Review from last time

- Started talking about the AD-AS model in the short run

- Examples:
 - *Temporary* increase in consumer spending from hot new product
 - *Permanent* increase in a government spending program
 - *Temporary* spike in international oil prices
 - *Permanent* increase in educational attainment of workers in the USA
Short Run vs. Long Run

- Remember from last time: the difference between the *short run* and the *long run* is the time it takes to adjust price expectations.

- Also, remember from last time:

 \[Y = Y_N + a(P - P_E) \]

- If \(P > P_E \) in the short run and stays there, then in the long run \(P_E \) increases.

- If \(P < P_E \) in the short run and stays there, then in the long run \(P_E \) decreases.

- Remember that SRAS *shifts* when \(P_E \) changes.
Temporary vs. Permanent

- A *temporary* shock to the economy is one that subsides before price expectations adjust.

- A *permanent* shock is one that is still present in the long run.

- Absent anything else happening, the economy returns to its initial equilibrium in the long run following a temporary shock, but not following a permanent shock.
Back to our examples

- Now what happens in the long run of each of these?
- Examples:
 - *Temporary* increase in consumer spending from hot new product
 - *Permanent* increase in a government spending program
 - *Temporary* spike in international oil prices
 - *Permanent* increase in educational attainment of workers in the USA
What can the government do?

- Government can intervene in two ways:
 - Monetary policy: Fed can cut interest rates to increase AD
 - Government spending: Gov’t can increase G to increase AD
- Raising interest rates or cutting spending have the opposite effects
- Suppose the government decides to stabilize GDP by using monetary/fiscal policy to keep Y on the LRAS curve
Two types of shocks

- Consider each of these two cases:
 - The economy goes into a recession because the stock market has crashed and spending is down
 - The economy goes into a recession because an earthquake has critically damaged power grids

- Assume both of these are temporary shocks

- What happens if the government does or does not intervene for each?
Basic Tradeoff

- In response to temporary shocks to the economy:
 - If the shock is a *demand* shock, then if the government intervenes they shorten the recession
 - If the shock is a *supply* shock, then if the government intervenes it shortens the recession, but increases inflation permanently
- Demand shocks and supply shocks are difficult to tell apart in the short run
The Phillips Curve

- Until now, our treatment of unemployment has been loose; want to formalize this
- **Phillips curve**: shows the short-run trade-off between inflation and unemployment
- 1958: A.W. Phillips showed that nominal wage growth was negatively correlated with unemployment in the U.K.
- 1960: Paul Samuelson & Robert Solow found a negative correlation between U.S. inflation & unemployment, named it “the Phillips Curve.”
Suppose $P = 100$ this year.

The following graphs show two possible outcomes for next year:

A. Agg demand low, small increase in P (i.e., low inflation), low output, high unemployment.

B. Agg demand high, big increase in P (i.e., high inflation), high output, low unemployment.
Deriving the Phillips Curve

A. Low agg demand, low inflation, high u-rate

B. High agg demand, high inflation, low u-rate
The Phillips Curve: A Policy Menu?

- Since fiscal and monetary policy affect aggregate demand, the *Phillips Curve* appeared to offer policymakers a menu of choices:
 - low unemployment with high inflation
 - low inflation with high unemployment
 - anything in between

- 1960s: U.S. data supported the Phillips curve. Many believed the *Phillips Curve* was stable and reliable.
Evidence for the Phillips Curve?

During the 1960s, U.S. policymakers opted for reducing unemployment at the expense of higher inflation.

During the 1960s, U.S. policymakers opted for reducing unemployment at the expense of higher inflation.
The Vertical Long-Run Phillips Curve

- 1968: Milton Friedman and Edmund Phelps argued that the tradeoff was temporary.

- **Natural-rate hypothesis**: the claim that unemployment eventually returns to its normal or “natural” rate, regardless of the inflation rate.

- Based on the classical dichotomy and the vertical LRAS curve.
In the long run, faster money growth only causes faster inflation.
Reconciling Theory and Evidence

- Evidence (from ’60s):
 \textit{Phillips Curve} slopes downward.

- Theory (Friedman and Phelps):
 \textit{Phillips Curve} is vertical in the long run.

- To bridge the gap between theory and evidence, Friedman and Phelps introduced a new variable: \textit{expected inflation} – a measure of how much people expect the price level to change.
The Phillips Curve Equation

\[
\text{Unemp. rate} = \text{Natural rate of unemp.} - a \left(\text{Actual inflation} - \text{Expected inflation} \right)
\]

Short run
Fed can reduce u-rate below the natural u-rate by making inflation greater than expected.

Long run
Expectations catch up to reality, u-rate goes back to natural u-rate whether inflation is high or low.
Recall: Equation for SRAS

Y deviates from Y_N when P deviates from P_E.

\[Y = Y_N + \alpha (P - P_E) \]

- Output
- Natural rate of output (long-run)
- $\alpha > 0$, measures how much Y responds to unexpected changes in P
- Actual price level
- Expected price level
How Expected Inflation Shifts the PC

Initially, expected & actual inflation = 3%, unemployment = natural rate (6%).

Fed makes inflation 2% higher than expected, u-rate falls to 4%.

In the long run, expected inflation increases to 5%, PC shifts upward, unemployment returns to its natural rate.