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Two-Stage Least Squares (2SLS) 
 

Consider a standard linear bivariate regression model 0 1i i iy x     .  In this case, begin with the 

assumption that [ | ] 0i iE x  which means that OLS estimates of 1̂  will produced biased and inconsistent 

estimates.  Suppose however that there is a variable zi that directly impacts x but it is uncorrelated with i .  

This can be expressed as [ | ] 0i iE z  . The variable z is known as an ‘instrument” in the model.  The 

implicit assumption is that z impacts x and x impacts y.  Therefore, if we were to somehow “shock” x with z, 
we can infer the relationship between x and y.   
 
This is done by considering the relationship between x and z as a simple linear model.  This  
“first-stage” relationship between x and z is given by the equation 
 

0 1i i ix z u     

 
Where we assume z and u  are uncorrelated.  Note that x has two components.  One is a deterministic one 

that is a function of z, 0 1

p

i ix z   .  Because z is uncorrelated with ε then this predictive component of x 

is also uncorrelated with ε.  Since x is correlated with ε and 
p

ix is not, it must be that what is driving the 

correlation between x and ε is then u.   
 

The suggestion then is instead of using x in the regression 0 1i i iy x      --  which we know would 

produce biased estimates -- why not use 
p

ix  instead. The 
p

ix component of x contains information about x, 

but it is NOT correlated with ε so it should produce estimates with “nice” properties.   That is a great idea 

except that we do not know 0  or 1  and therefore, we cannot use 
p

ix  in a regression.  We can however use 

the next best thing: an unbiased estimate of 
p

ix which is produced from a first-stage regression of x on z.   

 
This “two-stage least squares” procedure is very straight forward.  Run a regression of the form

0 1i i ix z u    . It should be no surprise that the OLS estimates for the parameters 0̂ and 1̂ are
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.   With these estimates we can construct a predicted value for 

0 1
ˆ ˆˆ .i ix z    Instead of using x in the estimates for 1  -- which produces 1
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use the predicted value of x, 0 1
ˆ ˆˆ

i ix z   , instead.  The predicted value is a linear function of z which is 

uncorrelated with  so the 2SLS estimate for 
1  should have “nice” properties.  The 2SLS estimate for 

1 is 

therefore 
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Working with the 2SLS estimate 
 

Given that 0 1
ˆ ˆˆ

i ix z    it is clear that 0 1
ˆ ˆx̂ z   and hence 1

ˆˆ ˆ ( ) .i ix x z z     Substitute this into the 

equation for 
2

1
ˆ sls and we obtain 
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Substitute the definition of 1̂  into this equation and we obtain 
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Divide the numerator and denominator by (n-1) and we note the 2SLS estimte is therefore the ratio of the 
covariate between y and z divided by the covariance between x and z.  
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Is 
2

1
ˆ sls an unbiased estimate? 
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Anytime we have a new random variable, we always ask what is the expected value and the variance? This is a 

difficult question.   In the end, we are unable to show that 
2

1
ˆ sls is an unbiased estimate in this context?  

Why?  In order to demonstrate the properties of the estimate, we always substitute the truth back into the 

model.  Start with the estimate for 
2

1
ˆ sls and note that we can drop one of the means in both the numeatror 

and denominator. 
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At this point, we usually substitute in the defintion of y into the numerator.  However, x is also a random 
variable that is a function of the error v so we would need to substitute that definition in as well.   
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The problem is that we now have random variables in the numerator and the denominator.  If a and b are 
random variables E[a/b]≠E[a]/E[b].  Without knowing the joint distribution of the numerator and 
denominator, we cannot figure out the expected value of the estimate.  Our only option is then to consider 
whether the estimate is consistent. 
 
 

The consistency of 2SLS estimates 

To show whether the 2SLS estimate is consistent, start with the definition
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drop 

y and substitute in the definition of y.  This produces
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.  Expand the 

numerator, and we get   
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term equals zero because sums of deviation from means equal zero.  The second term equals 1 and the 

whole term reduces to
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.  Divide the numerator and denominator of the right 

hand term by (n-1) and you get
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 .  Now we ask what 

happens to this estimate as the sample sizes increases to infinity.  Note that if a and b are estimates, then 

plim(a/b)=plim(a)/plim(b).  Note also that the ˆlim( )z zp    and ˆlim( )zx zxp   , and therefore, it is 

no surprise that
2

1 1
ˆlim( )SLS ze

zx

p


 


  .  In this case, the estimate 
2

1
ˆ SLS will only be consistent if

ˆlim( ) 0z zp     .  To produce consistent estimates, it must be the case that z only produces a change 

in y through an initial change in z.  If z has a direct effect on y then ˆlim( ) 0z zp     and the model will 

produce inconsistent estimates. 

 

An alternative interpretation of 2SLS estimates 
 

The structural equation of interest is 0 1i i iy x     .  We anticipate that x is correlated with ε so we 

cannot estimate this model by OLS.  We do however have a variable z that we believe is predictive of x but it 
is not directly correlated with ε.  The first-stage equation that relations x to z is given by the equation

0 1i i ix z u    .  Substitute this equation into the equation for y and one obtains the equation 

 

0 0 1 1 0 0 1 1 1 1( ) ( )i i i i i i iy z u z u                      

 

In this model, define 0 0 1 0( )     let 1 1 1   and let 1i i iu v   .  This allows us to write the 

equation for y as 0 1i i iy z v    .  This equation is referred to as the “reduced-form” and it represents the 

correlation between z and y.  The coefficient is 
1

y

z






. Note that the coefficient has an interesting 

interpretation.  The model we are suggesting is that y is a function of x and x is a function of z.  Therefore 
y=f(x(z)).  If we take the derivative of y with respect to z, because we assume z only changes y through a 
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change in x, we obtain 
y y x

z x z

   
  

   
.  Note that 

1  = 1 1  , which is exactly 
y x

x z

  
 

  
.  Therefore, if we 

take the reduced form estimate for 1 which equals 
y x

x z

  
 

  
 = 1 1  and divide it by the 1st stage coefficient 

1 we get 1 .  It is also the case that 
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which is exactly the same estimate we got above. 
 
 
To recap, we call the initial equation the “structural equation of interest”: 

0 1i i iy x      

To estimate this via 2SLS or indirect least squares, we need a “first-stage” relationship 

0 1i i ix z u     

The direct relationship between the instrument and the outcome of interest is called the “reduced-form”. 

0 1i i iy z v     

 

The variance of 
2

1
ˆ sls  

 

Note that if we were to estimate the regression 0 1i i iy x      by OLS, the variance for 1
ˆ ols  would be 
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.  The variance is proportional to how much variance in x is used to produce the 

estimate.  In the case of 2SLS, we are not use x but instead, ˆix .  Therefore 
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Recall that in a regression, SST=SSM+SSE and in this case
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    which means also that by construction 

2

1 1
ˆ ˆ( ) ( )ols slsVar Var  .  The benefit of 2SLS is that we are only using a part of the variation in x – that part 
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that is uncorrelated with  -- so our estimates are consistent.  However, because we are using smaller 

variation in x that in the OLS case, the cost of 2SLS is a reduction in precision – the value 
2

1
ˆ( )slsVar    

increases considerably.   
 

What will produce smaller values for 
2

1
ˆ( )slsVar  ?  Start with the definition  
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remember that 1
ˆˆ ˆ ( ) .i ix x z z      Substitute this in and we get 
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 and substitute this into the variance equation and you get 
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The denominator in this term 
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and we will reduce the 
2

1
ˆ( )slsVar  is if we can find a variable z that is strongly correlated with x.   At the 

other end of the spectrum, suppose ˆ
xz approaches zero – this means z does not explain much of x.  What is 

the cost? In this case, if z does not explain much of x, then we cannot learn x’s impact on y and the 
2

1
ˆ( )slsVar  will explode.  


