Suggested Answers

Problem Set 7

Economics 60303

Bill Evans

Spring 2013

1. a) The decision rule is that $\mathrm{y}_{\mathrm{i}}=1$ if $\mathrm{c}_{\mathrm{i}} \geq \mathrm{c}^{*}$ where $c^{*} \sim N\left[\mu, \sigma^{2}\right]$. Note that
$\operatorname{Pr}\left[y_{i}=1\right]=\operatorname{Pr}\left[c_{i} \geq c^{*}\right]=\operatorname{Pr}\left[\left(c^{*}-\mu\right) / \sigma=z \leq\left(c_{i}-\mu\right) / \sigma\right]=\Phi[(c-\mu) / \sigma]$ which can be reduced to read $\operatorname{Pr}\left[y_{i}=1\right]=\Phi\left[-(\mu / \sigma)+\left(c_{i} / \sigma\right)\right]$. Let $\beta_{1}=1 / \sigma$ and $\beta_{0}=-\mu / \sigma$ then we can rewrote the decision rule as $\operatorname{Pr}\left[y_{i}=1\right]=\Phi\left[\beta_{0}+\beta_{1} c_{i}\right]$. Notice that $\hat{\beta}_{1}$ should be >0 and hence $\partial \operatorname{Pr}\left[y_{i}=1\right] / \partial c_{i}>0--$ as the cholesterol level increases the probability of getting a prescription increases. The \log likelihood function for observation i is then

$$
L_{i}=\Phi\left[\beta_{0}+\beta_{1} C L S_{i}\right]^{y_{i}}\left(1-\Phi\left[\beta_{0}+\beta_{1} C L S_{i}\right]\right)^{1-y_{i}}
$$

b) Let β_{0} vary across people so it now equals $\beta_{0}^{i}=-\mu_{i} / \sigma=-x_{i} \beta / \sigma$
2. a. $\operatorname{Pr}\left(y_{i}>a\right)=\int_{a}^{\infty} \alpha\left(\frac{y_{m}^{\alpha}}{y^{\alpha+1}}\right) d y=\int_{a}^{\infty} \alpha y_{m}^{\alpha} y^{-\alpha-1} d y=\left.\left(\frac{\alpha}{\alpha}\right) y_{m}^{\alpha} y^{-\alpha}\right|_{a} ^{\infty}=y_{m}^{\alpha} y^{-\infty}$

$$
E\left[y_{i}\right]=\int_{a}^{\infty} \alpha y\left(\frac{y_{m}^{\alpha}}{y^{\alpha+1}}\right) d y=\int_{a}^{\infty} \alpha y_{m}^{\alpha} y^{-\alpha} d y=\left.\left(\frac{\alpha}{-\alpha+1}\right) y_{m}^{\alpha} y^{-\alpha-1}\right|_{a} ^{\infty}=
$$

b.

$$
\begin{aligned}
& \left.\left(\frac{\alpha}{1-\alpha}\right) y_{m}^{\alpha} y^{-\alpha+1}\right|_{a} ^{\infty}=\left(\frac{\alpha}{1-\alpha}\right)\left(\left[y_{m}^{\alpha} \infty^{-\alpha+1}\right]-\left[y_{m}^{\alpha} y_{m}^{-\alpha+1}\right]\right)=\left(\frac{y_{m} \alpha}{1-\alpha}\right) \\
& \ell=\sum_{i} \ln \left[\alpha\left(\frac{y_{m}^{\alpha}}{y^{\alpha+1}}\right)\right]=\sum_{i}\left[\ln (\alpha)+\alpha\left[\ln \left(y_{m}^{\alpha}\right)-(\alpha+1) \ln \left(y_{i}\right)\right]\right.
\end{aligned}
$$

c.

$$
=n \ln (\alpha)+n \alpha \ln \left(y_{m}^{\alpha}\right)-(\alpha+1) \sum_{i} \ln \left(y_{i}\right)
$$

b. $\frac{\partial \ell}{\partial \alpha}=\frac{n}{\alpha}+n \ln \left(y_{m}^{\alpha}\right)-\sum_{i} \ln \left(y_{i}\right)=0$ which implied that $\hat{\alpha}=\frac{n}{\ln \left(y_{m}^{\alpha}\right)-\bar{y}}$
3. $\ell=N_{11} \ln \left(P_{1}\right)+N_{01} \ln \left(1-P_{1}\right)+N_{10} \ln \left(P_{0}\right)+N_{00} \ln \left(1-P_{0}\right)$

The first order conditions are

$$
\begin{aligned}
& \frac{\partial \ell}{\partial P_{1}}=\frac{N_{11}}{P_{1}}-\frac{N_{01}}{1-P_{1}}=0 \text { which implies that } \hat{P}_{1}=\frac{N_{11}}{N_{11}+N_{01}} \\
& \frac{\partial \ell}{\partial P_{0}}=\frac{N_{11}}{P_{0}}-\frac{N_{00}}{1-P_{0}}=0 \text { which implied that } \hat{P}_{0}=\frac{N_{10}}{N_{10}+N_{00}}
\end{aligned}
$$

Note that $\Phi\left(\beta_{0}+\beta_{1}\right)-\Phi\left(\beta_{0}\right)=\hat{P}_{1}-\hat{P}_{0}$. Looking ahead to the next problem, note that we can write $\hat{P}_{1}=\frac{N_{11}}{N_{11}+N_{01}}$ as $\bar{y}_{1}=\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}}$ and $\hat{P}_{0}=\frac{N_{10}}{N_{10}+N_{00}}$ as $\bar{y}_{0}=\frac{\sum_{i}\left(1-x_{i}\right) y_{i}}{\sum_{i}\left(1-x_{i}\right)}$
4. Continue with problem 3. The 2×2 table below provides the number of observations in each pair of (X, Y) combinations:
$\hat{P}_{1}=\frac{N_{11}}{N_{11}+N_{01}}=\frac{30}{30+15}=0.667$ and $\hat{P}_{0}=\frac{N_{10}}{N_{10}+N_{00}}=\frac{20}{20+35}=0.364$
$\Phi\left(\beta_{o}\right)=0.364$ which implies that $\Phi^{-1}(0.364)=\hat{\beta}_{0}=-0.348$
$\Phi\left(\beta_{o}+\beta_{1}\right)=0.667$ which implies that $\Phi^{-1}(0.667)=\left(\hat{\beta}_{o}+\hat{\beta}_{1}\right)=0.432$ and
$\hat{\beta}_{1}=0.432-\hat{\beta}_{0}=0.432--0.348=0.78$
5. In a previous problem set we showed that given a linear regression $y_{i}=\beta_{0}+x_{i} \beta_{1}+\varepsilon_{i}$ were x_{i} is dichotomous, then the estimate for β_{1} is

$$
\hat{\beta}_{1}=\bar{y}_{1}-\bar{y}_{o}=\hat{P}_{1}=\frac{N_{11}}{N_{11}+N_{01}}-\hat{P}_{0}=\frac{N_{10}}{N_{10}+N_{00}}
$$

6. Note that from problem 3, regardless of the distribution of the error in the discrete choice model $\hat{P}_{1}=\frac{N_{11}}{N_{11}+N_{01}}$ and $\hat{P}_{0}=\frac{N_{10}}{N_{10}+N_{00}}$. Therefore, $\hat{P}_{0}=\frac{e^{\beta_{0}}}{1+e^{\beta_{0}}}$ and $\hat{\beta}_{0}=\ln \left(\hat{p}_{0} /\left(1-\hat{p}_{0}\right)\right)$ and $\hat{\beta}_{1}=\ln \left(\hat{p}_{1} /\left(1-\hat{p}_{1}\right)\right)-\hat{\beta}_{0}$.
7.

OLS coefficient or marginal effect on worka variable							
(standard error)			$	$	OLS (Linear	Marginal effect on porka from probit	Marginal effect on worka from logit
:---:	:---:	:---:					
-0.0838	-0.0838	-0.0838					
(0.0073)	(0.0076)	(0.0076)					

8. $\quad \ell=N_{11} \ln \left(P_{1}\right)+N_{01} \ln \left(1-P_{1}\right)+N_{10} \ln \left(P_{0}\right)+N_{00} \ln \left(1-P_{0}\right)$
$\ell=N_{11} \ln \left[\Phi\left(\beta_{0}+\beta_{1}\right)\right]+N_{01} \ln \left[1-\Phi\left(\beta_{0}+\beta_{1}\right)\right]+N_{10} \ln \left[\Phi\left(\beta_{0}\right)\right]+N_{00} \ln \left[1-\Phi\left(\beta_{0}\right)\right]$
In this case, $\mathrm{N}_{01}=0$. There is no mother with a twin on the $1^{\text {st }}$ birth without a second child. Therefore, the log likelihood reduces to
$\ell=N_{11} \ln \left[\Phi\left(\beta_{0}+\beta_{1}\right)\right]+N_{10} \ln \left[\Phi\left(\beta_{0}\right)\right]+N_{00} \ln \left[1-\Phi\left(\beta_{0}\right)\right]$
Taking the first order conditions
$\frac{\partial \ell}{\partial \beta_{0}}=\frac{N_{11} \phi\left(\beta_{0}+\beta_{1}\right)}{\Phi\left(\beta_{0}+\beta_{1}\right)}+\frac{N_{10} \phi\left(\beta_{0}\right)}{\Phi\left(\beta_{0}\right)}-\frac{N_{00} \phi\left(\beta_{0}\right)}{1-\Phi\left(\beta_{0}\right)}=0$
$\frac{\partial \ell}{\partial \beta_{1}}=\frac{N_{11} \phi\left(\beta_{0}+\beta_{1}\right)}{\Phi\left(\beta_{0}+\beta_{1}\right)}=0$
Notice that $\frac{\partial \ell}{\partial \beta_{1}}$ will only equal zero if $\hat{\beta}_{1} \rightarrow \infty$ so functionally, the parameter is undefined -- the numerator will approach zero and the denominator will approach 1. In general, if the (2 x 2) box of ($\mathrm{y} x \mathrm{x}$) has a missing off-diagonal element, then $\hat{\beta}_{1} \rightarrow \infty$ or $\hat{\beta}_{1} \rightarrow-\infty$ depending on what element of the box is zero. In this case, the estimate is undefined.
