Chapter 2

The Bivariate Regression Model

Linear model

- Sample of n observations, labeled as i=1,2,..n • $y_i = \beta_0 + x_i \beta_1 + \epsilon_i$
- β_0 and β_1 are "population" values represent the true relationship between x and y
- Unfortunately these values are unknown
- The job of the researcher is to estimate these values

2

- Notice that if we differentiate y with respect to x, we obtain
- $\partial y / \partial x = \beta_1$
- β_1 represents how much y will change for a fixed change in x
 - Increase in income for more education
 - Change in crime or bankruptcy when casinos are opened
 - Increase in test score if you study more

3

Put some concreteness on problem

- Suppose a state is experiencing a significant budget shortfall
- Short-term solution raise tax on cigarettes by 35 cents/pack
- Problem a tax hike will reduce consumption (theory of demand)
- Question for state as taxes are raised, how much will cigarette consumption fall

- Suppose y is a state's per capita consumption of cigarettes
- x represents taxes on cigarettes
- Question how much will y fall if x is increased by 35 cents/pack?
- Note there are many reasons why people smoke cost is but one of them –

5

Benefits and Costs of Model

- Placed more structure on the model, therefore we can obtain precise statements about the relationship between x and y
- These statements will be true so long as the hypothesized relationship is true
- As you place more structure on any model, the chance that the assumptions of the model are correct declines.

6

Data

- Data on state consumption/taxes, 1981-2000
- 51 states x 20 years = 1020 observations
- Y = per capita consumption
- X = tax (State + Federal) in real cents per pack
 2000 dollars

What is ε_i ?

- There are many factors that determine a state's level of cigarette consumption
- Some of these factors we can measure, but for what ever reason, we do not have data
 - Education, age, income, etc.
- · Some of these factors we cannot measure
 - Dislike of cigarettes, anti-smoking sentiment of your friends/neighbors/relatives
- ε_i identified what we cannot measure in our model

- Think of a difference way draw a vertical line at any tax level (e.g., 40 cents).
- Notice that at this level, there are multiple values of Y that are present
- Therefore on average, higher taxes will reduce consumption, but it cannot explain all of consumption across states

11

Current smoking rates By demographic group

- Adults Gender
- Males
- Females
- Age group
- 18-44 - 18-44 - 45-64
- 75+
- - White AA

 - Asian
 - AI/AN

- Hispanic origin

 Hispanic
- Non hispanic
- Education
- < HS HS
- Some col.
- College+ Family Income
 - <\$20K \$20-\$35K
 - \$35-\$55K
 - \$55-\$75K\$>75K

- We can however estimate values of ε_i by estimating values of β_0 and β_1 .
- Estimates have "hats": $\hat{\beta}_0$ and $\hat{\beta}_1$
- Our goal, is to choose values for $\hat{\beta}_0$ and $\hat{\beta}_1$ in an optimal way.
- Requires minimizing some function of the estimated errors associated with the model

Performance in the Olympics

- Medal count in the Olympics is a simple measure of output
- Countries vary by
 - Size
 - Resources
- How is performance once we control for these attributes?

14

Ranking by Total Medal Count

meda.	country	name	medals~k
1	USA	United States of America	1
	CHI	People's Republic of China	2
	RUS	Russian Federation	3
	GB	Great Britain	4
	GER	Germany	5
	JAP	Japan	6
	AUS	Australia	7
	FRE	France	8
	SKOR	Republic of Korea	9
	ITA	Italy	9

15

Ranking by Medals/10 million People

				name	c	ount	try	me	eda	ls	me	dal	s~a
			Gre	nada		GI	REN			1	9	5.2	381
			Jan	aica		i	JAM			12	44	. 34	873
rir	idad	an	d To	bago		5	F&T			4	3	0.3	556
		New	Zea	land		N:	ZEL			13	29	.31	665
			Bah	amas		1	BAH			1	28	. 27	591
			Slov	enia		SLO	OVE			4	19	. 43	748
		1	Mong	olia		M	ONG			5	17	.58	087
			Hun	gary		3	HUN			17	17	.06	485
		Mo	nter	egro		M	ONT			1	16	.12	828
			Den	mark		1	DEN			9	16	.11	529

- Given linear model $y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$
- We can predict an level of consumption given parameter values
- $\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1$ The predicted value will not always be accurate - sometimes we will over or under predict the true value
- Because of the linear relationship between x and y, predictions will lie along a line

• Difference between the actual & predicted value

•
$$y_i - \hat{y}_i = y_i - \hat{\beta}_0 - x_i \hat{\beta}_1 = \hat{\varepsilon}_i$$

- if $y_i \hat{y}_i = \hat{\mathcal{E}}_i > 0$ you underpredict (you did better than expected)
- If $y_i \hat{y}_i = \hat{\mathcal{E}}_i < 0$ you overpredict (you did worse than expected)

21

Estimation

- Estimated errors measure what we don't know
- Want to minimize these errors as much as possible
- There are N errors in each model
- Need to select a criteria to somehow minimize all these errors

Criteria: Least squares

let $\hat{\beta}_0$ and $\hat{\beta}_1$ be candidate values for the parameters. The estimated error is then $\hat{\varepsilon}_i = y_i - \hat{\beta}_0 - x_i \hat{\beta}_1$

Objective: min the sum of squared errors

$$SSE = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - x_{i}\hat{\beta}_{1})^{2}$$

25

Cigarette example

- Data available on web page
 - state_cig_data.dta
 - Already in a Stata data file
 - To use,
 - · Download to a folder
 - Change directory to the folder
 - type "use state_cig_data"

. * dscribe da . desc Contains data		to aia do	to dto	
	1,020			28 Aug 2008 15:39
			value label	variable label
state year state_tax retail_price federal_tax packs_pc cpi	int float float byte	\$8.0g \$9.0g \$9.0g \$8.0g \$9.0g		2-digit state code year state tax in cents per pack average retail price, nominal federal tax in cents per pack packs of cigarettes per capita consumer price index, 2000=1.000
				28

$$\hat{\beta}_{1} = \frac{\hat{\rho}_{xy}\hat{\sigma}_{y}}{\hat{\sigma}_{x}} = \frac{-0.6115(28.29377)}{18.45741} = -0.937$$

 $\hat{\beta}_0 = \overline{y} - \overline{x}\,\hat{\beta}_1 = 106.60 - (56.05)(-0.937) = 159.1$

30

- Notice that SSE + SSM = SST
- $R^2 = SSM/SST = 305010.4/815747.4 = 0.3739$

Using the results

$$\hat{\beta}_1 = -0.9373$$

- For every penny increase in taxes, per capita consumption falls by 0.94 packs per year
- A 35 cent increase in taxes will reduce consumption by (35)(0.94) = 32 packs per person per year

Example 2

- Do better performing teams have higher attendance?
- Data on wins and average attendance/game for 2004 baseball season
- 30 observations
- attendance.dta

3

variable name	storage type				varia	able label		
attendance	str13 long int	%12.0g			avg a	city attendance per during year		
* get means	of wing	and nave	oll.					
sum wins att		and payr	011					
Variable	0	bs	Mean	Std.	Dev.	Min	Max	
wins attendance		30 80 30 2	.83333 8157.3	14.75 931	334 7.7	55 10031	103 43712	
								38

avg attendance per game Percentiles Smallest 10031 10031 10038 15169.5 13157 0bs 30 20703 17182 Sum of Wgt. 30 28934.5 Largest 34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
10031 10031 10031 10031 10038 10038 15169.5 13157 Obs 30 20703 17182 Sum of Wgt. 30 28934.5 Mean 28157.3 Largest Std. Dev. 9317.7 34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
10038 10038 15169.5 13157 Obs 30 20703 17182 Sum of Wgt. 30 28934.5 Mean 28157.3 24527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
15169.5 13157 Obs 30 20703 17182 Sum of Wgt. 30 28934.5 Mean 28157.3 Largest Std. Dev. 9317.7 34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
20703 17182 Sum of Wgt. 30 28934.5 Mean 28157.3 Largest Std. Dev. 9317.7 34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
28934.5 Mean 28157.3 Largest Std. Dev. 9317.7 34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
Largest Std. Dev. 9317.7 34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
34527 39494 39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
39828.5 40163 Variance 8.68e+07 43323 43323 Skewness2430352
43323 43323 Skewness2430352
43712 43712 Kurtosis 2.256339

Model	SS 606784507	1	606784507		Number of obs F(1, 28) Prob > F	= 8.89		
Residual 1.9110e+09 28 68249360.1 R-squared = 0.24								
attendance	Coef.	Std. I	Err. t	P> t	[95% Conf.	Interval		
					97.04894 -14397.25			
â a.	0.05 fc	r eve	ry additio	on wii	ı, attendan	ce		

Example 3: Education and Earnings

- Stylized fact: log wages or earnings is linear in education (above a certain range)
- Interpreted as a "return to education"
- Theoretical models why this would be the case
- Linear model:
 - y=ln(weekly wages) endogenous variable
 - x=years of education exogenous factor
 - $y_i = \beta_0 + x_i \beta_1 + \epsilon_i$

43

- Notice that β_1 has a different interpretation
- $\beta_1 = dY/dX$
- In this case, y=ln(Wages)
- dln(Wages)/dX = (1/wages)dWages/dX
- dWages/wages = % change in changes
 - (change in wages over base wages)
- when the endogenous variable is a natural log,
- β₁ =dY/dX is interpreted as % change in y for a unit change in x'

Data

- cps87.dta
- 19,906 observations from 1987 Current Population Survey on
 - Full time (>30 hours)
 - Males
 - Aged 21-64

. * run simple . reg ln_weekl	e regression y_earn years	_educ				
Source	SS	df		MS		Number of obs = 19906
	854.28055 4385.05814					F(1, 19904) = 3877.62 Prob > F = 0.0000 R-squared = 0.1631 Adj R-squared = 0.1630
Total	5239.33869	19905	.263	217216		Root MSE = .46937
ln_weekly_~n	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
						.0717813 .076447 5.060484 5.123261
						51

Example 4:London Olympics

- * generate measure of medals per person;
- * divide by 10,000,000 people;

gen medals_capita=medals/(population/10000000);
label var medals_capita "medals per 10,000,000 people";

- * take natural ln of medals_capita and gdp_capita; gen ln_medals_capita=ln(medals_capita); gen ln_gdp_capita=ln(gdp_capita);
- * regress ln(medals/population) on ln(gdp/population); reg ln_medals_capita ln_gdp_capita;

