Suggested Answers
 Problem set 8
 Economics 60303

Bill Evans
Spring 2014

1. Let $\operatorname{Pr}(x \leq a)=\Phi[(a-\mu) / \sigma]$ and therefore, the PDF of the truncated distribution is

$$
f(x \mid x>a)=\frac{1}{\sigma} \phi\left(\frac{x}{\sigma}\right) /(1-\Phi((a-\mu) / \sigma))
$$

Following the methods we used in class, it is straightforward to show that

$$
E[x \mid x>a]=\mu+\frac{\sigma \phi((a-\mu) / \sigma)}{1-\Phi((a-\mu) / \sigma)}
$$

2. We know that the conditional mean of y given x is

$$
E[y \mid x]=\mu_{y}+\rho\left(\frac{\sigma_{y}}{\sigma_{x}}\right)\left(x-\mu_{x}\right)
$$

And we also know from question 1 that we can write the truncated mean of x as

$$
E[x \mid x>a]=\mu_{x}+\frac{\sigma_{x} \phi\left(\left(a-\mu_{x}\right) / \sigma_{x}\right)}{1-\Phi\left(\left(a-\mu_{x}\right) / \sigma_{x}\right)}
$$

We also know that by the law of iterated expectations

$$
E[y \mid x>a]=E[E[y \mid x] \mid x>a]=E\left[\left.\mu_{y}+\rho\left(\frac{\sigma_{y}}{\sigma_{x}}\right)\left(x-\mu_{x}\right) \right\rvert\, x>a\right]
$$

Which equals

$$
\begin{aligned}
& \mu_{y}+\rho\left(\frac{\sigma_{y}}{\sigma_{x}}\right)\left(E\left[E\left[\left(x-\mu_{x}\right) \mid y\right] \mid x>a\right]\right)=\mu_{y}+\rho\left(\frac{\sigma_{y}}{\sigma_{x}}\right)\left(\mu_{x}+\frac{\sigma_{x} \phi\left(\left(a-\mu_{x}\right) / \sigma_{x}\right)}{1-\Phi\left(\left(a-\mu_{x}\right) / \sigma_{x}\right)}\right) \\
& =\mu_{y}+\left(\frac{\rho \sigma_{y} \phi\left(\left(a-\mu_{x}\right) / \sigma_{x}\right)}{1-\Phi\left(\left(a-\mu_{x}\right) / \sigma_{x}\right)}\right)
\end{aligned}
$$

3. Consider a model where

$$
y_{i}=\alpha+\varepsilon_{i}
$$

Uncensored observations have a PDF of the form

$$
\frac{1}{\sigma_{\varepsilon}} \phi\left(\frac{\varepsilon_{i}}{\sigma_{\varepsilon}}\right)=\frac{1}{\sigma_{\varepsilon}} \phi\left(\frac{y_{i}-\alpha}{\sigma_{\varepsilon}}\right)
$$

The probability an observation is topcoded is

$$
\operatorname{Pr}\left(y_{i}>y^{t}\right)=\operatorname{Pr}\left[z_{i}=(y-u) / \sigma>\left(y^{t}-u\right) / \sigma\right]=1-\Phi\left[\left(y^{t}-u\right) / \sigma\right]=\Phi\left[(u / \sigma)-\left(y^{t} / \sigma\right)\right]
$$

In this model, redefine $u=\alpha$ and let $\sigma=\sigma_{\varepsilon}$. Therefore, the likelihood function for observation i is

$$
L_{i}=\left[\frac{1}{\sigma} \phi\left(\frac{y_{i}-u}{\sigma}\right)\right]^{T_{i}}\left[\Phi\left[(u / \sigma)-\left(y^{t} / \sigma\right)\right]\right]^{1-T_{i}}
$$

In this case, the coefficient on the constant in the model gives the ratio of the mean of the uncensored distribution divided by the standard deviation of the uncensored distribution.

The results from the topit specification are of the form

In this case, the constant represents μ and sigma represents σ so the unconditional distribution of \ln (weekly earnings) is normal with a mean of 6.084 and a standard deviation of 0.547 . Notice that the sample descriptive statistics of the censored variable are
. sum ln_weekly_earn

Variable	Obs	Mean	Std. Dev.	Min	Max
ln_weekly_~n	19906	6.067307	. 513047	4.094345	6.906755

Using the results from problem

$$
E[x \mid x>a]=\mu+\frac{\sigma \phi((a-\mu) / \sigma)}{1-\Phi((a-\mu) / \sigma)}=6.084+0.547\left(\frac{\phi(\ln (999)-6.084 / 0.547)}{1-\Phi(\ln (999)-6.084 / 0.547)}\right)=6.084+0.547(1.94)=7.15
$$

Notice that $\exp (7.15)$ is $\$ 1269.5$, If you replace topcoded values with 7.15 , the OLS estimate of that model is gen earnwkl5=earnwkl;
. replace earnwkl5=7.15 if topcode==1;
(1432 real changes made)
. reg earnwkl5 age age2 educ black hispanic union;

Source	SS	df MS			Number of obs $=19906$	
					F (6, 19899)	$=1478.79$
Model	1820.31808	6303	386347		Prob > F	$=0.0000$
Residual	4082.4587	19899.20	158988		R -squared	$=0.3084$
					Adj R-squared	$=0.3082$
Total	5902.77678	19905.29	547439		Root MSE	$=.45294$
earnwkl5	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
age	. 0704456	. 0021266	33.13	0.000	. 0662772	. 0746139
age2	-. 0006958	. 000026	-26.78	0.000	-. 0007467	-. 0006449
educ	. 0754998	. 0012033	62.74	0.000	. 0731411	. 0778584
black	-. 2199837	. 0117719	-18.69	0.000	-. 2430576	-. 1969099
hispanic	-. 1069377	. 0141308	-7.57	0.000	-. 1346351	-. 0792402
union	. 1179767	. 0077448	15.23	0.000	. 1027962	. 1331572
_cons	3.503225	. 0418847	83.64	0.000	3.421128	3.585323

Which are amazing similar to the tobit estimates
Tobit regression

Log likelihood = -13207.534

Number of obs	$=$	19906
LR chi2(6)	$=$	7309.06
Prob $>$ chi2	$=$	0.0000
Pseudo R2	$=$	0.2167

earnwkl	Coef. Std. Err.		t	$P>\|t\|$	[95\% Conf	Interval]
age	. 0703864	. 00214	32.89	0.000	. 0661919	. 074581
age2	-. 0006948	. 0000262	-26.55	0.000	-. 0007461	-. 0006435
educ	. 0757658	.0012172	62.25	0.000	. 07338	. 0781515
black	-. 2200147	.011795	-18.65	0.000	-. 2431339	-. 1968954
hispanic	-. 1058161	. 0141638	-7.47	0.000	-. 1335783	-. 0780539
union	. 1191111	. 0077791	15.31	0.000	. 1038634	. 1343588

_cons \|	3.499009	. 0421806	82.95	0.000	3.416332	3.581686
/sigma \|	. 4530426	. 0023983			. 4483418	. 4577434
Obs. summary:	$\begin{array}{r} 0 \\ 18474 \\ 1432 \end{array}$	left-cen uncens right-cens		vation vation vation	earnwkl>	906755

is virtually identical
4. See Evans, Oates and Schwab, Journal of Political Economy, 1992. Let $g\left(\varepsilon_{i}, v_{i}\right)$ be the bivariate normal PDF described in the problem. Note that when
$y_{i}=1$ we have $g\left(\varepsilon_{i} \geq-\beta_{0}-x_{i} \beta_{1}-w_{i} \beta_{2}, v_{i}=x_{i}-\pi_{0}-z_{i} \pi_{1}-w_{i} \pi_{2}\right)$ and when
$y_{i}=0$ we have $g\left(\varepsilon_{i}<-\beta_{0}-x_{i} \beta_{1}-w_{i} \beta_{2}, v_{i}=x_{i}-\pi_{0}-z_{i} \pi_{1}-w_{i} \pi_{2}\right)$

For simplicity, write $\beta_{0}+x_{i} \beta_{1}+w_{i} \beta_{2}+\varepsilon_{i}$ as $x_{1 i} \beta+\varepsilon_{i}$ and $\pi_{0}+z_{i} \pi_{1}+w_{i} \pi_{2}+v_{i}$ as $z_{1 i} \pi+v_{i}$. The likelihood function for person i is
$L_{i}=\left[g\left(\varepsilon_{i} \geq-x_{1 i} \beta, v_{i}=x_{i}-z_{1 i} \pi\right)\right]^{y_{i}=1}\left[g\left(\varepsilon_{i}<-x_{1 i} \beta, v_{i}=x_{i}-z_{1 i} \pi\right)\right]^{y_{i}=0}$
To estimate the values of the loglikelihood, we exploit Baye's theorem where
$\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \bigcap B) / \operatorname{Pr}(B)$ so $\operatorname{Pr}(A \bigcap B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)$. Let $\mathrm{A}=\mathrm{v}_{\mathrm{i}}$ and $\mathrm{B}=\varepsilon_{\mathrm{i}}$
Note that $\varepsilon_{i} \mid v_{i} \sim N\left[\rho v_{i} / \sigma_{v},\left(1-\rho^{2}\right)\right]$ and the PDF for v_{i} is $f\left(v_{i}\right)=\frac{1}{\sigma_{v}} \phi\left(\frac{x_{i}-z_{1 i} \pi}{\sigma_{v}}\right)$.

The conditional probability $\operatorname{Pr}\left(y_{i}=1 \mid v_{i}\right)$ is
$\operatorname{Pr}\left(y_{i}=1 \mid v_{i}\right)=\operatorname{Pr}\left(\varepsilon_{i} \geq-x_{1 i} \beta \mid v_{i}\right)=1-\Phi\left[\frac{-x_{1 i} \beta-\rho v_{i} / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]=\Phi\left[\frac{x_{1 i} \beta+\rho v_{i} / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]$
$=\Phi\left[\frac{x_{1 i} \beta+\rho\left(x_{i}-z_{1 i} \pi\right) / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]$

Likewise, it is easy to show that

$$
\operatorname{Pr}\left(y_{i}=0 \mid v_{i}\right)=1-\Phi\left[\frac{x_{1 i} \beta+\rho\left(x_{i}-z_{1 i} \pi\right) / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]
$$

Putting these together, the likelihood function is the

$$
L_{i}=\left[\Phi\left[\frac{x_{1 i} \beta+\rho\left(x_{i}-z_{1 i} \pi\right) / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right] f\left(v_{i}\right)\right]^{y_{i}}\left[\left(1-\Phi\left[\frac{x_{1 i} \beta+\rho\left(x_{i}-z_{1 i} \pi\right) / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]\right) f\left(v_{i}\right)\right]^{1-y_{i}}
$$

Taking logs and summing over all i

$$
\ell=\sum_{i=1}^{n}\left\{y_{i}\left(\ln \Phi\left[\frac{x_{1 i} \beta+\rho\left(x_{i}-z_{1 i} \pi\right) / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]\right)+\left(1-y_{i}\right) y_{i} \ln \left(1-\Phi\left[\frac{x_{1 i} \beta+\rho\left(x_{i}-z_{1 i} \pi\right) / \sigma_{v}}{\left(1-\rho^{2}\right)^{0.5}}\right]\right)+\ln \left[f\left(x_{i}-z_{1 i} \pi\right)\right]\right\}
$$

Notice that is $\rho=0$ the model collapses to

$$
\ell=\sum_{i=1}^{n}\left\{y_{i}\left(\ln \Phi\left[x_{1 i} \beta\right]\right)+\left(1-y_{i}\right) y_{i} \ln \left(1-\Phi\left[x_{1 i} \beta\right]\right)+\ln \left[f\left(x_{i}-z_{1 i} \pi\right)\right]\right\}
$$

Which is a probit and an OLS - maximized separately.
5. When in doubt, draw a graph. In Figure 1 below, we have an uncensored scatter plot of x and y. In Figure 2, we censor the data from below. Given the mass of observations are the point of censoring, the estimated OLS line is now much flatter than before.

Figure 1: Plot of X and $Y 1$

To show that censoring from below generates attenuation in the estimate for the slope, let $D_{i}=1$ is a variable is not censored and $D_{i}=0$ if it is censored. The OLS estimate of β_{l} when the data is not censored is given as
$\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}^{*}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(D_{i}\left(x_{i}-\bar{x}\right) y_{i}^{*}+\left(1-D_{i}\right)\left(x_{i}-\bar{x}\right) y_{i}^{*}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{a+b}{d}$
The OLS estimate of β_{1} when the data is censored is given as
$\hat{\beta}_{1}^{c}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(D_{i}\left(x_{i}-\bar{x}\right) y_{i}^{*}+\left(1-D_{i}\right)\left(x_{i}-\bar{x}\right) y^{t}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{a+c}{d}$

Note that since the data is censored from below, $y^{f}>y_{i}^{*}$. Note as well that since y is censored from below we anticipate that we are on the left hand side of the distribution for x and in most cases, $\left(1-D_{i}\right)\left(x_{i}-\bar{x}\right) y^{t}<0$ because $\left(x_{i}-\bar{x}\right)<0$.
Therefore, $\left(1-D_{i}\right)\left(x_{i}-\bar{x}\right) y^{f}<\left(1-D_{i}\right)\left(x_{i}-\bar{x}\right) y_{i}^{*}<0$
or $\mathrm{c}<\mathrm{b}<0$. Since $\mathrm{a}>0$ and construction $\mathrm{d}>0, \mathrm{a}+\mathrm{c}<\mathrm{a}+\mathrm{b}$, this is because c is subtracting a larger value off of (a) than is (b), generating some attenuation bias in the estimate for $\hat{\beta}_{1}^{c}$.
8. There are three pictures below that help answer the problem. IN the pictures, I have graphed the contours of the bivariate normal PDF with a positive covariance. In the first figure, we graphically illustrate the area we want to calculate with the bivariate normal CDF which is $\operatorname{Pr}\left(\varepsilon_{i}<a_{i}^{c}, v_{i}<b_{i}^{c}\right)=G\left(a_{i}^{c}, b_{i}^{c}\right)$.

In the second graph, we consider the area for $\operatorname{Pr}\left(y_{i}=0, x_{i}=1\right)=\operatorname{Pr}\left(\varepsilon_{i}<a_{i}^{c}, v_{i} \geq b_{i}^{c}\right)$. Note that the single cross hatched area give us $\operatorname{Pr}\left(\varepsilon_{i}<a_{i}^{c}\right)=\Phi\left(\varepsilon_{i}<a_{i}^{c}\right)$ but this area has too much area. To get the appropriate area, we must subtract off $\operatorname{Pr}\left(\varepsilon_{i}<a_{i}^{c}, v_{i}<b_{i}^{c}\right)=G\left(a_{i}^{c}, b_{i}^{c}\right)$ so

$$
\operatorname{Pr}\left(y_{i}=0, x_{i}=1\right)=\operatorname{Pr}\left(\varepsilon_{i}<a_{i}^{c}, v_{i} \geq b_{i}^{c}\right)=\Phi\left(a_{i}^{c}\right)-G\left(a_{i}^{c}, b_{i}^{c}\right)
$$

It should be no surprise that $\operatorname{Pr}\left(y_{i}=1, x_{i}=0\right)=\operatorname{Pr}\left(\varepsilon_{i} \geq a_{i}^{c}, v_{i}<b_{i}^{c}\right)=\Phi\left(b_{i}^{c}\right)-G\left(a_{i}^{c}, b_{i}^{c}\right)$
The area for $\operatorname{Pr}\left(y_{i}=1, x_{i}=1\right)=\operatorname{Pr}\left(\varepsilon_{i} \geq a_{i}^{c}, v_{i} \geq b_{i}^{c}\right)$ is given in the third picture. The single cross-hatched area is $\operatorname{Pr}\left(v_{i} \geq b_{i}^{c}\right)=1-\Phi\left(b_{i}^{c}\right)$. This area is of course too big. If we subtract off $\operatorname{Pr}\left(\varepsilon_{i}<a_{i}^{c}\right)=\Phi\left(\varepsilon_{i}<a_{i}^{c}\right)$ we are subtracting off too much so we must add back $G\left(a_{i}^{c}, b_{i}^{c}\right)$ so

$$
\operatorname{Pr}\left(y_{i}=1, x_{i}=1\right)=\operatorname{Pr}\left(\varepsilon_{i} \geq a_{i}^{c}, v_{i} \geq b_{i}^{c}\right)=1-\Phi\left(b_{i}^{c}\right)-\Phi\left(a_{i}^{c}\right)+G\left(a_{i}^{c}, b_{i}^{c}\right)
$$

Computer portion of the problem set

Below is my table. Note four things. First, as ρ goes from large negative to a large positive number, the OLS estimate of $\hat{\beta}_{1}$ goes from a large positive to a large negative number. Second, in each case, the 2SLS model does fine job of replicating the treatment effect estimate. Third, note that the average t-statistic is the same in all 2SLS models. This is because the t-statistic squared in the 2SLS is roughly equal to the t-statistic squared in the reduced-form. That relationship does not change at all when we move from ρ being a large negative to a large positive number. Fourth, for ρ small, the efficiency of the treatment over the 2SLS is marginal. However, as ρ increases in value, there is a clear efficiency gain in using the treatment effect model.

Value of P	OLS		2SLS		Treatment effect model		
	Average $\hat{\beta}_{1}$	Average t -stat on $\hat{\beta}_{1}$	Average $\hat{\beta}_{1}$	Average t-stat on $\hat{\beta}_{1}$	Average $\hat{\beta}_{1}$	Average z-score on $\hat{\beta}_{1}$	Average $\hat{\rho}$
0.50	11.75	59.7	-6.39	-2.01	-5.94	-4.38	0.50
0.25	2.90	13.8	-6.30	-2.01	-6.08	-2.51	0.25
0.00	-5.96	-27.8	-6.20	-2.00	-6.16	-2.10	0.01
-0.25	-14.8	-70.6	-6.08	-2.00	-6.26	-2.36	-0.24
-0.50	-23.7	-120.2	-5.95	-1.99	-5.96	-4.29	-0.50

