 − 1

�
,

� = arg inf
�

[∃X̂�0|X̂ > g�(X̂)]
= arg inf

�
[∃(K̂0, K̂1, X̂�0)|X̂ > �(K̂0, K̂1, X̂)],

where � = max |�i | and �i are the eigenvalues of A. Then

���c ��. (10)

Proof. Please refer to Appendix A.

This theorem states the upper and lower bounds for �c. The
lower bound is in a closed form. According to the next theorem
and corollary, we can reformulate the computation of � as an
LMI feasible problem.

Theorem 4. Assume that (A, Q1/2) is controllable and (A, C)

is detectable, then the following statements are equivalent:

(a) ∃X̄ > 0 such that X̄ > g�(X̄);
(b) ∃ K̄0, K̄1, and X̄ > 0 such that X̄ > �(K̄0, K̄1, X̄);
(c) ∃Z̄0, Z̄1 and 0 < Ȳ �I such that

��(Ȳ , Z̄0, Z̄1) > 0,

where

�� =
⎡
⎢⎣

Y �(Y, Z1) �(Y, Z0) 	(Y )

�(Y, Z1)
′ Y 0 0

�(Y, Z0)
′ 0 Y 0

	(Y )′ 0 0 Y

⎤
⎥⎦ ,

�(Y, Z1) = √
2(1 − �)�(YA + Z1C), �(Y, Z0) = �(YA +

Z0C), and 	(Y ) = (1 − �)YA.

When C is invertible, we choose K0 =K1 =−AC−1 to make
F0 = F1 = 0 and the LMI in Theorem 4 is equivalent to

X − (1 − �)2AXA′ > 0.

Since the solution X�0 exists if and only if (1−�)A is stable,
i.e., all the magnitudes of eigenvalues of (1 − �)A are smaller
than 1, we obtain � = � = (1/1 − �). According to Sinopoli et
al. (2004), the lower bound of using single description codes
is 1 − (1/�2) which is bigger than using MD codes. Also if
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either C is invertible or the quantization noise Dc and Di are
smaller than G (which is always true for the high bpss case), it
is easy to show that the upper bound of using single description
codes is also bigger than using MD codes. So using MD codes
pushes �c to a smaller value and guarantee the convergence
over a larger packet dropping scenario.

The following theorem gives the upper and lower bounds
on the expected value of error covariance matrix when MARE
converges. The lower bound S can be computed by standard
Lyapunov equation solvers and the upper bound V can be either
computed via iterating Vt+1 =g�(Vt ) from any initial condition
or transferred to a semi-definite programming (SDP) problem
(Sinopoli et al., 2004).

Theorem 5. Assume (A, Q1/2) is controllable, (A, C) is de-
tectable, and � < �, then for any initial condition E[P0]�0,

0�S� lim
k→∞ E[Pk]�V ,

where S and V are solutions of the equations S=(1−�)2ASA′+
Q and V = g�(V ), respectively.

Proof. Let Sk+1 = M(Sk) = (1 − �)2ASkA
′ + Q and Vk+1 =

g�(Vk) with initial conditions S0 = 0 and V0 = E[P0]�0. By
induction and Theorem 3, we obtain

Sk �E[Pk]�Vk

for any t. According to Theorem 1, limk→∞Vk = V where
V = g�(V ). Also since (A, Q1/2) is controllable and all the
magnitudes of the eigenvalues of (1 − �)A are smaller than
1, the sequence of the Lyapunov iteration converges to the
strictly positive definite solution of the Lyapunov function, i.e.,
limk→∞Sk = S > 0. Therefore, we can conclude that

0 < S = lim
k→∞ Sk � lim

k→∞ E[Pk]� lim
k→∞ Vk = V . �

4.3. Simulation results

In this subsection simulation results are provided to verify
the advantages of MD codes. We choose the discrete time LTI
system with A = −1.25 and C = 1. The noises wt and vt have
zero means and covariances G = 2.5 and Q = 1, respectively.
A balanced two-description MD code is designed such that the
central distortion D0 ≈ 8.33 × 10−6 and the side distortion
D1 ≈ 1.56. The bpss of the MD code is 12 and the bpss of a
single description code with the same distortion is 10 bits.

Fig. 3 shows the simulation results of the expected error co-
variance. The theoretical upper and lower bounds with or with-
out MD codes are calculated according to Theorem 5 and the
reference (Sinopoli et al., 2004), respectively. The simulations
are run 1000 times and each simulation is run 2000 time steps.
We use the average value E[P2000] as the expected error co-
variance. The asymptote �c has been pushed from 0.36 for the
single description code to 0.2 for the MD code. Convergence
properties of error covariance at high packet loss rate region
are also improved dramatically. Note that when � is close to the
asymptote, some of the simulated error covariances values are
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Fig. 3. Simulation results of expected error covariances with theoretical upper
and lower bounds.
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Fig. 4. Mean values of error covariance with same central distortions.

below the lower bound. The reason is that we only take lim-
ited time steps for the simulation and residual effect of initial
conditions remains.

Fig. 4 shows some other simulation results. For each packet
dropping rate, the centers of the error bars are the mean values
and 95% of the simulation results are located inside the error
bars. It shows that, if we use a balanced three-description MD
code, the critical value �c is even smaller. So the benefits of us-
ing MD codes are clear and the cost we need to pay is more bits
for each source sample. It can be shown that when C is invert-
ible, using a L-description MD code we can get �c =1−�−2/L.
Unfortunately, finding an optimal L-description MD code for
arbitrary L is still an open problem in information theory.
When we keep bpss constant, as shown in Fig. 5, we get big-
ger quantization noise as the number of descriptions increases.
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Fig. 5. Mean values of error covariance with same bpss.
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Fig. 6. Mean values of error covariance with low dropping rate.

Compared with the previous figure, there are no obvious dif-
ferences due to the accuracy loss in this example.

In some cases, packet dropping rate of a practical communi-
cation network is fairly small. Fig. 6 shows the expected error
covariance when packet dropping rate is low and MD codes
give much better performance than the single description code.
Note that the two-description MD code achieves as good per-
formance as sending single description code twice but saves up
to 40% bandwidth.

5. Kalman filtering utilizing MD with bursty packet
dropping

5.1. Convergence conditions and boundaries

As mentioned in Section 2, a way to model the bursty packet
dropping is using a two-state Markov chain with transition

probability matrix Q given by Eq. (2). For the case of a balanced
two-MD code, we are thus interested in a four-state Markov
chain where the states correspond to both packets lost, only the
1st description packet lost, only the second description packet
lost and no packet lost. The transition probability matrix of this
chain is given as

QMD =
⎡
⎢⎣

q2
00 q2

00 q01q00 q01q00
q01q10 q01q10 q11q01 q11q01
q10q00 q10q00 q01q10 q01q10
q10q11 q10q11 q2

11 q2
11

⎤
⎥⎦ . (11)

Note that the state in which both description packets are lost is
equivalent to no observation coming through, while the other
states correspond to the system being observed. If the Markov
chain is stationary, the state probabilities tend to a stationary
distribution as k → ∞. However, we normally cannot directly
study the problem over the steady-state distribution since this
distribution might not be achievable (Gupta, Chung, Hassibi, &
Murray, 2006). Mathematically, this problem is the same as the
random sensor selection problem in sensor networks. Consider
the system

xk+1 = Axk + wk

being observed through n sensors with the ith sensor of the form

yi
k = Cixk + vi

k . (12)

Suppose only one sensor can be active at any time instant and
the choice of the sensor is done according to a Markov chain.
We denote the Ricatti update in error covariance by fi (.) when
the ith sensor is used and denote

f k
i (.) = fi(fi(· · · (.) · · ·))︸ ︷︷ ︸

ktimes

.

The expected error covariance at time step k is denoted by
E [Pk]. Probability of the network in Markov state j at time k
is denoted by 
j

k and qij is the probability of the network state
is i at time k + 1 given the network state is j at time k.

Lemma 6. For any Ricatti update operator fi(P ), we have

(a) fi(P )�Q;
(b) If X < Y , then fi(X)�fi(Y );
(c) fi(P ) is concave w.r.t. P.

When a single description code is applied, according to Eq.
(12), packet dropping can be treated as the observation jumps
between two sensors which have the same Ci matrices and
different Gaussian noises with covariance G0 and �2I , res-
pectively where � → ∞. The Kalman filter error covariance
updates are{

f0(P ) = APA′ + Q,

f1(P ) = APA′ + Q − APC′(CPC′ + G0)
−1CPA′.

Similar to the i.i.d. Bernoulli model, we discuss the conditions
and the upper/lower bounds for expected values of estimation
error covariances converging.
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Theorem 7. When using a single-description code and with
the Markov probability transition matrix given by Eq. (2), the
lower bound for E[Pk] is Yk , where

Yk = qk
00


0
0f

k
0 (P0) + 
1

kf1(Q)

+
k−1∑
i=1

qi
00(


0
k+1−i − q00 · 
0

k−i )f
i
0 (Q). (13)

The upper bound is Xk , where

Xk =
1∑

j=0

1∑
i=0

fj (X
i
k−1)qji


i
k−1 (14)

and Xi
k−1 = E[Xk−1| state is i at time (k − 2)].

Proof. Suppose k starts from 1, and for any k, we define event
Ei as last packet was received at time k−i where i ∈ [0, . . . , k].
So the probability of Ei is

pi =

⎧⎪⎨
⎪⎩

qk
00


0
0, i = k,

qi−1
00 q01
1

k−i , 0 < i < k,


1
k, i = 0

and the error covariance Pk if Ei happens is

Pk|Ei =

⎧⎪⎨
⎪⎩

f k
0 (P0), i = k,

f i
0 (f1(Pk−i )), 0 < i < k,

f1(Pk), i = 0.

So

E[Pk] =
k∑

i=0

pi · Pk|Ei

= qk
00


0
0f

k
0 (P0) +

k−1∑
i=1

qi
00q01


1
k−if

i
0 (f1(Pk−i ))

+ 
1
kf1(Pk).

According to Lemma 6, f1(Pk−1)�Q, so

E[Pk]�qk
00


0
0f

k
0 (P0) + 
1

kf1(Q)

+
k−1∑
i=1

qi
00q01


1
k−if

i
0 (Q)

= qk
00


0
0f

k
0 (P0) + 
1

kf1(Q)

+
k−1∑
i=1

qi
00

(

0

k+1−i − q00 · 
0
k−i

)
f i

0 (Q) .

For upper bound, let us denote Sk is the network state
at time k. For single description code, Sk ∈ [0, 1]. Then

E[Pk] = ∑1
j=0


j
k · E[Pk|Sk = j ]. Also


j
k · E[Pk|Sk = j ]

= 
j
k

1∑
i=0

E[Pk|Sk = j, Sk−1 = i] · p(Sk−1 = i|Sk = j)

=
1∑

i=0

E[fj (Pk−1)|Sk−1 = i]qji

i
k−1

�
1∑

i=0

fj ([Pk−1|Sk−1 = i])qji

i
k−1

since fj (·) is concave. �

Proposition 8. A sufficient condition for divergence of expected
error covariance is

q00 · �2 > 1, (15)

where � = max |�i | and �i are the eigenvalues of A.

Using a balanced two-MD code, the corresponding sensor
selection problem has four sensors which have same C matrices
and noise covariances are G0, G1, G1, and �2I , respectively.
The Ricatti updates are⎧⎪⎨
⎪⎩

f0(P ) = APA′ + Q,

f1(P ) = APA′ + Q − APC′(CPC′ + G1)
−1CPA′,

f2(P ) = f1(P ),

f3(P ) = APA′ + Q − APC′(CPC′ + G0)
−1CPA′.

Using the same approach, we get

Proposition 9. When using two-description code and with the
underlying Markov probability transition matrix given by (2),
the lower bound for E[Pk] is Yk , where

Yk = q2k
00
0

0f
k
0 (P0) +

3∑
j=1


j
kfj (Q)

+
k−1∑
i=1

q2i
00(


0
k+1−i − q2

00 · 
0
k−i )f

i
0 (Q). (16)

The upper bound is Xk where

Xk =
3∑

j=0

3∑
i=0

fj (X
i
k−1)qji


i
k−1 (17)

and Xi
k−1 = E[Xk−1| state is i at time (k − 2)].

A sufficient condition for divergence of expected error co-
variance is:

q00 · � > 1. (18)

The equations for lower and upper bounds are pretty messy
but can be calculated iteratively. Also, these bounds are de-
pendent on value of q11 and initial distribution of packet
dropping 
i

0.
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Fig. 7. Theoretical upper and lower bounds for burst packet dropping case
with q11 = 95%.
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Fig. 8. Simulation results for burst packet dropping case.

5.2. Simulation results

We use the same LTI system as in Section 4. In Fig. 7 we plot
the theoretical upper and lower bounds for the error variance as
a function of q10 under the conditions as q11=0.95 and uniform
distribution of 
i

0. The lowering of the bounds is indicative of
the performance getting better with MD codes. The simulation
results with parameters q11 =0.05 and q11 =0.95 with different
coding schemes are shown in Fig. 8.

In the Markov chain model, q01 =1−q11 is a measure of the
frequency of the bursty dropping while q00 = 1 − q10 indicates
how big the burst dropping is. According to the simulation
results, expected error covariance diverges more quickly with
higher q01. This makes sense since if the error bursts happen

often, we expect the estimation error covariance to diverge.
It is seen from the figures that the system diverges around
q10 = 0.36 with the single description code case, and diverges
around q10 = 0.2 with the two-MD code. (Limited simulation
time steps make the results smaller than lower bounds near
asymptotes.) Thus, the stability margin is enlarged if we use MD
codes. Also, for same q10, using MD codes greatly decreases
the expected error covariance.

6. Conclusion

In this paper, we use the MD coding scheme to counter-
act the effect of packet dropping on state estimation problem.
The accuracy of the decoder only depends on how many de-
scriptions are successfully received. We considered two typi-
cal network packet dropping models: the i.i.d. Bernoulli model
and the Gilbert-Elliott model. Using MD codes, the conver-
gence region of the estimation error covariance is much larger
than using traditional single description code and the steady
expected values are also much smaller. Moreover, MD code
is an optimal code which saves considerable bandwidth than
sending duplicated packets.

The main goal of this paper is trying to understand the im-
pact of communication constraints from another angle: in high
bit rate scenario and with large, complex communication net-
works, what can we do to compensate for packet loss as well
as to satisfy the real-time demands? In this paper, we have to
compromise the accuracy of the source code to improve the
convergency properties of MARE. This is a good demonstra-
tion to indicate the close relationship between communication
theory and control theory when we face the challenges in “an
information rich world” (Murray, 2002).

There are several promising research directions for the
future. From the communication theory side, a more gen-
eral theory and design method for MD coding for arbitrary
number of description is needed. Also, since using MD
codes greatly increases the computation complexity of the
decoder, a more efficient search algorithm for decoding is
needed. From the feedback control theory side, the stability
and robustness of close-loop NCS with MD coding need to
be studied.
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Appendix A. Lemmas and some proofs of MARE conver-
gence with i.i.d. packet dropping

Those theorems in Section 4 are based on these lemmas
which can be easily proved by using similar approach in
(Sinopoli et al., 2004). We list the lemmas here and omit the
proofs.
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Lemma 10. Consider operator

�(K0, K1, X) = (1 − �)2(AXA′ + Q) + �2(F0XF ′
0 + V0)

+ 2(1 − �)�(F1XF ′
1 + V1),

where F0=A+K0C, F1=A+K1C, V0=Q+K0G0K
′
0, and V1=

Q+K1G1K
′
1. Assume X ∈ {S ∈ Rn×n|S�0}, G0 > 0, G1 > 0,

Q > 0, and (A, Q1/2) is controllable. Then the following facts
are true:

(a) With Kx0 = −AXC′(CXC′ + G0)
−1 and Kx1 =

−AXC′(CXC′ + G1)
−1, g�(X) = �(Kx0, Kx1, X);

(b) g�(X) = min(K0,K1)�(K0, K1, X)��(K0, K1, X) for any
(K0, K1);

(c) If X�Y , then g�(X)�g�(Y );
(d) If �1 ��2, then g�1(X)�g�2(X);
(e) If � ∈ [0, 1], then g�(�X + (1 − �)Y )��g�(X) +

(1 − �)g�(Y );
(f) g�(X)�(1 − �)2AXA′ + Q;
(g) If X̄�g�(X̄), then X̄�0;
(h) If X is a random variable, then (1 − �)2AE[X]A′ +

Q�E[g�(X)]�g�(E[X]).

Lemma 11. Let Xk+1 = h(Xk) and Yk+1 = h(Yk). If h(X) is
a monotonically increasing function, then:

X1 �X0 ⇒ Xk+1 �Xk, ∀k�0;

X1 �X0 ⇒ Xk+1 �Xk, ∀k�0;

X0 �Y0 ⇒ Xk �Yk, ∀k�0.

Lemma 12. Define the linear operator L(Y )=(1−�)2AYA′+
�2F0YF ′

0 + 2(1 − �)�F1YF ′
1 and suppose there exists Ȳ > 0

such that Ȳ >L(Ȳ ).

(a) For all W �0, limk→∞Lk(W) = 0;
(b) Let V �0 and consider the linear system Yk+1 = L(Yk)+

V initial at Y0, then the sequence {Yk} is bounded.

Lemma 13. Suppose there exists K̄0, K̄1, and P̄ > 0 such that

P̄ > �(K̄0, K̄1, P̄ ),

then for any initial value P0, the sequence Pk = gk
�(P0) is

bounded, i.e., there exists MP0 �0 dependent of P0 such that

Pk �MP0 , ∀k.

Proof of Theorem 2. Obviously there are two special cases:

• When � = 1, the MARE reduces to the standard algebraic
Riccati equation and it converges to a unique positive semi-
definite solution.

• When � = 0, all the packets are lost. Since A is unstable, the
covariance matrix diverges for some initial values.

Next, we need to show that there exists a single point of tran-
sition between the two cases. Suppose for 0 < �1 �1, E�1 [Pk]
is bounded for any initial values. Then for any �2 > �1,

we have

E�1 [Pk] = E[g�1(Pk)]�E[g�2(Pk)] = E�2 [Pk].
So E�2 [Pk] is also bounded. Now we can choose

�c = {inf �∗ : � > �∗ ⇒ E�[Pk]is bounded for any

initial value P0 �0}
and finish the proof. �

Proof of Theorem 3. For the lower bound of �c, we define the
Lyapunov operator M(X)= ĀXĀ′ +Q where Ā= (1−�)A. If
(A, Q1/2) is controllable, (Ā, Q1/2) is also controllable. Then
the Ŝ=M(Ŝ) has a unique strictly positive definite solution Ŝ if
and only if maxi |�i (Ā)| < 1, so we get �=1− (1/�). Consider
the iteration St+1 = M(St ) for any � > �, it converges. While
for ���, it is unstable and Sk tends to infinity for any initial
values.

For the mean value of the error covariance matrix E[Pk]
initialized at E[P0]�0, consider 0 = S0 �E[P0], it’s easy to
show that

Sk �E[Pk] ⇒ Sk+1 = M(Sk)

�(1 − �)2AE[Pk]A′ + Q

�E[g�(Pk)] = E[Pk+1].
By induction, it is obvious that when � < �, limk→∞E[Pk]�
limk→∞Sk = ∞. This implies that for any initial condition
E[Pk] is unbounded for � < �, therefore ���c.

For the upper bound of �c, consider the sequence Vk+1 =
g�(Vk) and V0 = E[P0]�0, we have

E[Pk]�Vk ⇒ E[Pk+1] = E[g�(Pk)]
�g�(E[Pk])
�g�(Vk) = Vk+1.

A simple induction shows that for any k, Vk �E[Pk]. So for
� > �, according to Lemma 10 part (g), there exists X̄ > 0.
Therefore, all conditions of Lemma 13 are satisfied and we have

E[Pk]�Vk �MV0

for any k. This shows that �c ��. �

Proof of Theorem 4. Using Lemma 10, it is easy to
show that if there exists a X̄ > 0 such that X̄ > g�(X̄),
X̄ > g�(X̄) = �(KX̄0, KX̄1, X̄). Also it is obvious that
X̄ > �(K0, K1, X̄)�g�(X̄), so (a) is equivalent to (b). The
only trick we need for the remaining proof is to use Schur
complement decomposition to obtain the function ��. Please
note that

�(K0, K1, X) = (1 − �)2(AXA′ + Q) + �2(F0XF ′
0 + V0)

+ 2(1 − �)�(F1XF ′
1 + V1)

= (1 − �)2AXA′ + Q + �2F0XF ′
0

+ 2(1 − �)�F1XF ′
1 + �2K0G0K

′
0

+ 2(1 − �)�K1G1K
′
1.
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The part (b) is equivalent to[
X − (1 − �)2AXA′ + �2F0XF ′

0

√
2(1 − �)�F1√

2(1 − �)�F ′
1 X−1

]
> 0.

Using Schur complement decomposition two more times to
obtain⎡
⎢⎣

X
√

2(1 − �)�F1 �F0 (1 − �)A√
2(1 − �)�F ′

1 X−1 0 0
�F ′

0 0 X−1 0
(1 − �)A′ 0 0 X−1

⎤
⎥⎦ > 0.

Let Y = X−1, Z1 = X−1K1, and Z1 = X−1K1, we get⎡
⎢⎣

Y
√

2(1 − �)�I1 �I0 (1 − �)YA√
2(1 − �)�I ′

1 Y 0 0
�I ′

0 0 Y 0
(1 − �)A′Y 0 0 Y,

⎤
⎥⎦ > 0,

where I1=YA+Z1C and I0=YA+Z0C, and this is what we de-
fine as ��(Y, Z0, Z1). Since ��(�Y, Z0, Z1)=���(Y, Z0, Z1),
so Y can be restricted to 0 < Y �I . �
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