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1. Let Pr(x<a)=®[(a— )/ o] and therefore, the PDF of the truncated distribution is
1 (x
f(x|x>a)==¢| = |/(1-D((a-u)/ o))
(o2 O
Following the methods we used in class, it is straightforward to show that

op((a-p)! o)

E[x| X>a]:”+1_q>((a—u)/0)

2. We know that the conditional mean of y given x is

Oy

Oy

E[Y|X]:ﬂy+/0( ](X—ﬂx)

And we also know from question 1 that we can write the truncated mean of x as

Gx¢((a_:ux)/ax)

E[x|x>a]= g, +1_c1>((a—,ux)/0'x)

We also know that by the law of iterated expectations

E[y|x>a]=E[E[y|x]|x>a]=E{uy+p(§}<x—ux)|x>a}

X

Which equals

—u )l
4, +p(§](E[E[<x—yx)|yl| x>a)) = u, +p(§](ﬂx v 1"_*?((; _i‘;))/‘:))j

X

X

~ (pay¢((a—ﬂx)/0x)}
_Iu +
’ 1_(D((a_:ux)/o_x)



Consider a model where

Yi=ateg

Uncensored observations have a PDF of the form

S

The probability an observation is topcoded is

Pr(y, > y")=Pr[z, =(y—-u)/ o> (y' —u)/ o] =1-D[(y' —u)/ o] =P[(u/ o) - (y' / 5)]

In this model, redefine U=« and let o = o, . Therefore, the likelihood function for observation i is

L= Fq{—y‘ ‘“H [oluro) -y 1o
(o2 O

In this case, the coefficient on the constant in the model gives the ratio of the mean of the uncensored distribution
divided by the standard deviation of the uncensored distribution.

The results from the topit specification are of the form

Tobit regression Number of obs = 19906
LR chi2 (0) = 0.00
Prob > chiZ2 = .
Log likelihood = -16862.062 Pseudo R2 = 0.0000
In weekly ~n | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
cons | 6.084551 .0039005 1559.96 0.000 6.076906 6.092196
_____________ +________________________________________________________________
/sigma | .5469946 .0029041 .5413022 .5526869
Obs. summary: 0 left-censored observations
18474 uncensored observations
1432 right-censored observations at 1ln weekly ~n>=6.906755
In this case, the constant represents u and sigma represents ¢ so the unconditional distribution of In(weekly
earnings) is normal with a mean of 6.084 and a standard deviation of 0.547. Notice that the sample descriptive
statistics of the censored variable are
sum 1ln weekly earn



Variable | Obs Mean Std. Dev Min Max
_____________ +________________________________________________________
1n _weekly ~n | 19906 6.067307 .513047  4.094345  6.906755
Using the results from problem
a—u)l/ —
E[x|x>a]=p+ op(@-10/9) _ ¢ nea ., 0.547( _#(IN(999) ~6.084/0.547) — 6.084+0.547(1.94) = 7.15
1-d((a— )/ o) 1-®(In(999) —6.084/0.547)

Notice that exp(7.15) is $1269.5 , If you replace topcoded values with 7.15, the OLS estimate of that model is

gen earnwklbS5=earnwkl;

replace earnwkl5=7.15 if topcode==1;
(1432 real changes made)

reg earnwkl5 age age2 educ black hispanic union;

Source | SS daf MS Number of obs = 19906
————————————— Fomm - F( 6, 19899) = 1478.79
Model | 1820.31808 6 303.386347 Prob > F = 0.0000
Residual | 4082.4587 19899 .205158988 R-squared 0.3084
————————————— e Adj R-squared = 0.3082
Total | 5902.77678 19905 .296547439 Root MSE .45294
earnwkl5 | Coef Std. Err t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
age | .0704456 .0021266 33.13 0.000 .0662772 .0746139
age2 | -.0006958 .000026 -26.78 0.000 -.0007467 -.0006449
educ | .0754998 .0012033 62.74 0.000 .0731411 .0778584
black | -.2199837 .0117719 -18.69 0.000 -.2430576 -.1969099
hispanic | -.1069377 .0141308 -7.57 0.000 -.1346351 -.0792402
union | .1179767 .0077448 15.23 0.000 .1027962 .1331572
_cons | 3.503225 .0418847 83.64 0.000 3.421128 3.585323

Which are amazing similar to the tobit estimates
Tobit regression Number of obs 19906
LR chi2 (6) = 7309.06
Prob > chi?2 = 0.0000
Log likelihood = -13207.534 Pseudo R2 = 0.2167
earnwkl | Coef Std. Err t P>|t] [95% Conf. Intervall]
_____________ +________________________________________________________________
age | .0703864 .00214 32.89 0.000 .0661919 .074581
age2 | -.0006948 .0000262 -26.55 0.000 -.0007461 -.0006435
educ | .0757658 .0012172 62.25 0.000 .07338 .0781515
black | -.2200147 .011795 -18.65 0.000 -.2431339 -.1968954
hispanic | -.1058161 .0141638 -7.47 0.000 -.1335783 -.0780539
union | 1191111 .0077791 15.31 0.000 .1038634 .1343588



_cons | 3.499009 .0421806 82.95 0.000 3.416332 3.581686
_____________ +________________________________________________________________

/sigma | .4530426 .0023983 .4483418 .4577434

Obs. summary: 0 left-censored observations
18474 uncensored observations
1432 right-censored observations at earnwkl>=6.906755

is virtually identical

4, See Evans, Oates and Schwab, Journal of Political Economy, 1992. Let g(¢;,V;) be the bivariate normal PDF
described in the problem. Note that when

Y; =1 we have g(s = —f, — %[, —W.5,,V, =% — 7, — Z;m, —W,7r,) and when
y; =0 we have g(& <—/f =X~ W,V = X — 7Ty — 71, —W,TT,)

For simplicity, write ) + X8, +W. 5, + & as X; B+ & and 7z, +Z;r, + W7, +V; as
z,;7+v,. The likelihood function for person i is

yi=1 y;=0
L = [g(gi 2 =X, 3,V =% — Zli”)] [g(gi <X BV =X — Zli”)]
To estimate the values of the loglikelihood, we exploit Baye’s theorem where

Pr(A| B) =Pr(ANB)/Pr(B) so Pr(ANB) =Pr(A|B)Pr(B). Let A=v; and B=¢;
2 . 1 X — 2,7
Note that ¢ |v, ~ N[pv, / o,,(1— p")] and the PDF for v;is f(v,) =—¢| ——|.
GV GV

The conditional probability Pr(y, =1|v;)is

Pr(y, =1],) = Pr(e, > —x, 8| vy) =1-@| Zul =PI 0y | _ o Xt ph o,
a0} o)

- P X+ p(%—z;7)l o,
)

Likewise, it is easy to show that



_ _ X, B+ p(X—2,7)/ o,
Pr(yi —O|Vi)—1—CI) (l—p2)015

Putting these together, the likelihood function is the

Yi 1- Yi

L-|o Xli'Ber(Xi_Zol.isﬂ)/UV F(v) 1-® X1i,3+P(Xi—Z&i5”)/0v F(v)
-7) 1)

Taking logs and summing over all i

ﬁzzn: y,| In® X“ﬂer(X‘_Zg_‘sﬂ)/o-V +(@1-y)y,In|1-D X“ﬂ+p(xi_z(}_‘5ﬂ)/av +In[ f(x —2z;7)]
= (1- %) (1-p%)

Notice that is p = 0the model collapses to
(= Z{y (In@[x,8])+ A= y))y; In (1= D[ x,8])+In[ f (%, — 2,7)]}

Which is a probit and an OLS — maximized separately.

5. When in doubt, draw a graph. In Figure 1 below, we have an uncensored scatter plot of x and y. In Figure 2, we
censor the data from below. Given the mass of observations are the point of censoring, the estimated OLS line is

now much flatter than before.

Figure 1. Plot of Xand Y1
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Figure 2: Plot of X and Y Censored from Below
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To show that censoring from below generates attenuation in the estimate for the slope, let D; =1 is a variable is not
censored and D; =0 if it is censored. The OLS estimate of ; when the data is not censored is given as

n

'B ) Z(Xi _Y)yi* B ;(Di(xi _Y)yi*+(1_ D)(X, _Y)Yi*) _ a+b

> (% - > (% -5 ‘

The OLS estimate of ; when the data is censored is given as

n

R _Zn:(xi_i)yi Z(Di(xi_Y)Yi*"'(l_Di)(Xi_i)yt)

oo — _a+c

> (xR’ > (xR’ ;

Note that since the data is censored from below, y' > y.. Note as well that since y is censored from below we anticipate
that we are on the left hand side of the distribution for x and in most cases, (1— D,)(x —X)Y" <0 because (X, — X) <0.
Therefore, (1-D,)(x —X)y" <(1-D,)(x —X)y, <0

or c<b<0. Since a>0 and construction d>0, a+c<a+Db, this is because c is subtracting a larger value off of (a) than is (b),
generating some attenuation bias in the estimate for ,BlC .

8. There are three pictures below that help answer the problem. IN the pictures, | have graphed the contours of the
bivariate normal PDF with a positive covariance. In the first figure, we graphically illustrate the area we want to

calculate with the bivariate normal CDF which is Pr(e; <a/,v, <b’) =G(a’,b’).



In the second graph, we consider the area for Pr(y, =0,x, =1) =Pr(g, <a’,v, >b"). Note that the single cross
hatched area give us Pr(s; <a’) = D(g < a’) but this area has too much area. To get the appropriate area, we

must subtract off Pr(g, <a/,v, <b) =G(a/,b’)so
Pr(y; =0,% =1) =Pr(s <&,V 2b) = ©(&") - G(a/, by)
It should be no surprise that Pr(y, =1, x. =0) =Pr(g; > a’,v, <b’) = (b)) - G(a’,b’)

The area for Pr(y, =1 x, =1) =Pr(g, >a’,v, >b°) is given in the third picture. The single cross-hatched area is
Pr(v, >b®) =1—-d(b"). This area is of course too big. If we subtract off Pr(s; <a’) =D(g <a’) we are
subtracting off too much so we must add back G(a’,b’) so

Pr(y, =1 x =1)=Pr(g >a7,v, 2b’) =1-0(b") —-D(a’) + G(a’, b")
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Computer portion of the problem set

Below is my table. Note four things. First, as p goes from large negative to a large positive number, the OLS estimate of
B, goes from a large positive to a large negative number. Second, in each case, the 2SLS model does fine job of

replicating the treatment effect estimate. Third, note that the average t-statistic is the same in all 2SLS models. This is
because the t-statistic squared in the 2SLS is roughly equal to the t-statistic squared in the reduced-form. That
relationship does not change at all when we move from p being a large negative to a large positive number. Fourth, for p
small, the efficiency of the treatment over the 2SLS is marginal. However, as p increases in value, there is a clear
efficiency gain in using the treatment effect model.

OLS 2SLS Treatment effect model
Average Average Average
Value of Average t-stat on Average t-stat on Average  z-scoreon  Average
r b b b b A b p
0.50 11.75 59.7 -6.39 -2.01 -5.94 -4.38 0.50
0.25 2.90 13.8 -6.30 -2.01 -6.08 -2.51 0.25
0.00 -5.96 -27.8 -6.20 -2.00 -6.16 -2.10 0.01
-0.25 -14.8 -70.6 -6.08 -2.00 -6.26 -2.36 -0.24
-0.50 -23.7 -120.2 -5.95 -1.99 -5.96 -4.29 -0.50




