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Abstract— We consider the problem of optimally scheduling
the charging of electric vehicles to obtain a favorable total
load profile. A large collection of our main contribution is to
account for the capacity constraints induced by the power grid
distribution lines and other components such as transformers
in scheduling. We propose three distributed algorithms to
minimize the total load variance while satisfying the capacity
in the power network. These algorithms provide a trade-off be-
tween the convergence speed and the amount of communication
required. We study the effectiveness of the algorithms through
analysis and simulation.

I. INTRODUCTION

Demand response (DR) is a promising mechanism for im-
proving the efficiency of power grids. It empowers the utility
companies and electric vehicles (EVs) to decide collectively,
potentially in a distributed manner, the best way to schedule
energy usage; see e.g., [8] and references therein. In this
paper, we focus on DR for scheduling the charging of EVs
at residences.

As the penetration of EVs increases, they will impose a
significant burden on the grid. In particular, peak load ampli-
fication, creation of new peaks [10], voltage deviations [12],
and other effects may occur in various studies. To overcome
these problems, many EV charging control methods, both
centralized [3] , [16] and distributed [2], [14] have been
proposed.

Of particular interest to our work are the algorithms
proposed in [4] and [5] which provide analytic guarantees
on convergence of the total load profile to a desired one
(for instance, a valley-filling profile) even in the presence
of heterogeneous EV arrival times and load requirements.
Through the exchange of a price-like signal, the EVs and
the utility company negotiate suitable charging profiles to
optimize the total load profile. There are multiple scheduling
profiles of individual EVs that are possible, which lead to the
same total load profile. While some of these profiles respect
the capacity constraints in terms of the power carried by the
various components in the network that supplies power to
these EVs, others do not. The algorithms in [4] and [5] do
not consider capacity constraints and thus cannot distinguish
among such solutions.

In this work, we explicitly include capacity constraints on
the power carried by various lines in the network used to
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supply power to the EVs. We extend the algorithm in [4] to
minimize the total load variance while satisfying the capacity
constraints in the power network. As in [4], our algorithm
is a decentralized negotiation mechanism between the EVs
and the utility company. However, we need two different
price-like control signals to govern the iterations. One signal
is also used as in [4, 5] to mediate the iterations with the
utility to optimize the total load profile, while the other one
is introduced in iterations with the neighboring components
in the power network to satisfy the capacity constraints. The
optimal decentralized charging (ODC) algorithm proposed in
[4] is adopted to coordinate the charging profiles of EVs to
obtain a valley-filling total load profile with the first one
of these price-like signals. Here, we adopt an alternating
direction method of multipliers (ADMM) algorithm (see
e.g., [1]) to coordinate the charging profiles of EVs to
satisfy the capacity constraints with the second price-like
signal. Specifically, the ODC algorithm, which optimizes
the total load profile, requires communication between in-
dividual EVs and the utility only. On the other hand, the
ADMM algorithm, which enforces the capacity constraints,
requires communication between the individual EVs and the
components whose load is affected by the charging profile
of the EV. Using these two building blocks, we propose
three negotiation mechanisms that trade-off between the
convergence speed and the amount of message passing. All
the three negotiation mechanisms are distributed.

The contributions of this work are twofold: 1) We formu-
late the problem of optimizing the total load profile with EVs
in the presence of the power network capacity constraints. 2)
We propose and analyze distributed algorithms to solve this
optimization problem. By comparing the optimal load profile
with and without capacity constraints, we provide examples
where a valley-filling load profile may no longer be feasible
or compatible with the capacity constraints.

While the literature on DR with the penetration of EVs is
too vast to summarize here, we now point out some recent
results closest to ours. We borrow the ODC algorithm pro-
posed in [4] and extended in [5]. However, these references
do not consider network capacity constraints. While ADMM
and other dual decomposition based methods have been used
in the context of demand response in work such as [7],
[11], these work focused on obtaining charging profiles that
maximize individual EV payoff and minimize the operating
costs. Thus, these charging profiles may not lead to total
load profiles that are valley filling. We consider explicit op-
timization of the total load variance while including capacity
constraints.
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Notation : MT refers to the transpose of a matrix M .
Ip denotes a p × p identity matrix and 0p denotes a p ×
p zero matrix. The Euclidean norm of a vector is denoted
via ||x|| :=

√
xTx. The derivative of a scalar function U :

R→ R is denoted as U
′
(·). We use x to represent a vector

of elements (x1, ..., xN ), for some N ∈ N. For any xi ∈
Rn, i ∈ N, we use the notation (xi)j to denote the j-th
element of xi, where j = 1, ..., n. If A and B are sets, then
the set difference of B and A is denoted as B \ A := {x ∈
B|x /∈ A}. If A is a set, its cardinality is denoted as |A|.

II. PROBLEM FORMULATION

Consider a scenario in which a utility company intends to
negotiate with N EV customers to set up day-ahead charging
profiles for the next day. Let the set N := {1, ..., N}
denote the set of EVs. The scheduling is over T time
slots, and each time slot may represent some period of time
(e.g., 15 minutes). We assume that the day-ahead base load
D(t), t = 1, ..., T is given. For notational convenience, let
T := {1, ..., T} denote the set of time slots. Denote by x̂n(t)
the charging rate of the n-th EV during the t-th time slot.
The charging profile of the n-th EV is then given by the
vector x̂n := [x̂n(1), x̂n(2), · · · x̂n(T )]. Let x̂upn (t) denote
the maximum charging rate for the n-th EV during the t-th
time slot and R̂n denote the desired total charge for the n-th
EV, which is calculated as the sum of the charging rates for
the EV. The total load is given by the sum of the base load
and the charging rates for all the EVs.

The power network is characterized as a graph. To be
specific, consider a connected and undirected graph G =
(Ms, E), where Ms denotes the set of vertices of the graph
and E ⊂ Ms ×Ms denotes the set of edges in the graph.
The edge (i, j) connects vertices i and j. For our setup, the
set of verticesMs := {1, ...,Ms} denotes the set of buses in
the network. Among these buses, there are Ml buses where
EVs connect to, and we denote them as load buses. Let the
set Ml := {1, ...,Ml} be the set of load buses. Similarly,
we assume that there are Mg buses where power injection
occurs and we denote them as injection buses. Let the set
Mg := 1, ...,Mg be the set of injection buses. We define the
setMp :=Ms\{Ml∪Mg} and let Mp := |Mp|. The edge
(i, j) denotes a power line connecting vertices i and j. Each
edge in the graph has an associated capacity constraint. We
focus on active power capacity constraints in this study. The
capacity constraints place upper bounds on the active power
flowing through the different edges. Since these edges supply
power to a subset of EVs, this may constrain the possible
charging profile for these EVs.

It is clear that these constraints can be described by linear
equalities that constrain the charging rates of the EVs. For
instance, if a bus with capacity c̃ supplies EVs 1, 2, and 3
with charging profiles x̂1, x̂2, x̂3 respectively, the inequality
x̂1 + x̂2 + x̂3 ≤ c̃ must be satisfied at every time slot. By
stacking all such inequalities, we obtain a constraint of the
form L̂x̂ ≤ ĉ, where x̂ = [x̂1, x̂2, · · · , x̂N ] is the vector of
charging profiles, L̂ is a matrix where elements are either 0
or 1 depending on whether the corresponding EV is part

of a particular capacity constraint and ĉ is the vector of
capacity constraints. Notice that our formulation allows for
time-varying capacity constraints for the same line. This may
be of use if these capacity constraints were imposed for
components such as transformers that have a specified “cool-
down” period.

The objective of the system-level optimization problem
is to minimize the total load variance while satisfying the
constraints induced by the power network and fully charging
the EVs up to the desired level. Thus we require a charging
profile x̂ = (x̂1, ..., x̂N ) that solves

minimize
∑

t∈T (D(t) +
∑

n∈N x̂n(t))2

subject to 0 ≤ x̂n(t) ≤ x̂upn (t), t ∈ T , n ∈ N ,∑
t∈T x̂n(t) = R̂n, n ∈ N ,

L̂x̂ ≤ ĉ.

(1)

The utility company can, in principle, solve the problem
(1) in a centralized manner. In this case, however, the com-
pany needs information about the charging profile constraints
including timings, and requirements for all the EVs. To avoid
communication of such private information, it is of interest
to design a distributed algorithm to solve (1). Similar to
the algorithms proposed in [4] and [5], we allow the utility
company to send price-like control signals to the EVs to
guide them to select suitable charging rates. However, the
algorithm in [4] and [5] needs to be augmented to ensure that
the resulting charging profiles satisfy the capacity constraints.
The mechanism for doing so must be such that every EV
should exchange information with only its local neighbors
(EVs or components).

In this paper, we present such a distributed algorithm. We
first consider a homogeneous scenario in which every EV
connected to the same load bus has identical feasible sets of
charging profiles. More specifically, we assume that for any
i ∈Ml, xupn = xupm , ∀ n, m ∈ Ni and R̂n = R̂m, ∀ n, m ∈
Ni, where the set Ni is the set of EVs connected to the i-
th load bus. In Section III, we develop algorithms for this
homogeneous case. For more general setups, the reader is
referred to an extended version of the paper [13].

Consider the aggregate charging profiles at each load bus.
Let xi :=

∑
n∈Ni

xn, x̄i := |Ni|xupn , Ri := |Ni|R̂n, n ∈ Ni

be the aggregate charging profile, aggregate charging upper
limit, and aggregate charging sum, respectively for the EVs
connected to the i-th load bus. In addition, define the average
charging profile of xi to be 1

|Ni|xi.
The problem in (1) can be modified for this homogeneous

case to

minimize
∑

t∈T (D(t) +
∑

i∈Ml
xi(t))

2

subject to 0 ≤ xi(t) ≤ x̄i(t), t ∈ T , i ∈Ml,∑
t∈T xi(t) = Ri, i ∈Ml,

Lx ≤ c.

(2)

We now present distributed algorithms to solve the prob-
lem (2) with the aggregate charging profiles as our optimiza-
tion variables.
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III. DISTRIBUTED ALGORITHMS

From the structure of (2), it is evident that coupling among
the EV charging rates occurs due to both the cost function
and the capacity constraints. We propose three distributed
algorithms to solve the problem. The first two algorithms
use ODC to optimize the total load and ADMM to enforce
the capacity constraints. The two algorithms differ in the
time-scale at which these two sub-routines are executed.
Specifically, in the first algorithm, ODC is run in the outer
loop and ADMM in the inner loop. The second algorithm
reverses the order of the execution of these sub-routines.
The third algorithm uses only one sub-routine (ADMM) in
both the loops. These different algorithms result in different
message passing structures and exhibit different tradeoffs
between the feasibility and optimality of the solutions of the
problem (2), as explored more thoroughly in Section III-D.

Here we introduce some notation that will be used in
the description of the algorithms. Our problem involves
coupled constraints and hence the framework of general form
consensus optimization [1] applies. The set of branch power
flows for all branches in the network form the global variable
in the optimization problem that is denoted by z. For every
bus i ∈ Ms, the corresponding branch power flows form
the local variable yi. The local variable is thus a linear
function of the global variable z. We denote this relation by
the equation yi = z̃i, where z̃i is the specific part of z that
contains this local variable. Finally, the charging profiles of
the EVs connected at the i-th bus form the private variable
xi for this bus. While the private variables are not shared
with other buses, they are related to the local variables. If
we define ri = (xi, yi), then these relations are modeled as
equality constraints Hiri = 0 for suitably defined matrices
Hi.

Using these variables, we define three sets. The set Li =
{yi ∈ Rni |L̄iyi ≤ c̄i} denotes the set of branch power
flows at the buses that satisfy the capacity constraints in
the network. The set Fi = {xi|0 ≤ xi(t) ≤ x̄i(t),∀t ∈
T ,

∑
t∈T xi(t) = Ri,∀i ∈ Ml} denotes the set of feasible

charging profiles without considering capacity constraints.
Finally, the set Hi = {ri|Hiri = 0} simply encodes the set
of values for charging profiles that can result from specified
values of the power flows at the buses.

A. Algorithm 1

As noted above, Algorithm 1 uses ODC to optimize
the total load profile and ADMM to enforce the capacity
constraints. ODC is executed in the outer loop, while ADMM
is executed in the inner loop. The iteration indices j and k
are used for the outer loop and inner loop, respectively. The
iterations continue for J and K times respectively. In this
paper, we perform a fixed number of iterations and better
stopping criteria are part of future work. We assume that
the derivative of the objective function U

′
is Lipschitz with

Lipschitz constant β > 0.
For Algorithm 1, the utility company sends the price-like

signal pj to all load buses and every load bus i ∈Ml sends
back the charging profile xj,Ki to the utility company in the

j-th outer iteration. On the other hand, every bus i ∈ Ms

exchanges local variable yj,k+1
i and the scaled dual variable

uj,ki with its neighbors in the j-th outer and k-th inner
iteration, where the neighbors of the i-th bus, i ∈ Ms is
defined as the set {j ∈Ms|(i, j) 6= 0, j ∈Ms}.
Given: Scheduling horizon T . The utility company

knows the base load profile D and the number Ml of load
buses. Each load bus i ∈Ml knows the set Fi of its feasible
charging profiles, and each injection bus i ∈ Mg knows
the set Fi of its feasible power injection profiles. Each bus
i ∈ Ms knows the set Li of feasible capacity constraints
and the set Hi. Select γ such that 0 < γ < 1/(Mlβ).
Output: Charging profiles xi, i ∈Ml.
Set j ← 0, xji (t)← 0, i ∈Ml, t ∈ T .
Repeat while j < J
The utility company computes and broadcasts

pj(t)← γU
′
(D(t) +

∑
i∈Ml

xji (t)), t ∈ T .

Set k ← 0, pj,ki (t) ← pji (t), x
j,k
i (t) ← xji (t), r

j,k
i (t) ←

0, uj,ki (t)← 0, z̃j,ki (t)← 0, i ∈Ms, t ∈ T .
Repeat while k < K
Perform r-Update:

For i ∈Ml,

rj,k+1
i ← arg min

xi,yi

(pj,k)Txi + 1/2||xi − xj,ki ||2

+ (ρ/2)||yi − z̃j,ki + uj,ki ||2
subject to xi ∈ Fi, yi ∈ Li,

ri := (xi, yi) ∈ Hi.

(3)

For i ∈Mg,

rj,k+1
i ← arg min

xi,yi

(ρ/2)||yi − z̃j,ki + uj,ki ||2

subject to xi ∈ Fi, yi ∈ Li, ri ∈ Hi.

For i ∈Mp,

yj,k+1
i ← arg min

yi

(ρ/2)||yi − z̃j,ki + uj,ki ||2

subject to yi ∈ Li, ri ∈ Hi.

Perform z̃-Update:

z̃j,k+1 ← arg min
z̃i

(ρ/2)

Ms∑
i=1

||z̃i − uj,ki − y
j,k+1
i ||2.

Perform u-Update:

For i ∈Ms, u
j,k+1
i ← uj,ki + yj,k+1

i − z̃j,k+1
i .

Set k ← k + 1.
Set j ← j + 1.
Each load bus i ∈ Ml sends charging profile xj−1,K

i to
the utility company.

Set xji ← xj−1,K
i .

Return xJi , i ∈Ml.
Proposition 1: Suppose that xji is an exact minimizer of

the inner loop optimization, then the charging profile xj

converges to the set O of optimal charging profiles, as
j →∞, where j is the outer iteration index.

The proof can be found in [13].
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B. Algorithm 2

In Algorithm 2, we switch the order of the building blocks
in the loops of Algorithm 1. More specifically, the outer loop
now executes ADMM, whereas the inner loop is based on
the ODC algorithm.

For Algorithm 2, every bus i ∈ Ms exchanges local
variable yj+1

i and the scaled dual variable uji with its
neighbors in the j-th outer iteration. On the other hand, the
utility company sends the price-like signal pj,k to all buses
i ∈Ms in the j-th outer and k-th inner iteration. Every bus
i ∈Ms sends back the signals rj,k+1

i to the utility company
in the k-th inner iteration and sends the control signals uj+1

and z̃j+1 to the utility in the j-th outer iteration.
Given: Scheduling horizon T . The utility company

knows the base load profile D and the number Ml and types
of load buses. Each load bus i ∈ Ml knows the set Fi of
its feasible charging profiles, and each injection bus i ∈Mg

knows the set Fi of its feasible power injection profiles. Each
bus i ∈ Ms knows the feasible set of capacity constraints
Li, and the set Hi. Select γ such that 0 < γ < 1/(Msβ).

Output: Charging profiles xi, i ∈Ml.
Set j ← 0, uji (t)← 0, z̃ji (t)← 0, i ∈Ms, t ∈ T .
Repeat while j < J
Set k ← 0, z̃j,ki ← z̃ji , uj,ki ← uji , xj,ki (t) ←

0, yj,ki (t)← 0, i ∈Ms, t ∈ T .
Repeat while k < K
The utility company computes and broadcasts

For i ∈Ml,

pj,ki (t)← γ

[
U

′
(D(t) +

∑
i∈Ml

xj,ki (t))

ρ(yj,ki − z̃
j,k
i + uj,ki )

]
.

For i ∈M \Ml,

pj,ki (t)← γρ(yj,ki − z̃
j,k
i + uj,ki ).

Perform r-Update:
For bus i ∈Ms \Mp computes

rj,k+1
i

← arg min
ri

(pj,ki )T ri + 1/2||ri − rj,ki ||2

subject to xi ∈ Fi, yi ∈ Li, ri ∈ Hi.

(4)

For bus i ∈Mp computes

rj,k+1
i

← arg min
ri

(pj,ki )T ri + 1/2||ri − rj,ki ||2

subject to yi ∈ Li, ri ∈ Hi.

(5)

Set k ← k + 1.
Each bus i ∈Ms sends rj,ki to the utility company.
Set yj+1

i ← yj,Ki .
z̃-Update:

z̃j+1 ← arg min
z̃i

Ms∑
i=1

(ρ/2)||yj+1
i − z̃i + uji ||

2.

u-Update:

For i ∈Ms, u
j+1
i ← uji + yj+1

i − z̃j+1
i .

Set j ← j + 1.
Buses send uj and z̃j to the utility company.
Return xJi , i ∈Ml.
Proposition 2: Suppose that rji is an exact minimizer of

the inner loop optimization, then the charging profile xj

converges to the set O of optimal charging profiles, as
j →∞, where j is the outer loop iteration index.

The proof is presented in [13].

C. Algorithm 3
Algorithm 3 consists of only one ADMM loop. Denote

by k the iteration index. The stopping criterion in the inner
loop is k = K, where K is a specified number of iterations.

For Algorithm 3, every bus i ∈ Ms exchanges local
variable yk+1

i and the scaled dual variable uki with its
neighbors in the k-th iteration. Every load bus i ∈Ml sends
the charging profile xk+1

i and the scaled dual variable uki
to the utility company and the utility company sends back
the control signal ẑk+1

i to all load bus i ∈ Ml in the k-th
iteration.

We reformulate the problem in (2) to

minimize
∑T

t=1(
∑Ml

i=1 ẑi(t) +D(t))2

subject to ri := (xi, yi), z̄i := (ẑi, z̃i),
xi ∈ Fi, yi ∈ Li, ri ∈ Hi, i ∈Ms,
xi = ẑi, yi = z̃i, i ∈Ms.

(6)

ADMM is used to solve the problem (6).
Given: Scheduling horizon T . The utility company needs

to know the base load profile D, the number Ms of buses,
and the types of buses. Each load bus knows its feasible set
of charging profiles, and each injection bus knows its feasible
set of power injection profiles. Each bus i ∈Ms knows the
feasible set of capacity constraints Li, and the set Hi.

Output: Charging profiles xi, i ∈Ml.
Set k ← 0, rki (t)← 0, uki (t)← 0, z̄ki (t)← 0,
i ∈Ms, t ∈ T .
Repeat while k < K
r-Update:

For i ∈Ms,

rk+1
i ← arg min

ri

(ρ/2)||ri − z̄ki + uki ||2,

subject to xi ∈ Fi, yi ∈ Li, ri ∈ Hi,

z̄-Update:

z̄k+1 ← arg min
z̄

T∑
t=1

(

Ml∑
i=1

ẑi(t) +D(t))2

+ (ρ/2)

Ms∑
i=1

||z̄i − uki − rk+1
i ||2,

u-Update:

uk+1
i ← uki + rk+1

i − z̄k+1
i .

Set k ← k + 1.
Return xKi , i ∈Ml.
Proposition 3: Charging profile xk converges to the set O

of optimal charging profiles, where k is the iteration index.
The proof can be proven using standard techniques [1].
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D. Comparisons of the Algorithms

In Algorithm 1, the utility company and load buses nego-
tiate suitable charging profiles in every iteration of the outer
loop, whereas the load buses exchange charging profiles
with their neighbors in every iteration of the inner loop. In
Algorithm 2, load buses exchange charging profiles with their
neighbors in every iteration of the outer loop, whereas the
utility company and load buses negotiate suitable charging
profiles in every iteration of the inner loop and in the
transition of the inner loop to the outer loop. In Algorithm
3, the utility company and load buses negotiate charging
profiles, and the load buses exchange charging profiles with
their neighbors in the same iteration.

Notice that for Algorithm 1, the primal solutions (charging
profiles) xj remain feasible for every iteration of the outer
loop j = 1, ..., J . At the end of every iteration of the
outer loop, the utility company and the customers will obtain
feasible charging profiles but they may be sub-optimal. On
the other hand, for Algorithm 3, since there is only one
ADMM loop, the primal solutions (charging profiles) may
not be feasible during every iteration. In other words, we
cannot obtain feasible charging profiles in Algorithm 3 be-
fore the primal solutions reach the set of the optimal charging
profiles. In this sense, Algorithm 1 is advantageous in terms
of the trade-off between the feasibility and the optimality of
the solutions. For Algorithm 2, since the outer loop consists
of ADMM, it can only provide feasible charging profiles
after the solutions reach the set of optimal charging profiles.
However, it is well known that the r-update in equations
(4), (5) of ADMM does not needs to be carried out exactly
[1]. This r-update procedure in Algorithm 2 is implemented
through the ODC algorithm. In other words, it is possible to
allow ODC in Algorithm 2 to be solved only approximately
to reduce the amount of communication required.

IV. NUMERICAL EXAMPLES

We consider the 47-bus power distribution network from
the service area of Southern California as described in [6].
The peak capacity constraints of the load buses and the
Photovoltaic (PV) generators are chosen according to [6,
Table I]. We focus on active power capacity constraints in
this study, therefore, the unit adopted for the capacity con-
straint is MW instead of MVA1. We provide two numerical
examples. In the first example, we compare the optimal load
profile with and without capacity constraints. The desired
pattern is a modification of the valley-filling load profile
subject to the capacity constraints of the load buses. In
the second example, we compare the performance of the
proposed three distributed algorithms. In addition to verify-
ing that the charging solutions generated by the algorithms
converge to the optimal one in terms of the cost function
value for this 47-bus distribution network, we also study the
tradeoffs between the communication requirements and the
performances of the algorithms. Notice that in the simulation,
we consider only the homogeneous case discussed in Section

1The unit for the peak capacity constraint is MVA in [6, Table I].

III. CVX/CVXGEN [9], [15] solvers are used to solve the
optimization problems. For both examples, the starting and
the end time for charging are at 20:00 pm and 9:00 am
(the next day), respectively, and the based loads are chosen
artificially to have valleys during off peak hours.

In the first example, we impose the aggregate charging
sum Ri = 1 MW and the aggregate upper limit x̄i = 0.2
MW for each load bus. For the details of choosing charging
requirements R̂n and x̂upn , the reader is referred to [4]. The
time slot used for charging is one half hour The charging
profiles as the solution of the optimization in (2) with and
without the capacity constraints are shown in Fig. 1. We
observe that the solution is not feasible subject to the peak
capacity constraints of PV generators listed in [6, Table I].
Therefore, we enlarge the capacity constraints of the PV
generators to three times the original values. One can see in
Fig. 1 that the valley-filling profiles are modified to satisfy
the capacity constraints of the load buses. Furthermore, these
modifications result in higher variability of the total load.
By comparing the optimal load profile with and without
capacity constraints, it shows that a valley-filling load profile
may no longer be feasible or compatible with the capacity
constraints.

In the second example, we impose the aggregate charging
sum Ri = 0.8 MW and the aggregate upper limit x̄i = 0.066
MW for each load bus. The time slot used for charging is
15 minutes. The initial conditions of the three algorithms
are initialized to be zero. For Algorithm 1, the parameter
γ = 0.0106 satisfies the condition 0 < γ < 1/(Mlβ) in
Algorithm 1, where Ml = 26 and β = 2. For Algorithm 2,
the parameter γ = 0.0104 satisfies the condition 0 < γ <
1/(Msβ) in Algorithm 2, where Ml = 47 and β = 2. We
set the step size ρ = 1 appeared in the ADMM updates
for all three algorithms. To obtain a better performance by
optimizing the values of the system parameters γ and ρ is
beyond the scope of this study and left for future work.
Figure 2 provides the convergence results of the cost function
values generated by the proposed algorithms.

To study the tradeoffs between the communication require-
ments and the performances of the proposed algorithms, we
run the outer loop iteration once, i.e. J = 1 and inner loop
100 times, i.e. K = 100. The total numbers of the iterations
in the outer and inner loops have different meanings for the
three algorithms. For Algorithm 1, the utility company only
needs to communicate once with all the load buses, which
on the other hand communicate with their neighbors 100
times. For Algorithm 2, all the buses communicate with their
neighbors only once, but the utility company communicate
with all the buses 100 times. For algorithm 3, since there is
only one loop, the utility company needs to communicate 100
times with all the buses, which likewise need to communicate
with their neighbors 100 times. Figure 3 and 4 show the total
load profiles generated by the proposed algorithms and the
convergence results of the primal residuals of the algorithms,
respectively. The primal residual is measured by the norm∑

i,j∈Ms
||(z̃i)(i,j) − (z̃j)(i,j)||, where (z̃i)(i,j) denotes the

part of z̃i on the edge (i, j), i, j ∈ Ms. As we defined
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Fig. 4. The convergence results
of the primal residuals, where
J = 1, K = 100. The horizontal
axis represents the total number
of iterations in the inner loop,
and the vertical axis represents the
value of the primal residual.

in Section III, z̃i is the part of the global variable z that
contains the local variable which is the corresponding branch
power flows at each bus. This primal residual measures the
difference between the power flows through the same power
line originated from the adjacent buses. If the primal residual
is zero, it indicates that the adjacent buses set up the same
power flowing through the corresponding power line. Essen-
tially, in order to implement the power distribution solutions
generated from the algorithms, the primal residual must be
zero or approach zero for every power line since there is only
one power flow through the corresponding power line. We
can see from Fig. 3 that Algorithm 2 and 3 perform better
in the sense of the convergence of the total load profiles to
the optimal one (valley-filling profile). Algorithm 1 trades
this optimality to reduce the burden of the communication
among the utility company and the load buses. On the other
hand, we can see from Fig. 4 that Algorithm 1 and 3 have
better performance in terms of the convergence of the primal
residuals than Algorithm 2 which trades the primal feasibility
to reduce the burden of the communication among the buses.
These different message passing structures required to satisfy
the desired performances in terms of the shape of the total
load profile and the primal feasibility may distinguish the
distributed algorithms proposed in this work.

V. CONCLUSION

We have incorporated the capacity constraints in the power
network aiming at optimizing the total load profile with the
penetration of EVs. In comparing the optimal load profile

either with or without capacity constraints, the simulation
result shows that a valley-filling profile may no longer be fea-
sible with the incorporation of the capacity constraints. We
have further proposed three distributed charging algorithms
composed of different message passing structures with the
trade-off between the feasibility and the optimality of the
charging profiles.
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