
On Relationships Among Passivity, Positive Realness, and
Dissipativity in Linear Systems⋆

Nicholas Kottenstettea, Michael J. McCourtb, Meng Xiac, Vijay Guptac,
Panos J. Antsaklisc

aWW Technology Group, Worcester, MA 01602, USA

bDepartment of Mechanical Engineering, University of Florida, ShalimarFL 32579, USA

cDepartment of Electrical Engineering, University of Notre Dame, Notre Dame IN 46556, USA

Abstract

The notions of passivity and positive realness are fundamental concepts in classical control theory, but the use of the terms has varied.
For LTI systems, these two concepts capture the same essential property of dynamical systems, that is, a system with this property does
not generate its own energy but only stores and dissipates energy supplied by the environment. This paper summarizes the connection
between these two concepts for continuous and discrete time LTI systems.Beyond that, relationships are provided between classes of
strictly passive systems and classes of positive real systems. The more general framework of dissipativity is introduced to connect passivity
and positive realness and also to survey other energy-based results.The frameworks of passivity indices and conic systems are discussed
to connect to passivity and dissipativity. After surveying relevant existing results, some clarifying results are presented. These involve
connections between classes of passive systems and finite-gainL2 stability as well as asymptotic stability. Additional results are given to
clarify some of the more subtle conditions between classes of these systems and stability results. This paper surveys existing connections
between classes of passive and positive real systems and provides results that clarify more subtle connections between these concepts.

1 INTRODUCTION

In our recent research we have pursued constructive tech-
niques based on passivity theory to design networked-control
systems which can tolerate time delay and data loss, see
e.g. Kottenstette and Antsaklis (2007b) and McCourt and
Antsaklis (2012). As a result we have had to rediscover and
clarify key relationships between three classes of systems.
The first class is passive and strictly passive systems, which
are characterized by a time-based input-output relationship,
see e.g. Zames (1966a,b) and Desoer and Vidyasagar (1975).
The second class is dissipative systems, which satisfy a time-
based property that relates an input-output energy supply
function to a state-based storage function, see e.g. Willems
(1972a), Hill and Moylan (1980), and Goodwin and Sin
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(1984). The third class is that of positive real and strictlypos-
itive real systems, which are characterized by a frequency-
based input-output relationship, see e.g. Anderson (1967),
Hitz and Anderson (1969), Tao and Ioannou (1990), Wen
(1988b), and Haddad and Bernstein (1994). It is noted in
Willems (1972b) that, for the continuous time case, these
relationships “are all derivable from the same principles and
are part of the same scientific discipline”. However, it is not
clear that such connections have been fully exploited, al-
though recently Haddad and Chellaboina (2008) provided an
excellent exposition of some such connections. The goals of
this paper are to (1) review the classical notions of passivity,
dissipativity, and positive realness; (2) summarize existing
relationships between these classes of systems with appro-
priate references; and (3) provide original results to clarify
these relationships. These are broad research areas and en-
tire surveys have been devoted to passivity and dissipativity.
Rather than attempting to survey all major contributions to
these fields, this paper instead reviews literature and results
that address the relationships between these concepts in or-
der to identify discrepancies and provide clarifying results
and remarks.

While passivity and dissipativity are typically applied to gen-
eral nonlinear systems, this paper focuses on the linear time
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Fig. 1. This Venn Diagram shows relationships between passivity,
positive realness, andL2 stability for continuous and discrete time
LTI systems.

invariant (LTI) case to emphasize the connection to posi-
tive real systems, as this notion only applies to LTI systems.
Some of the basic results covered in this paper are summa-
rized in Fig. 1. The foundational relationship is that, for LTI
systems, the property of passivity is equivalent to the prop-
erty of positive realness. Under mild technical assumptions,
these systems are Lyapunov stable. For LTI systems,strict
passivityis equivalent to strict positive realness. For asymp-
totically stable systems, strongly positive real is equivalent
to strictly input passive (SIP). While the figure shows that
SOPsystems are passive andLm

2 (lm2 ) stable it should be
noted that this relationship is sufficient only. Systems that
are passive andLm

2 (lm2 ) stable are not necessarilySOP.
This fact will be demonstrated with a counterexample. An-
other connection from Fig. 1 is that systems that are both
SIP andLm

2 (lm2 ) stable must beSOP. Other relationships
will be covered that relateSIP, strictly output passive (SOP),
and very strictly passive (VSP) to notions of stability and of
state strict passivity. Some preliminary results from thispa-
per were presented in Kottenstette and Antsaklis (2010). The
current paper expands on those connections and presents ad-
ditional clarifying results. An application of these results to
passivity-based pairing in MIMO systems can be found in
Kottenstette et al. (2014).

This paper is organized as follows. A brief review of some
relevant literature is included in Section 2. This includesa
selection of classical results that have been important to the
field as well as recent results for this area. Section 3 provides
definitions of the energy-based properties used in this paper.
This section begins with some mathematical preliminaries
and then moves on to define passivity, dissipativity, positive
realness, and passivity indices. Section 4 includes some ba-
sic stability results for passivity and dissipativity and then
moves into some fundamental results involving passive and
positive real systems. The main results of the paper are given
in Section 5. Concluding remarks are provided in Section 6.

2 Brief Review of Energy-based Control

Passivity, dissipativity, and positive realness have had an im-
portant history in energy-based control. There have been nu-
merous papers written on these topics as this is an important
area of linear and nonlinear control. Instead of surveying
the breadth of all these topics, this paper focuses on rela-
tionships between topics. The following provides a brief re-
view of the relevant foundational works in these areas. This
is followed by a survey of recent results to demonstrate the
diverse use of these notions in modern control.

2.1 Classical Results

The notion of passivity originated in electrical circuit theory
where circuits made up of only passive components were
known to be stable. It was also known that any two pas-
sive circuits could be interconnected in feedback or in par-
allel and the resulting circuit would still be passive, see e.g.
Anderson and Vongpanitlerd (1973). This compositionality
property greatly reduces the analysis required to demonstrate
stability for a network of circuits. The property of passivity
itself is an energy-based characterization of the input-output
behavior of dynamical systems. A passive system is one that
stores and dissipates energy without generating its own. The
notion of stored energy can be either a traditional physical
notion of energy, as it is with many physical systems, or a
generalized energy, see Anderson and Vongpanitlerd (1973)
and Desoer and Vidyasagar (1975). Passivity and dissipa-
tivity were formalized for general nonlinear state space sys-
tems in Willems (1972a,b). These papers provided results
for passivity, specifically that passive systems were stable
and that the passivity property was preserved when systems
were combined in feedback or parallel. Specific forms of dis-
sipativity for nonlinear control affine systems were studied
further in Hill and Moylan (1976), Hill and Moylan (1977),
and Hill and Moylan (1980). Dissipativity was studied for
more general nonlinear systems in continuous time in Lin
(1995) and Lin (1996) and in discrete time in Lin (1996)
and Lin and Byrnes (1994).

As the focus of this survey is on the relationship between
passive systems and positive real systems, the Positive Real
Lemma is of special importance. This is also known as
the KYP Lemma which originated in Kalman (1963) using
results from Yakubovich (1962) and Popov (1961). This
was extended to multi-variable systems in Anderson (1967)
with an alternative proof given in Rantzer (1996). Later this
lemma would be used to develop linear matrix inequality
(LMI) methods to demonstrate passivity for linear systems,
see Boyd et al. (1994).

A particularly valuable survey paper, Kokotovic and Arcak
(2001), covered the history of constructive nonlinear control
with a focus on passivity and dissipativity. From the same
time period a tutorial style paper, Ortega et al. (2001), pro-
vided a strong motivation for passivity-based control and
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more generally energy-based control. A more recent ref-
erence highlighting advances in energy-based methods is
Ebenbauer et al. (2009). In Willems (2007), the classical
work in dissipativity was reassessed from an updated per-
spective. Strong introductions to passivity can be found in
the textbooks Khalil (2002) and van der Schaft (1999). The
more general framework of dissipativity is thoroughly cov-
ered in Bao and Lee (2007), Haddad and Chellaboina (2008),
and Brogliato et al. (2007).

2.2 Recent Progress

For passivity and dissipativity, progress has been made re-
cently in numerous areas. While passivity based control has
traditionally been applied to electrical circuits, see e.g. An-
derson and Vongpanitlerd (1973), and robotic manipulators,
see e.g. Spong et al. (2006), recently these approaches have
been expanded to chemical processes, where passivity can
be used to design robust controllers as in Bao et al. (2003)
and Bao and Lee (2007). Passivity methods have been used
in temperature control in buildings as in Mukherjee et al.
(2012), where the transient and steady state control perfor-
mance can be improved. Another application area is in Frei-
dovich et al. (2009) where passivity was used to design sta-
ble gaits for walking robots. Passivity has also been used
as a design tool for coordination in multi-agent systems in
Chopra and Spong (2006b) and Arcak (2007). Recently pas-
sivity has been used in multi-agent robotic systems with
switching topology to maintain connectedness and establish
closed-loop stability Franchi et al. (2011), Giordano et al.
(2013). Other uses of passivity in distributed control sys-
tems including network congestion control and collaborative
robotic manipulation can be found in Wen (2013). While
passivity and dissipativity have a long history in stability
of large-scale systems (see e.g. Moylan and Hill (1978) or
Haddad and Hui (2004)), these methods are still being de-
veloped as in Ordez-Hurtado et al. (2013) where the prob-
lem of stability in large-scale systems with time-varying in-
terconnections is studied.

One particular application area that has seen recent growth
is in telemanipulation systems where a human user operates
a robotic arm remotely and is aided by tactile feedback. The
use of passivity in this field began with the work in Anderson
and Spong (1988) using the wave variable transformation
from Fettweis (1986). This approach was greatly expanded
through numerous papers, see e.g. Niemeyer and Slotine
(1991, 2004), Stramigioli et al. (2002b), Secchi et al. (2003),
Chopra et al. (2008), Hirche and Buss (2012). The study of
telemanipulation has led to promising approaches for con-
trol of passive systems over a network, see e.g. Chopra and
Spong (2006a), Kottenstette and Antsaklis (2007b), Kotten-
stette et al. (2011), and Hirche et al. (2009).

In switched and hybrid systems, nonlinear control methods
from passivity and dissipativity have received attention in
recent years. Passivity has been considered for continuous
time systems in Zefran et al. (2001) and discrete time in Be-
mporad et al. (2005) and Bemporad et al. (2008) switched

systems. These notions were studied for the more general
framework of dissipativity for switched systems in continu-
ous time in Zhao and Hill (2008) and discrete time in Liu
and Hill (2011). The problem of passification of switched
systems was studied in Li and Zhao (2013). The related no-
tion of passivity indices for switched systems was studied
in McCourt and Antsaklis (2010). Dissipativity was consid-
ered for the more general class of hybrid systems in Teel
(2010) and the class of left continuous systems in Haddad
and Hui (2009).

Another area that has been well studied is the connection
between passivity and adaptive control. This area is based
on applying backstepping to systems in order to adaptively
passivate and control them, see e.g. Kanellakopoulos (1991),
Kokotovic et al. (1992) and Seron et al. (1995). Recent work
in this area has focused on applications in flight control as in
Farrell et al. (2005) and Farrell et al. (2009). These methods
have also been applied to power rectifiers in Escobar et al.
(2001) and hydraulic actuators Wang and Li (2012).

Lastly, it should be mentioned that there has been recent
work on passivity for sampled data systems. This work in
this area has taken two distinct approaches. The first ap-
proach is to study conditions under which passivity is guar-
anteed when a continuous time system is discretized by the
application of the ideal sampler and zero-order hold as in de
la Sen (2000) and Oishi (2010). The second approach is to
compensate for a potential loss of passivity due to the zero-
order hold as in Stramigioli et al. (2002a), Costa-Castello
and Fossas (2006), and Kottenstette and Antsaklis (2007b).
A related problem is the study of maintaining passivity de-
spite quantization as in Zhu et al. (2012).

3 Definitions of Energy-Based Properties

3.1 Mathematical Preliminaries

This paper covers both the continuous time and discrete time
cases. When it is clear which time series is relevant or results
apply to both continuous and discrete time, the time series
is denotedT . In continuous time this isT = R

+, while for
discrete timeT = Z

+. The space of signals of dimension
m with finite energy in continuous time isLm

2 and lm2 in
discrete time. When the context is clear, the general space
H will be used to denote either. A continuous time signal
x : T → R

m is in H (x ∈ H) if the signal has finiteLm
2 -

norm,

‖x‖22 =

∫ ∞

0

xT(t)x(t)dt < ∞. (1)

Likewise, a discrete time signalx : T → R
m is in H

(x ∈ H) if the signal has finitelm2 -norm,

‖x‖22 =

∞
∑

i=0

xT(i)x(i) < ∞. (2)
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The extended signal spaces,Lm
2e and lm2e, can be defined

by introducing the truncation operator. The truncation of a
continuous time signalx(t) to timeT , indicatedxT (t), is

xT (t) =

{

x(t), t < T,

0, t ≥ T

The truncation operator is

xT (i) =

{

x(i), i < T,

0, i ≥ T

in discrete time. A continuous time signalx : T → R
m is

in He if

‖xT ‖22 =

∫ T

0

xT(t)x(t)dt < ∞, ∀T ∈ T . (3)

Likewise, a discrete time signalu : T → R
m is in He if

‖xT ‖22 =
T−1
∑

i=0

xT(i)x(i) < ∞, ∀T ∈ T . (4)

The inner product of signalsy andu over the interval[0, T ]
in continuous time is denoted

〈y, u〉T =

∫ T

0

yT(t)u(t)dt. (5)

Similarly the inner product over the discrete time interval
{0, 1, . . . , T − 1} is denoted

〈y, u〉T =

T−1
∑

0

yT(i)u(i). (6)

A systemH is a relation onHe. For u ∈ He, the symbol
Hu denotes an image ofu underH (Zames (1966a)). Fur-
thermoreHu(t) denotes the value ofHu at continuous time
t while Hu(i) denotes the value ofHu at discrete timei.
The following two definitions coverLm

2 stability in contin-
uous time andlm2 stability in discrete time.

Definition 1 A continuous time dynamical systemH :
He → He is Lm

2 stable if

u ∈ Lm
2 =⇒ Hu ∈ Lm

2 .

Definition 2 A discrete time dynamical systemH : He →
He is lm2 stable if

u ∈ lm2 =⇒ Hu ∈ lm2 .

For both continuous and discrete time finite-gainLm
2 (lm2 )

stability can be defined by the following input-output condi-
tion. For all timesT ∈ T and for all inputsu ∈ H, a system

H is finite-gainLm
2 (lm2 ) stable if there existγ > 0 andβ

such that
‖(Hu)T ‖2 ≤ γ‖uT ‖2 + β. (7)

The notion of finite-gain stability can be used to show sta-
bility of feedback interconnections using the small gain the-
orem, see e.g. van der Schaft (1999) or Isidori (1999). The
small gain theorem has an important relationship to the pas-
sivity theorem for feedback interconnections that was first
given in Anderson (1972). There has been some effort re-
cently to combine the benefits of the passivity theorem and
small gain theorem, see e.g. Griggs et al. (2007) or Forbes
and Damaren (2010).

Another notion related to finite-gain is that of a system being
non-expansive(van der Schaft (1999)). A system isnon-
expansiveif there exist constantŝγ > 0 andβ̂ such that

‖(Hu)T ‖22 ≤ γ̂2‖uT ‖22 + β̂. (8)

Remark 1 ((van der Schaft 1999, p. 4), (Kottenstette and
Antsaklis 2007b, Remark 1)) A continuous time (discrete
time) systemH is non-expansiveiff it is finite-gainLm

2 (lm2 )
stable.

For the remainder of the paper, when results involvingnon-
expansiveor finite-gainLm

2 (lm2 )-stability arise, the notion
of finite-gainLm

2 (lm2 )-stability will be used without loss of
generality.

This paper focuses onLTI systems that are real and causal
with m inputs andm outputs. A system in continuous time
can be described by a proper square (m×m) transfer func-
tion matrixH(s). This system can be equivalently described

by a minimal state space representationΣ
△
= {A, B, C, D},

with statex ∈ R
n, inputu ∈ R

m, and outputy ∈ R
m, that

can be written

ẋ(t) = Ax(t) +Bu(t), (9)
y(t) = Cx(t) +Du(t) (10)

where
H(s) = C(sI −A)−1B +D. (11)

Remark 2 A proper continuous time LTI systemH(s) isLm
2

stable if and only if all poles have negative real part (Antsak-
lis and Michel 2006, Theorem 9.5 p.488). This is referred to
as uniform BIBO stability. Equivalently, the minimal state
space realizationΣ is asymptotically stable (Antsaklis and
Michel 2006, Theorem 9.4 p.487).

A discrete timeLTI system can be described by a proper
square (m × m) transfer function matrixH(z). This sys-

tem has an equivalent minimal state space realizationΣz
△
=

{A, B, C, D}, with statex ∈ R
n, input u ∈ R

m, and
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outputy ∈ R
m, that can be written

x(k + 1) =Ax(k) +Bu(k), (12)
y(k) =Cx(k) +Du(k) (13)

where
H(z) = C(zI −A)−1B +D. (14)

Remark 3 A discrete time LTI systemH(z) is lm2 stable if
and only if all poles have magnitude less than one (i.e. they
are inside the unit circle of the complex plane) (Antsaklis
and Michel 2006, Theorem 10.17 p.508). Again, this result
is known as uniform BIBO stability. Equivalently, the cor-
responding minimal state space realizationΣz is asymp-
totically stable (Antsaklis and Michel 2006, Theorem 10.16
p.508).

While the focus of this paper is onLTI systems, many results
in passivity and dissipativity are applicable to general non-
linear systems. These more general results will be denoted
when appropriate. When considering nonlinear systems in
continuous time, it is assumed that the system is of the form,

ẋ(t) = f(x(t), u(t)), (15)
y(t) = h(x(t), u(t)) (16)

where it is assumed thatf(·, ·) is locally Lipschitz inx and
f(0, 0) = 0, h(0, 0) = 0. Likewise, discrete time nonlinear
systems are of the form,

x(k + 1) =f(x(k), u(k)), (17)
y(k) =h(x(k), u(k)) (18)

where f(·, ·) is locally Lipschitz in x and f(0, 0) = 0,
h(0, 0) = 0.

3.2 Passive Systems

A system is passive if it only stores and dissipates energy
without generating its own energy. This is captured by an in-
equality where the energy supplied to the system by its envi-
ronment,〈Hu, u〉T , is an upper bound on the loss of stored
energy,−β. From an alternative perspective, the maximum
energy that can be extracted from a system,−〈Hu, u〉T , is
bounded above by the constantβ that represents initially
stored energy.

Definition 3 Consider a continuous or discrete time LTI
systemH : He → He. Considering all inputsu ∈ He and
all timesT ∈ T , H is

i) passiveif ∃β such that

〈Hu, u〉T ≥ −β, (19)

ii) strictly input passive(SIP) if ∃δ > 0 and∃β such that

〈Hu, u〉T ≥ δ‖uT ‖22 − β, (20)

iii) strictly output passive(SOP) if ∃ǫ > 0 and∃β such that

〈Hu, u〉T ≥ ǫ‖(Hu)T ‖22 − β, (21)

iv) very strictly passive(VSP) if ∃ǫ > 0, δ > 0 and ∃β
such that

〈Hu, u〉T ≥ δ‖uT ‖22 + ǫ‖(Hu)T ‖22 − β, (22)

Remark 4 There have been many subtle differences in the
naming of these definitions in the literature. In some refer-
ences (Desoer and Vidyasagar (1975), for example)strictly
input passivewas referred to asstrictly passive. This will
be avoided asstrictly passiveoften refers tostate strictly
passive. Other references (e.g. Khalil (2002)) use the terms
input strictly passiveand output strictly passive, however,
these are equivalent to the definitions ofstrictly input pas-
siveand strictly output passiveprovided here.

Remark 5 If H is linear and initial conditions are assumed
to be zero, thenβ can be set equal to zero without loss of gen-
erality in regards to passivity. When initial conditions are not
zero,β is a generalized measure of initially stored energy. If
H is causal and finite-gainLm

2 (lm2 ) stable then the notion
of positivegiven in (Desoer and Vidyasagar 1975, p.174) is
equivalent topassivegiven here (assumingHu(0) = 0).

Passivity is preserved when two passive systems are com-
bined in either feedback or parallel, see Willems (1972a) or
in the textbooks Khalil (2002) or van der Schaft (1999). This
provides valuable stability results for small and large in-
terconnections of dynamical systems. An important related
problem is to determine conditions under which a system
can be made passive so that these stability results may be
applied. The necessary conditions for passivating a nonlin-
ear system can be found for continuous time in Byrnes et al.
(1991) and for discrete time in Byrnes and Lin (1994).

3.3 Dissipative Systems

The property of dissipativity is a generalization of passivity
that relates internally stored energy of a system to a gener-
alized energy supply function,s(u, y). The internally stored
energy is measured by an energy storage functionV (x) that
is analogous to a Lyapunov function. As a measure of en-
ergy, V (x) must be non-negative,V (x) ≥ 0, ∀x. Without
loss of generality, it is assumed thatx = 0 is an equilibrium
andV (x) = 0 at this point. As with passivity, the discus-
sion of dissipativity can be generalized to nonlinear systems,
however for simplicity we will focus on the linear time in-
variant case. ForLTI systems it can be assumed without loss
of generality thatV (x) has a quadratic form, see Willems
(1972b) or Khalil (2002),

V (x) = xTPx, (23)

whereP = PT > 0. The following definitions cover dissi-
pativity and(Q,S,R)-dissipativity in continuous time and
discrete time.
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Definition 4 (Willems (1972a)) A continuous time systemΣ
is dissipative with respect to the energy supply rates(u, y) if
there exists a non-negative storage functionV (x) (23), such
that for all input signalsu ∈ R

m, all trajectoriesx ∈ R
n,

and all t2 ≥ t1 the following inequality holds

V (x(t2)) ≤ V (x(t1)) +

∫ t2

t1

s(u(t), y(t))dt. (24)

Additionally, the systemΣ is (Q,S,R)-dissipative (Hill and
Moylan (1976)) if it is dissipative with respect to

s(u, y)=yTQy+2yTSu+uTRu, (25)

whereQ = QT andR = RT.

Dissipativity can be defined in discrete time with supply
rate s(u, y) and energy storage functionV (x), such that
V (x) ≥ 0 for all x andV (x) = 0 for x = 0,

V (x) = xTPx. (26)

Definition 5 (Goodwin and Sin 1984, Appendix C) A dis-
crete time systemΣz is dissipative with respect to the supply
rate s(u, y) iff there exists a matrixP = PT > 0, such that
for all x ∈ R

n, all times l, j ∈ T s.t. l > j ≥ 0, and all
input functionsu ∈ He

V (x[l]) ≤ V (x[j]) +

l−1
∑

i=j

s(u[i], y[i]), holds. (27)

Additionally, the systemΣ is (Q,S,R)-dissipative if it is
dissipative with respect to supply rate (25) whereQ = QT

andR = RT.

Passivity and some related definitions can be given with
respect to the definition of(Q,S,R)-dissipativity.

Lemma 1 (Kottenstette and Antsaklis (2010)) Consider a
minimal continuous time systemΣ or a discrete time system
Σz that is (Q,S,R)-dissipative. This system

i) is passive iff the system is

(0,
1

2
I, 0)-dissipative, (28)

ii) is strictly input passive iff∃δ > 0 such that the system is

(0,
1

2
I,−δI)-dissipative, (29)

iii) is strictly output passive iff∃ǫ > 0 such that the system
is

(−ǫI,
1

2
I, 0)-dissipative, (30)

iv) is very strictly iff ∃ǫ > 0, δ > 0 such that the system is

(−ǫI,
1

2
I,−δI)-dissipative, (31)

v) is finite-gainLm
2 (lm2 ) stableiff ∃γ̂ > 0 such that the

system is
(−I, 0, γ̂2I)-dissipative. (32)

Remark 6 The reason that these conditions are necessary
and sufficient is that the systemsΣ and Σz are minimal
realizations ofH(s) andH(z) respectively. This implies they
are controllable and observable and therefore satisfy either
(Hill and Moylan 1976, Theorem 1) or (Hill and Moylan
1980, Theorem 16).

From the above discussion the following two lemmas can
be stated in continuous and discrete time. These results rep-
resent a generalization of the Positive Real Lemma (KYP
Lemma) from necessary and sufficient conditions for pas-
sivity to necessary and sufficient conditions for (Q,S,R)-
dissipativity.

Lemma 2 For continuous time LTI systems (9)-(10), a nec-
essary and sufficient test for (Q,S,R)-dissipativity, (24)with
(25), is that∃P = PT > 0 such that the following LMI is
satisfied:

[

ATP + PA− Q̂ PB − Ŝ

(PB − Ŝ)T −R̂

]

≤ 0 , (33)

in which

Q̂ = CTQC (34)

Ŝ = CTS + CTQD (35)

R̂ = DTQD + (DTS + STD) +R. (36)

Lemma 3 (Goodwin and Sin 1984, Lemma C.4.2) For dis-
crete time LTI systems (12)-(13), a necessary and suffi-
cient test for (Q,S,R)-dissipativity, (27) with (25), is that
∃P = PT > 0 such that the following LMI is satisfied:

[

ATPA− P − Q̂ ATPB − Ŝ

(ATPB − Ŝ)T −R̂+BTPB

]

≤ 0 , (37)

in which Q̂, Ŝ, andR̂ are specified by (34), (35), and (36),
respectively.

The matrix inequalities covered in this paper are linear in the
decision variable (P ) so they can be solved using traditional
LMI optimization methods, see Boyd et al. (1994).

3.4 Positive Real Systems

The property of positive realness is a condition on the trans-
fer function of aLTI system. A minimal transfer function

6

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received January 29, 2014 09:34:36 PST



with this property must be BIBO stable, minimum phase,
and have relative degree of zero or one. Positive realness
can be shown by an equivalent frequency based condition.

Definition 6 ((Anderson and Vongpanitlerd 1973, p.51)(Tao
and Ioannou 1988, Definition 1.1)(Haddad and Chellaboina
2008, Definition 5.18)) Consider a continuous time LTI sys-
tem represented by anm×m rational and proper transfer
function matrixH(s). This system is positive real (PR) if
the following conditions are satisfied:

i) All elements ofH(s) are analytic inRe[s] > 0.
ii) H(s) is real for all real positive values ofs.

iii) HT(s∗) +H(s) ≥ 0 for Re[s] > 0.

FurthermoreH(s) is strictly positive real (SPR) if∃ǫ > 0 s.t.
H(s− ǫ) is positive real. Finally,H(s) is strongly positive
real if H(s) is strictly positive real andD+DT > 0 where

D
△
= H(∞).

It should be noted that the definition ofPR implies that the
poles ofH(s) are in the closed left-half plane, i.e. a minimal
internal realization of the system is Lyapunov stable. The
definition of SPRimplies that the poles ofH(s) are in the
open left-half plane, i.e. the system isLm

2 stable with a
minimal internal realization that is asymptotically stable.
The conditions forPR andSPRcan be verified directly or
the test can be simplified to a frequency domain condition.

Theorem 1 ((Willems 1972b, Theorem 1)(Anderson and
Vongpanitlerd 1973, p.216)(Haddad and Chellaboina 2008,
Theorem 5.11)) LetH(s) be a square, proper, and real
rational transfer function.H(s) is positive real iff the
following conditions hold:

i) All elements ofH(s) are analytic inRe[s] > 0.
ii) HT(−jω) +H(jω) ≥ 0, ∀ω ∈ R for which jω is not

a pole for any element ofH(s).
iii) Any pure imaginary polejωo of any element ofH(s)

is a simple pole, and the associated residue matrix

Ho
△
= lims→jωo

(s − jωo)H(s) is nonnegative definite
Hermitian (i.e.Ho = H∗

o ≥ 0).

A similar test is given for strict positive realness.

Theorem 2 (Tao and Ioannou 1988, Theorem 2.1) LetH(s)
be am × m, real rational transfer function and suppose
H(s) is non-singular. ThenH(s) is strictly positive real iff
the following conditions hold:

i) All elements ofH(s) are analytic inRe[s] ≥ 0.
ii) H(jω) +HT(−jω) > 0 for ∀ω ∈ R.

iii) Either limω→∞[H(jω)+HT(−jω)] = D+DT > 0 or
if D+DT ≥ 0 thenlimω→∞ ω2[H(jω)+HT(−jω)] >
0.

To finish the discussion on continuous time positive real
systems, we state the Positive Real Lemma and the Strict
Positive Real Lemma.

Lemma 4 ((Anderson 1967, Theorem 3), (Anderson and
Vongpanitlerd 1973, p.218)) LetH(s) be anm×m matrix
of real proper rational functions of a complex variables. Let
Σ be a minimal realization ofH(s). ThenH(s) is positive
real iff there existsP = PT > 0 s.t.

[

ATP + PA PB − CT

(PB − CT)T −(DT +D)

]

≤ 0 (38)

Lemma 5 (Sun et al. 1994, Lemma 2.3) LetH(s) be an
m×m matrix of real proper rational functions of a complex
variable s. Let Σ be a minimal realization ofH(s). Then
H(s) is strongly positive real iff there existsP = PT > 0
s.t.Σ is asymptotically stable and

[

ATP + PA PB − CT

(PB − CT)T −(DT +D)

]

< 0. (39)

This section up to this point covered continuous time positive
real systems. A similar presentation can be made for discrete
time systems.

Definition 7 (Hitz and Anderson (1969), Xiao and Hill
(1999), (Haddad and Chellaboina 2008, Definition 13.16)
(Tao and Ioannou 1990, Definition 2.4, 2.5)) A square
transfer function matrixH(z) of real rational functions is
a positive real matrix if:

i) all the entries ofH(z) are analytic in|z| > 1 and
ii) Ho = H(z) +HT(z∗) ≥ 0, ∀|z| > 1.

FurthermoreH(z) is strictly positive real if∃ρ (0 < ρ < 1)
s.t.H(ρz) is positive real.

Remark 7 For the discrete time case, there is no need to
define strongly positive real. The definition of strictly pos-

itive real implies that(D + DT) > 0 whereD
△
= H(∞).

This satisfies the analogous definition for strongly positive
real for discrete time systems, see (Lee and Chen 2000, Re-
mark 4). The terms “strictly positive real” and “strongly
positive real” may be used interchangeably for discrete time
systems.

The test for a discrete time positive real system can be sim-
plified to a frequency test as follows:

Theorem 3 ((Hitz and Anderson 1969, Lemma 2), (Had-
dad and Chellaboina 2008, Theorem 13.26)) LetH(z) be a
square, real rationalm×m transfer function matrix.H(z)
is positive real iff the following conditions hold:

i) No entry ofH(z) has a pole in|z| > 1.
ii) H(ejθ) +HT(e−jθ) ≥ 0, ∀θ ∈ [0, 2π], in whichejθ is

not a pole of any entry ofH(z).
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iii) If ejθ̂ is a pole of any entry ofH(z) it is at most a

simple pole, and the residue matrixHo
△
= lim

z→ejθ̂
(z−

ejθ̂)G(z) is nonnegative definite.

The test for a strictly positive real system can be simplified
to a frequency test as follows:

Theorem 4 (Tao and Ioannou 1990, Theorem 2.2) LetH(z)
be a square, real rationalm × m transfer function matrix
in which H(z) + HT(z∗) has rankm almost everywhere
in the complexz-plane.H(z) is strictly positive real iff the
following conditions hold:

i) No entry ofH(z) has a pole in|z| ≥ 1.
ii) H(ejθ) +HT(e−jθ) ≥ ǫI > 0, ∀θ ∈ [0, 2π], ∃ǫ > 0.

Finally, we state the Positive Real Lemma and the Strictly
Positive Real Lemma for the discrete time case.

Lemma 6 (Hitz and Anderson 1969, Lemma 3) LetH(z)
be ann × n matrix of real, proper, and rational transfer
functions and letΣz be a minimal stable realization ofH(z).
ThenH(z) is positive real iff there existsP = PT > 0 s.t.

[

ATPA− P ATPB − CT

(ATPB − CT)T −(DT +D) +BTPB

]

≤ 0. (40)

Lemma 7 ((Lee and Chen 2000, Corollary 2)(Haddad and
Bernstein 1994, Lemma 4.2)) LetH(z) be ann× n matrix
of real, proper, and rational transfer functions and letΣz

be an asymptotically stable realization ofH(z). ThenH(z)
is strictly positive real iff there existsP = PT > 0 s.t.

[

ATPA− P ATPB − CT

(ATPB − CT)T −(DT +D) +BTPB

]

< 0. (41)

3.5 Passivity Indices and Conic Systems

An alternative energy-based analysis framework for dynam-
ical systems is in the passivity index framework (Bao and
Lee (2007)). While passivity is only a binary property, a
system is passive or not, passivity indices capture the level
of passivity present in a dynamical system. These indices
can be used to extend feedback stability properties from the
passivity theorem or small gain theorem to systems that are
not passive or do not have finite gain.

The concept of indices came from applying earlier work of
conic systems (Zames (1966a,b)) to state space representa-
tions. Early work on indices includes Safonov et al. (1987)
and Wen (1988a). A detailed overview of passivity indices
can be found in Bao and Lee (2007). While the current paper
focuses on the LTI case, passivity indices can be defined for
general nonlinear systems. The indices will be presented in
continuous time but the discrete time case follows similarly.

Definition 8 (Bao and Lee (2007)) A continuous time LTI
system (9)-(10) simultaneously has output feedback passivity
(OFP) indexρ and input feed-forward passivity (IFP) index
ν if there exists a non-negativeV (x) such that the following
inequality holds, for allt1 and t2 such thatt1 ≤ t2,

V(x(t2))≤V(x(t1)) +

∫ t2

t1

[(1+ρν)uT (t)y(t)− (42)

ρyT (t)y(t)−νuT (t)u(t)]dt. (43)

As with dissipativity, there are necessary and sufficient tests
to determine if a set of passivity indices holds for a given
system. The continuous time test is given in the following
corollary (to Lemma 2), which assumesV (x) = xTPx.

Corollary 1 For continuous time LTI systems, a necessary
and sufficient test for Definition 8 to hold is that∃P =
PT ≤ 0 such that (33) is satisfied in whichQ = −ρI,
S = 1

2 (1 + ρν)I andR = −νI.

An alternative generalization of passivity is in the conic sys-
tems framework that was introduced in Zames (1966a,b).
This framework provides analysis tools, based on operator
theory, that can be used to assess the input-output behavior
of system. It has been shown that this is a general framework
with stability results that generalize both the passivity theo-
rem and the small gain theorem. This original work on conic
systems has been extended in Teel (1996). The framework
has also been applied to networked systems to guarantee
stability despite large time delay, see Hirche et al. (2009).

The following defines the notion of an “interior” conic sys-
tem as opposed to “exterior” conic systems. As a reminder,
a systemH is a mapping from inputu ∈ He to output
y ∈ He, whereHe = Lm

2e or H = lm2e.

Definition 9 (Zames (1966a)) An interior conic systemH is
one whose inputu(t) ∈ U ⊂ He and outputy(t) ∈ Y ⊂ He

are constrained to lie within a conic region of the inner
product spaceU × Y . This cone is defined by the slope of
the center of the conec and its radiusr. When a system is
in such a cone, the input and output satisfy the following
inequality,∀T ∈ [0,∞) and for zero initial conditions,

‖yT (t)− cuT (t)‖2 ≤ r‖uT (t)‖2. (44)

The distinction ofinterior conic versusexterior conic is
important when defining cones usingc andr. Interior conic
systems are ones that lie within a cone that does not cross
the vertical axis. When a cone spans the vertical axis, the
cone cannot be defined with any finite or infiniter. Instead,
the notion of exterior conic must be used. These systems are
defined as ones that lie outside of a cone defined byc andr.
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An alternative characterization of a conic region is by the
slope of the upper boundb and lower bounda. For inte-
rior conic systems, these values can be related tor andc by
the expressions,b = c + r anda = c − r or c = a+b

2 and
r = b−a

2 . Similar relationships can be found for the exterior
conic case. By using this alternative definition, the distinc-
tion between interior conic and exterior conic is unnecessary.

Definition 10 (McCourt and Antsaklis (2009)) A system is
a conic system in the cone defined byb and a if and only
if the following inequality holds,∀T ∈ [0,∞) and for zero
initial conditions,

(1 +
a

b
)〈y(t), u(t)〉T ≥ 1

b
‖yT (t)‖22 + a‖uT (t)‖22. (45)

It is important to note that this definition differs slightly
from the one in Zames (1966a). While this early definition
specifies thatb > a always, the definition given here does
not enforce the same condition. This is done to remove the
requirement that interior or exterior conic must be specified
and to simplify the presentation to a single definition of
conic systems. In the case of interior conic systems, the
two frameworks are identical. In the case of exterior conic
systems, the role ofa andb are simply reversed. For more
information on deriving this single definition from the two
previous definitions, refer to McCourt and Antsaklis (2009).
This subtle change strengthens the relationship to passivity
indices.

Remark 8 (McCourt and Antsaklis (2009)) A system with
passivity indicesρ and ν is conic with upper boundb = 1

ρ

and lower bounda = ν. The converse is also true, i.e. a
conic system in the cone[a, b] has passivity indicesρ = 1

b
andν = a.

4 Preliminary Results for Passivity, Dissipativity, and
Positive Realness

4.1 Summary of Stability Results

This section covers the classical results for stability of pas-
sive, positive real, and dissipative systems. As stated earlier,
passive and positive real systems are stable.

Theorem 5 (van der Schaft (1999), Khalil (2002), Good-
win and Sin (1984)) Consider a minimal representation of
an LTI system in continuous or discrete time. If this sys-
tem is positive real, or passive with positive definite storage
functionV (x) then it is Lyapunov stable.

Remark 9 Theorem 5 assumes the representation is mini-
mal so it must be controllable and observable. Passive or
positive real realizations that are not minimal may still be
Lyapunov stable with an alternative condition. One such
condition is an observability or detectability condition,see

e.g. Bao and Lee (2007). While positive definiteness of the
storage functionV is not required for passivity, it is required
for stability asV is used as the Lyapunov function Khalil
(2002).

For some of the remaining stability results, the notion of
state strictly passivewill be defined. This notion is defined
using a storage function because the property is dependent
on the internal state.

Definition 11 (Khalil (2002)) A LTI system in continuous
time is state strictly passive(or strictly passivein Khalil
(2002)) if there exists a continuous storage function,V (x) =
xTPx > 0, ∀x 6= 0, and a constantα > 0 that satisfies the
following inequality∀x and∀t ∈ T ,

〈y(t), u(t)〉T ≥ V (x(T ))− V (x(0)) + α‖x(t)T ‖22. (46)

This definition can be applied to discrete time systems by
changing the time series used.

Rather than presenting all stability results formally, they will
instead be summarized here with appropriate references. In
light of the relationships shown in this paper, stability will
be stated for passive and dissipative systems with results for
positive real systems following. The stability results will be
stated in continuous time while most results follow for dis-
crete time as shown in Goodwin and Sin (1984). It should be
noted that unlike Theorem 5, positive definiteness ofV (x) is
not needed in the following results, see e.g. (Khalil (2002)).

(1) A SOPsystem is finite-gainLm
2 stable (van der Schaft

(1999), Khalil (2002)).
(2) A system with minimal realizationΣ that is state

strictly passive is asymptotically stable (Khalil (2002)).
(3) A (Q,S,R)-dissipative system withQ < 0 is Lm

2 sta-
ble (Hill and Moylan (1977)).

Fig. 2. The negative feedback interconnection of systemsG1 and
G2.

While these energy based properties can be used to show
stability of a single system, the benefit of this analysis ap-
proach becomes more apparent when applied to the feed-
back interconnection of two systemsG1 andG2, Fig. 2. The
following list summarizes these results.

(1) The feedback interconnection of two passive systems
forms a closed loop system that is passive. It is also
stable if the two storage functions are positive definite
(Khalil (2002)).

9

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received January 29, 2014 09:34:36 PST



(2) The feedback interconnection of two state strictly pas-
sive systems is asymptotically stable (Khalil (2002)).

(3) The feedback interconnection of twoSIP systems is
Lm
2 stable (van der Schaft (1999)).

(4) The feedback interconnection of twoSOPsystems is
Lm
2 stable (van der Schaft (1999)).

(5) The feedback interconnection of two(Q,S,R)-
dissipative systems forms a closed loop system that is
(Q,S,R)-dissipative. The closed loop system can be
shown to beLm

2 stable under certain conditions (Hill
and Moylan (1977)).

One important note about these results is that they are not
exclusive toLTI systems. While this paper focuses on the
LTI case to connect passivity and positive realness, passivity
and dissipativity can be more generally defined for nonlinear
systems and the stability results are still valid.

4.2 Preliminary Results on Passivity and Positive Realness

Preliminary results related to the properties of passivityand
positive realness are covered in this section. The following
result from Desoer and Vidyasagar (1975) summarizes a
series of frequency-based conditions that are equivalent to
passivity or strict input passivity.

Theorem 6 (Desoer and Vidyasagar 1975, p.174-175) Con-
sider a LTI systemH which has a minimal realizationΣ
(Σz) that is asymptotically stable.

(i) If H is a continuous time system then
(a) H is passive iffH(jω)+HT(−jω) ≥ 0, ∀ω ∈ R.
(b) H is strictly input passive iff∃δ > 0 s.t.

H(jω) +HT(−jω) ≥ δI, ∀ω ∈ R. (47)

(ii) If H is a discrete time system then
(a) H is passive iffH(ejθ) + HT(e−jθ) ≥ 0, ∀θ ∈

[0, 2π].
(b) H is strictly input passive iff∃δ > 0 s.t.

H(ejθ) +HT(e−jθ) ≥ δI, ∀θ ∈ [0, 2π]. (48)

While there are existing results for frequency based condi-
tions for passivity and strict input passivity, there isn’tan
established test for strict output passivity. One such condi-
tion is proposed in the following theorem.

Theorem 7 Consider a single-input single-output LTI
strictly output passive system with transfer functionH(s)
(H(z)), real impulse responseh(t) (h(k)), and correspond-
ing frequency response:

H(jω) = Re{H(jω)}+ jIm{H(jω)} (49)

in which Re{H(jω)} = Re{H(−jω)} for the real part of
the frequency response andIm{H(jω)} = −Im{H(−jω)}

for the imaginary part of the frequency response. IfH is
SOP then the constantǫ in the definition may be found by
the following inequality:

0 < ǫ ≤ inf
ω∈[0,∞)

Re{H(jω)}
Re{H(jω)}2 + Im{H(jω)}2 (50)

for the continuous time case. Similarly for discrete time case,

H(ejθ) = Re{H(ejθ)}+ jIm{H(ejθ)} (51)

in which Re{H(ejθ)} = Re{H(e−jθ)} in which 0 ≤
θ ≤ π for the real part of the frequency response and
Im{H(ejθ)} = −Im{H(e−jθ)} for the imaginary part of
the frequency response. The constantǫ for (21) satisfies:

0 < ǫ ≤ min
θ∈[0,π]

Re{H(ejθ)}
Re{H(ejθ)}2 + Im{H(ejθ)}2 (52)

for the discrete time case.

Proof: Since a strictly output passive system has a finite
integrable (summable) impulse response (i.e.

∫∞

0
h2(t)dt <

∞ (
∑∞

i=0 h
2[i] < ∞)) then the condition forSOP(21) can

be written as
∫ ∞

−∞

H(jω)|U(jω)|2dω≥ǫ

∫ ∞

−∞

|H(jω)|2|U(jω)|2dω
(53)

for the continuous time case or
∫ π

−π

H(ejθ)|U(ejθ)|2dθ ≥ ǫ

∫ π

−π

|H(ejθ)|2|U(ejθ)|2dθ
(54)

for the discrete time case. (53) can be written in the following
simplified form:

∫ ∞

−∞

Re{H(jω)}|U(jω)|2dω ≥ (55)

ǫ

∫ ∞

−∞

(Re{H(jω)}2 + Im{H(jω)}2)|U(jω)|2dω

in which (50) clearly satisfies (55). Similarly (54) can be
written in the following simplified form:

∫ π

−π

Re{H(ejθ)}|U(ejθ)|2dθ ≥ (56)

ǫ

∫ π

−π

(Re{H(ejθ)}2 + Im{H(ejθ)}2)|U(ejθ)|2dθ

in which (52) clearly satisfies (56).�

The frequency based conditions for passivity and strict input
passivity (Theorem 6) are closely related to the frequency
based conditions for positive realness and strong positive
realness.
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Remark 10 It is important to note that the valueǫ in (50)
or (52) corresponds to the OFP indexρ in (42). In (Bao and
Lee 2007, p.29), an alternative method of calculating the
OFP index is given for minimum phase linear systems. We
did not pose such constraints on the system when calculating
this value using (50) or (52).

Lemma 8 Let H(s) (with a corresponding minimal real-
izationΣ) be am×m, real rational transfer function that
is non-singular. Then the following are equivalent:

i) H(s) is strongly positive real
ii) Σ is asymptotically stable and strictly input passive s.t.

H(jω) +HT(−jω) ≥ δI > 0, ∀ω ∈ R (57)

Proof: ii =⇒ i:
SinceΣ is asymptotically stable then all poles are in the
open left half plane, therefore Theorem 2-i is satisfied. Next
(57) clearly satisfies Theorem 2-ii. Also, (57) implies that
D +DT > δI > 0 which satisfies 2-iii which satisfies the
final condition to be strictly positive real and also strongly
positive real as noted in Definition 6.
i =⇒ ii:
First we note that Theorem 2-i impliesΣ will be asymptot-
ically stable. Next, from Definition 6 we note that∃δ1 > 0
s.t.

HT(−j∞) +H(j∞) = DT +D ≥ δ1I > 0

Lastly, we assume that∃δ2 ≤ 0 s.t.

HT(−jω) +H(jω) ≥ δ2I, ∀ω(−∞,∞) (58)

however this contradicts Theorem 2-ii therefore∃δ2 > 0
s.t. (58) is satisfied which implies (57) is satisfied in which
δ = min{δ1, δ2} > 0. �

Remark 11 Note that Lemma 8-ii is equivalent toΣ being
asymptotically stable andH(s) being strictly input passive
as stated in Theorem 6-b.

The previous lemma is now provided for discrete time sys-
tems. As that the definition for strictly positive real and
strongly positive real are equivalent in discrete time, con-
nections involving strongly positive real are not needed.

Lemma 9 Let H(z) (with a corresponding minimal real-
izationΣz) be a square, real rationalm×m transfer func-
tion matrix in whichH(z) + HT(z∗) has rankm almost
everywhere in the complexz-plane. Then the following are
equivalent:

i) H(z) is strictly positive real
ii) Σz is asymptotically stable and strictly input passive s.t.

H(ejθ) +HT(e−jθ) ≥ δI, ∀θ ∈ [0, 2π] (59)

Proof: ii =⇒ i:
SinceΣz is asymptotically stable then all poles are strictly
inside the unit circle, therefore Theorem 4-i is satisfied. Next
(59) clearly satisfies Theorem 4-ii.
i =⇒ ii:
First we note that Theorem 4-i impliesΣz will be asymptot-
ically stable. Finally Theorem 4-ii clearly satisfies (59).�

5 Main Results

5.1 Connection Between Passive and Positive Real

This first part of this section focuses on the relationships be-
tween classes of passive and positive real systems. The fol-
lowing lemma covers the connection between passive and
positive real for continuous timeLTI systems. Recall that
positive realness is defined for square transfer functions that
are assumed to have zero initial conditions so the connection
is shown for zero initial conditions. The next result is the
connection between strongly positive real and strictly input
passive for asymptotically stable systems. The relationship
between strictly passive and strictly positive real is not cov-
ered but the reader is directed to Haddad and Chellaboina
(2008) or Khalil (2002) for these details. The remainder of
this subsection covers these connections for the discrete time
case.

Lemma 10 Let H(s) be anm×m matrix of real, proper,
and rational transfer functions of a complex variables. Let
Σ be a minimal realization ofH(s). Denoteh(t) as the
m × m impulse response matrix ofH(s) from which the
outputy(t) can be computed by,

y(t) =

∫ t

0

h(t− τ)u(τ)dτ.

Then the following statements are equivalent:

i) The transfer functionH(s) is positive real.
ii) There existsP = PT > 0 to satisfy the Positive Real

Lemma (38) .
iii) The systemΣ is (0, 1

2I, 0)-dissipative, i.e.∃P = PT >
0 s.t. (33) is satisfied.

iv) The system is passive, i.e.∀T
∫ T

0

yT(t)u(t)dt ≥ 0,

for zero initial conditions.

Proof: i) ⇔ ii): Stated in Lemma 4.
iii) ⇔ iv): Remark 5 states that iv) is an equivalent test for
passivity and Corollary 2 states that iii) is an equivalent test
for passivity when(Q,S,R) = (0, 1

2I, 0).
ii) =⇒ iii): A passive systemH(s) is also passive iff
kH(s) is passive for∀k > 0. Therefore (33) forkH(s)
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in which Σ = {A,B, kC, kD} and(Q,S,R) = (0, 1
2I, 0),

Q̂ = 0, Ŝ = k
2C

T, R̂ = k
2 (D

T +D):

[

ATP + PAT PB − k
2C

T

(PB − k
2C

T)T −k
2 (D

T +D)

]

≤ 0 , (60)

which for k = 2 satisfies (38).
iii) =⇒ ii): The converse argument can be made in which
a positive real systemH(s) is positive real iff kH(s) is
positive real∀k > 0 in which we choosek = 1

2 . �

Remark 12 The key to the proof was connecting the work of
Anderson and Vongpanitlerd (1973), Desoer and Vidyasagar
(1975) and Hill and Moylan (1980). Doing so highlights
the connection between positive real system theory and dis-
sipative system theory. This connection was partially made
previously in (Willems 1972b, Theorem 1) and Desoer and
Vidyasagar (1975). Similar connections are discussed re-
cently in Haddad and Chellaboina (2008) which relied on
Parseval’s Theorem. The benefit of the approach in the cur-
rent paper is that it does not rely on Parseval’s Theorem
which cannot be applied to systems with poles on the imag-
inary axis. As a result, the connection between passive sys-
tems and positive real systems holds for systems with poles
on the imaginary axis. Finally, it should be noted that this re-
sult was given previously with a different proof in Brogliato
et al. (2007).

Lemma 11 Let H(s) be anm×m matrix of real, proper,
and rational transfer functions of a complex variables. Let
Σ be a minimal realization ofH(s). Furthermore we denote
h(t) as anm×m impulse response matrix ofH(s) in which
the outputy(t) is computed as follows:

y(t) =

∫ t

0

h(t− τ)u(τ)dτ

Then the following statements are equivalent:

i) The transfer functionH(s) is strongly positive real.
ii) There existsP = PT > 0 to satisfy the strict Positive

Real Lemma (39).
iii) Σ is asymptotically stable and(0, 1

2 ,−δI)-dissipative,
i.e. ∃P = PT > 0 such that (33) is satisfied, i.e. the
system is strictly input passive andLm

2 stable.
iv) Σ is asymptotically stable, and for zero initial condi-

tions (y(0) = 0),

∫ ∞

0

yT(t)u(t) ≥ δ‖u(t)‖22

in which δ = inf−∞≤ω≤∞ Re{H(jω)} for the single
input single output case.

Furthermore, iii) implies that for(Q,S,R) = (−ǫI, 1
2I, 0)

there∃P = PT > 0 s.t. (33) is also satisfied (strictly output

passive). Thus ify(0) = 0 then

∫ ∞

0

yT(t)u(t)dt ≥ ǫ‖y(t)‖22.

Remark 13 In order for the equivalence between strongly
positive real and strictly input passive to be stated, the
strictly input passive system must also have finite gain (i.e.
Σ is asymptotically stable). For example the realization for
H(s) = 1+ 1

s
, Σ = {A = 0, B = 1, C = 1, D = 1}, δ = 1

is strictly input passive but is not asymptotically stable.How-
everH(s) = s+b

s+a
, Σ = {A = −a,B = (b− a), C = D =

1}, δ = min{1, b
a
} is both strictly input passive and asymp-

totically stable for alla, b > 0.

Proof: i) ⇔ ii): Stated in Lemma 5.
ii) ⇔ iv): Stated in Lemma 8.
iii) ⇔ iv): Stated in Lemma 1.�

Remark 14 It is known that if anLm
2 (lm2 ) stable system is

strictly input passive then it is also strictly-output passive
(van der Schaft 1999, Remark 2.3.5) , the converse how-
ever, is not always true (i.e.inf∀ω Re{H(jω)} is zero for
strictly proper (strictly output passive) systems). It hasbeen
shown for the continuous time case (van der Schaft 1999,
Theorem 2.2.14) and discrete time case ((Kottenstette and
Antsaklis 2007b, Theorem 1) and (Goodwin and Sin 1984,
Lemma C.2.1-(iii))) that a strictly output passive system is
passive andLm

2 (lm2 ) stable but it remains to be shown if
the converse is true or not true. Indeed, we can show that
an infinite number of continuous time and discrete time lin-
ear time invariant systems do exist which are both passive
andLm

2 (lm2 ) stable and are neither strictly output passive
nor strictly input passive. This is demonstrated in Remark
15 using the following theorem.

Theorem 8 Let H : He → He (in which y = Hu, y(0) =
0, and for the case when a state-space description exists
for H that it is zero-state observable (y = 0 implies that
the statex = 0) and there exists a positive definite storage
function β(x) > 0, x 6= 0, β(0) = 0) have the following
properties:

a) ‖yT ‖2 ≤ γ‖uT ‖2
b) 〈y, u〉T ≥ −δ‖uT ‖22
c) There exists a non-zero norm inputu such that〈y, u〉T =

−δ‖uT ‖22 and‖yT ‖22 > δ2‖uT ‖22 for δ < γ.

Then the following systemH1, in which the outputy1 is
computed usingy1 = y + δu has the following properties:

I. H1 is passive.
II. H1 is Lm

2 (lm2 ) stable.
III. H1 is not strictly output passive (also not strictly input

passive )

12

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received January 29, 2014 09:34:36 PST



Proof: 8-I: Solving for the inner-product betweeny1 andu
we have

〈y1, u〉T = 〈y, u〉T + δ‖uT ‖22 ≥ (−δ + δ)‖uT ‖22 = 0

8-II: Solving for the extended-two-norm fory1 we have

‖(y1)T ‖22 = ‖(y + δu)T ‖22 ≤ ‖yT ‖22 + δ2‖uT ‖22
‖(y1)T ‖22 ≤ (γ2 + δ2)‖uT ‖22

8-III: From 8-I, the solution for the inner-product between
y1 and u can be substituted in Assumption c) to give,
〈y1, u〉T = (−δ + δ)‖uT ‖22 = 0.

It is obvious that no constantδ > 0 exists such that

〈y1, u〉T = 0 ≥ δ‖uT ‖22 = 0

since it is assumed that‖uT ‖22 > 0, henceH1 is not strictly-
input passive. In a similar manner, noting that the added re-
striction holds‖yT ‖22 = δ2‖uT ‖22 for the same input func-
tion u when〈y, u〉T = −δ‖uT ‖22, it is obvious that no con-
stantǫ > 0 exists such that

〈y1, u〉T = 0 ≥ ǫ‖(y1)T ‖22 = 0

0 ≥ ǫ(‖yT ‖22 − δ2‖uT ‖22)

holds.�

Remark 15 Theorem 8 shows that a system that is passive
andLm

2 stable is not necessarilySOP. The continuous time
systemH(s) given by

H(s) =
ω2
n

s2 + 2ωns+ ω2
n

, (61)

for ωn > 0 satisfies the assumptions of the theorem required
of a systemH in whichδ = 1

8 and an input-sinusoidu(t) =
sin(

√
3ωnt) is a null-inner-product sinusoid such that

H1(s) =
1

8
+H(s) =

1

8
+

ω2
n

s2 + 2ωns+ ω2
n

(62)

is both passive andLm
2 stable but neither strictly-output

passive nor strictly-input passive.

This section will be finished with the connections between
passivity and positive real in discrete time. The proofs are
omitted as they closely follow the continuous time case.

Lemma 12 LetH(z) be anm×m matrix of real rational
transfer functions of variablez. LetΣz be a minimal real-
ization ofH(z) which is Lyapunov stable. Furthermore we

denoteh[k] as anm×m impulse response matrix ofH(z)
in which the outputy[k] is computed as follows:

y[k] =
k

∑

i=0

h[k − i]u[i]

Then the following statements are equivalent:

i) H(z) is positive real.
ii) There existsP = PT > 0 to satisfy the discrete time

Positive Real Lemma (41).
iii) With Q = R = 0, S = 1

2I there∃P = PT > 0 s.t. (37)
is satisfied.

iv) For zero initial conditions (y[0] = 0), H(z) is passive

∞
∑

i=0

yT(i)u(i) ≥ 0.

Lemma 13 LetH(z) be anm×m matrix of real rational
transfer functions of variablez. LetΣz be a minimal real-
ization ofH(z) which is Lyapunov stable. Furthermore we
denoteh[k] as anm×m impulse response matrix ofH(z)
in which the outputy[k] is computed as follows:

y[k] =

k
∑

i=0

h[k − i]u[i]

Then the following statements are equivalent:

i) H(z) is strictly positive real.
ii) There existsP = PT > 0 to satisfy the discrete time

Strict Positive Real Lemma (41).
iii) Σz is asymptotically stable, and forQ = 0, R = −δI,

S = 1
2I, ∃P = PT > 0, and∃δ > 0 s.t. (37) is

satisfied.
iv) Σz is asymptotically stable, and for zero initial condi-

tions (y[0] = 0), H(z) is strictly input passive s.t.

∞
∑

i=0

yT(i)u(i) ≥ δ‖u(i)‖22.

5.2 Connections Between Classes of Passive Systems

This section clarifies some subtle connections between
classes of passive systems. These connections involve pas-
sivity, state strict passivity,SIP, SOP, andVSPas well as
Lm
2 stability and asymptotic stability. This section focuses

on the continuous timeLTI case but the more general non-
linear case is also true. These results are original and addi-
tional background is cited when appropriate. Some results
rely on the inverse of a continuous time systemΣ existing
and being causal. A necessary condition for this to be true
for LTI systems is that the system has relative degree zero
(Antsaklis and Michel (2006)).
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Theorem 9 A system isVSP if and only if it isSIPandLm
2

stable.

Proof: Necessity:VSP implies SIP and SOP . SinceSOP
impliesL2 stability, VSPimpliesSIPandL2 stable.

Sufficiency: IfΣ is SIP , there existsν > 0 and a constant
β1 such that

〈u, y〉T ≥ ν〈u, u〉T + β1.

Additionally, if Σ is L2 stable, then there existsγ > 0 and
a constantβ2 such that

〈y, y〉T ≤ γ〈u, u〉T + β2.

Thus, there exist constantsǫ1 > 0, ǫ2 > 0 andν−ǫ1−ǫ2γ ≥
0, such that

〈u, y〉T − ǫ1〈u, u〉T − ǫ2〈y, y〉T
=〈u, y〉T − ν〈u, u〉T + (ν − ǫ1)〈u, u〉T − ǫ2〈y, y〉T
≥β1 + (ν − ǫ1)〈u, u〉T − ǫ2(γ〈u, u〉T + β2)

=β1 − ǫ2β2 + (ν − ǫ1 − ǫ2γ)〈u, u〉T
≥β1 − ǫ2β2.

Defining β , β1 − ǫ2β2, the result is that〈u, y〉T −
ǫ1〈u, u〉T − ǫ2〈y, y〉T ≥ β, thusΣ is VSP. �

Remark 16 One direction of the previous theorem was
shown in van der Schaft (1999). The result was given here
to show thatSIP andLm

2 stable is an equivalent definition
for VSP.

Remark 17 Based on Lemma 8 and Theorem 9, we can
say that VSP is equivalent to strongly positive realness for
system given by (11).

The following result provides an equivalent definition for
VSPusing the inverse of the system.

Theorem 10 Suppose the inverse of a continuous time sys-
temΣ exists. This system isVSP if and only if it isSOPand
its inverseΣ−1 is L2 stable.

Proof: Sufficiency: If the systemΣ is SOP, then there exist
ρ > 0 andβ2 ≤ 0 such that

〈u, y〉T − ρ〈y, y〉T ≥β2. (63)

Further, if the inverse systemΣ−1 is L2 stable, then there
existγ > 0 andβ1 ≥ 0 such that

〈u, u〉T ≤ γ〈y, y〉T + β1. (64)

For ǫ1 > 0 andǫ2 > 0 such thatρ− ǫ2 − ǫ1γ ≥ 0, we can
obtain the following relation from (63) and (64), where

〈u, y〉T − ǫ1〈u, u〉T − ǫ2〈y, y〉T
=〈u, y〉T − ρ〈y, y〉T + (ρ− ǫ2)〈y, y〉T − ǫ1〈u, u〉T
≥β2 + (ρ− ǫ2)〈y, y〉T − ǫ1(γ〈y, y〉T + β1)

=β2 − ǫ1β1 + (ρ− ǫ2 − ǫ1γ)〈y, y〉T
≥β2 − ǫ1β1.

Definingβ = β2−ǫ1β1 ≤ 0, we obtain〈u, y〉T−ǫ1〈u, u〉T−
ǫ2〈y, y〉T ≥ β. Therefore, the system is VSP.

Necessity: IfΣ is VSP, then there existρ > 0 andν > 0
and a constantβ ≤ 0 such that

〈u, y〉T ≥ β + ρ〈y, y〉T + ν〈u, u〉T .

The following relation holds

1

2ν
〈y, y〉T +

ν

2
〈u, u〉T ≥ 〈u, y〉T .

Thus, we can derive that

(
1

2ν
− ρ)〈y, y〉T − ν

2
〈u, u〉T ≥ β.

For VSP systems, we haveρν ≤ 1
4 . Thus, 1

2ν − ρ > 0.
Therefore, we obtain

〈u, u〉T ≤ γ〈y, y〉T + b,

whereγ = 1
ν2 − 2ρ

ν
> 0 andb = − 2β

ν
≥ 0. Thus, the system

Σ−1 is L2 stable.�

The final result of this section is a stronger connection be-
tween strictly passive and asymptotically stable forSIPsys-
tems.

Theorem 11 For SIP systems, a systemΣ is state strictly
passive if and only if it is asymptotically stable.

Proof: Necessity: It is obvious that a state strictly passive
system is asymptotically stable. By settingu = 0, we have
V̇ ≤ −αxTx ≤ 0, and the equality holds if and only ifx =
0. This condition can be used to show thatV (x) is positive
definite as in ((Khalil 2002, Lemma 6.7)). Therefore,V (x)
is a Lyapunov function, and the system is asymptotically
stable.

Sufficiency:Σ is SIP which implies there existV1(x) ≥ 0
andδ > 0 such that

uT y − V̇1(x) ≥ δuTu.
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Since Σ is asymptotically stable, there also exists a
Lyaponuv functionV2(x) ≥ 0 such that

V̇2(x) ≤ −αxTx.

Apply V (x) = V1(x) + V2(x) ≥ 0 as another storage func-
tion for the system, we can obtain

V̇ (x) = V̇1(x) + V̇2(x) ≤ uT y − δuTu− αxTx,

thus the system is state strictly passive as well asSIP. �

5.3 Relationships Involving Passivity Indices

As stated earlier, passivity indices are a generalization of
passivity. This is clear from making the substitutionρ = 0
and ν = 0 in the LMI for passivity indices in Corollary
1. TheLMI reduces to the Positive Real Lemma (38). As
shown previously (Theorem 6), the Positive Real Lemma is
necessary and sufficient for a system to be passive or positive
real.

Remark 18 Systems that have passivity indices are also
(Q,S,R)-dissipative withQ = −ρI, S = 1

2 (1 + ρν),
andR = −νI. This can be seen by comparing the defini-
tion of passivity indices (42) to the definition of(Q,S,R)-
dissipativity, (24).

With the relationship to dissipativity made, it is possibleto
further compare the passivity index framework to classes of
passive systems. A system with bothρ andν non-negative
is a passive system. Whenν = 0 andρ is strictly positive,
the system is strictly output passive. Likewise, whenρ = 0
andν is strictly positive the system is strictly input passive.
Passivity indices can be used to assess stability of individual
systems as well as systems in feedback.

Theorem 12 A system with OFP indexρ and IFP indexν
is Lm

2 (lm2 ) stable ifρ > 0. Additionally, this system isSOP
if ν ≥ 0 and VSP if ν > 0.

Theorem 13 (McCourt and Antsaklis (2010)) Consider the
interconnection (Fig. 2) of two systems that are either both
continuous time or both discrete time. Assume thatG1 has
indices(ρ1, ν1) andG2 has indices(ρ2, ν2). If the following
matrix is positive definite,

A =

[

(ρ1 + ν2)I
1
2 (ρ1ν1 − ρ2ν2)I

1
2 (ρ1ν1 − ρ2ν2)I (ρ2 + ν1)I

]

> 0, (65)

the interconnection isLm
2 stable.

6 Conclusions

This paper surveys relationships between various energy-
based properties for LTI systems. Since entire surveys have

been written on the classical results from passivity and dis-
sipativity theory, the current paper focuses instead on re-
sults that(1) demonstrate relationships between frameworks
and(2) provide new insight into the details of energy-based
analysis. The fundamental connections between definitions
of passive and positive real, and their stability results, are
summarized in Fig. 1. These connections are valid for con-
tinuous time or discrete time LTI systems. The connection
between these two classes of systems is demonstrated using
dissipativity theory rather than using Parseval’s Theorem.
Dissipativity is a generalization of these notions that canbe
applied to a large class of systems assuming an appropriate
energy supply rate can be determined. The paper also sur-
veys the energy-based frameworks of passivity indices and
conic systems. As was shown, for systems with a state space
representation, the frameworks are identical. Either can be
used as a framework that is more general than passivity but
more easily applied than dissipativity.

Other than clarifying the connection between passivity and
positive realness, the main results section of the paper pro-
vides other connections as well. This includes a connection
between strongly positive real and strictly input passive and
a connection toL2 stable systems. This also includes clar-
ifying connections between state strict passivity, classes of
input-output strictly passive systems, andL2 stable passive
systems. Finally, connections were made between the frame-
works of passivity indices and conic systems with passivity
and dissipativity. While some of these results are original
contributions, others are previously known but shown using
original proofs. The results in this paper are provided to clar-
ify the subtle connections between these important classes
of systems.
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