

Florida

- 8/25/1997, State of Florida settles out of court in their suits against tobacco manufacturers
- Awarded $\$ 13$ billion over 25 years
- Use $\$ 200 \mathrm{~m}$ to run anti-smoking campaign aimed at kids
- Florida Tobacco Pilot Program (FTPP)
- Precursor to the national 'truth' campaign
- Florida's edgy "Truth" advertising campaign continues to have a significant impact in reducing teen smoking, a team of researchers concluded from a new study that examines the impact of the state's anti-tobacco advertising.
- in 1998 , when surveillance began for tobacco use among Florida youth, 27.4 percent of high school students were current cigarette smokers. by 2000 , this rates had declined to 22.6 among high school students.
- Note: 4.8 percentage point decline or a 17.5% reduction in teen smoking

Nationwide

- Teen smoking rates fell from 36.5 to 31.4%
- A 5.1 percentage point decline or roughly 14%
- Rates in Florida fell by 4.8 percentage points rates nationwide fell by a similar amount

Random assignment clinical trial

- New drug that lowers cholesterol
- Recruit N people with high cholesterol
$-1 / 2$ in treatment (receive active ingredient)
- $1 / 2$ in control (placebo)
- Measure cholesterol levels
- Before the start of treatment
- Then again after a specified time

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | Before
 Treatment | 3 months
 later | Difference |

Simple problem set up

- One group is 'treated' with an intervention
- Have pre \& post treatment data for the group receiving intervention
- Can examine time-series changes but,
- Unsure how much of the change is due to secular changes

Example

- 1993 Federal government passes Motor Voter
- Register to vote when you get drivers license
- Designed to decrease the cost of voting
- Some states had state Motor Voter Law prior to 1993
- Suppose you compare outcomes in states before/after 1993 (1992 vs 1996 elections)
- States with new law saw an increase in voter
- If the outcome of interest is trending over time, before/after comparisons will provide a biased estimate of the law
- 1992: 76.1\%
- 1996: 84.5\%
- Question: how much of the increase was the
- Look at this graphically law and how much was it secular trends?
- Cannot say without controlling for factors that impact these trends

- Intervention occurs at time period t_{1}
- True effect of law
$-Y_{b}-Y_{a}$
- Only have data at t_{1} and t_{2}
- If using time series, estimate of the effectiveness of the law is $\mathrm{Y}_{\mathrm{t} 1}-\mathrm{Y}_{\mathrm{t} 2}$
- Solution?

Difference in difference models

- Pool cross-sectional and time series data
- Use time series of "untreated" group to establish "trends"
- What would have occurred in the treatment states in the absence of the intervention?

Motor Voter Example

- Data in two years
- 1992 Presidential (before MV)
- 1996 Presidential (after)
- Two groups of states
- Treated group (states that got MV through federal law in 1993)
- Control group (states that had MV laws already)

Difference in Difference			
	Before MV	After MV	Difference
Group 1 (Treat)	0.761	0.845	0.084
Group 2 (Control)	0.834	0.867	0.033
Difference			0.050

Key Assumption

- Control group identifies the time path of outcomes that would have happened in the absence of the treatment
- In this example, Y falls by $\mathrm{Y}_{\mathrm{c} 2}-\mathrm{Y}_{\mathrm{c} 1}$ even without the intervention
- Note that underlying 'levels’ of outcomes are not important (return to this in the regression equation)

- In contrast, what is key is that the time trends in
the absence of the intervention are the same in
both groups
- If the intervention occurs in an area with a
different trend, will under/over state the
treatment effect
- In this example, suppose intervention occurs in
area with faster falling Y

Basic Econometric Model

- Data varies by
- state (i)
- time (t)
- Outcome is Y_{it}
- Only two periods
- Intervention will occur in a group of observations (e.g. states, firms, etc.)

- Three key variables
$-T_{i t}=1$ if obs i belongs in the state that will eventually
be treated
$-A_{i t}=1$ in the periods when treatment occurs
$-T_{i t} A_{i t}--$ interaction term, treatment states after the
intervention
- $Y_{i t}=\beta_{0}+T_{i t} \beta_{1}+A_{i t} \beta_{2}+T_{i t} A_{i t} \beta_{3}+\varepsilon_{i t}$

$Y_{i t}=\beta_{0}+T_{i t} \beta_{1}+A_{i t} \beta_{2}+T_{i t} A_{i t} \beta_{3}+\varepsilon_{i t}$		
	Before After Change Change	Difference
Group 1 (Treat) Group 2 (Control)		
Difference		

Meyer et al.

- Workers' compensation
- State run insurance program
- Typical benefits schedule
- Min(pY,C)
- $\mathrm{P}=$ percent replacement
$-\mathrm{Y}=$ earnings
$-\mathrm{C}=\mathrm{cap}$
- Premiums
- e.g., 65% of earnings up to $\$ 400 /$ week
- Function of previous claims and wages paid
- Benefits -- \% of income w/ cap
- Concern: Moral hazard. Benefits will discourage return to work
- Empirical question: duration/benefits gradient
- Previous estimates
- $\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\mathrm{X}_{\mathrm{i}} \beta_{1}+\mathrm{R}_{\mathrm{i}} \beta_{2}+\varepsilon_{\mathrm{i}}$
-Y (duration)
- R (replacement rate)
- X (represents some other controls)
- Expect $\beta_{2}>0$ (Higher replacement, longer duration)
- Problem: Does realization of ε_{i} convey any information about R?
- Workers with longer duration tend to be higher income workers
- They also have lower replacement rates (earnings put them above the weekly cap)
- $\operatorname{Cov}\left(\mathrm{R}_{\mathrm{i}}, \varepsilon_{\mathrm{i}}\right)<0$
- Is β_{2} over or under estimated?

Solution

- Quasi experiment in KY and MI
- Increased the earnings cap
- Increased benefit for high-wage workers - (Treatment)
- Did nothing to those already below original cap (comparison)
- Compare change in duration of spell before and after change for these two groups

Figure 1. Temporary Total Benefit Schedule Before and After an Increase in the Maximum Weekly Benefit

Data from Meyer et al.

- Data set kentucky.dta
- Key variables
- durat (duration)
- highearn (a high earning worker (treatment))
- afchnge (after the law change)

Difference in Difference Mean average \ln (duration) Before change			
After change	Difference		

Model

- $\mathrm{Y}_{\mathrm{it}}=$ duration of spell on WC
- $\mathrm{A}_{\mathrm{it}}=$ period after benefits hike
- $\mathrm{H}_{\mathrm{it}}=$ treated or high earnings group (Income $>\mathrm{E}_{3}$)
- $\mathrm{Y}_{\mathrm{it}}=\beta_{0}+\mathrm{H}_{\mathrm{it}} \beta_{1}+\mathrm{A}_{\mathrm{it}} \beta_{2}+\mathrm{A}_{\mathrm{it}} \mathrm{H}_{\mathrm{it}} \beta_{3}+\varepsilon_{\mathrm{it}}$
- Diff-in-diff estimate is β_{3}

Results Table 6-Reqression Equation Groups Po	rolling fo Natural Lo and Hich-E	other cov rithm of Dur Nings Grour	ates оN, Ніснarattey	ow-Earnings
Explanatory variable				Specific
	High- and low-earnings groups pooled			
	Kentucky		Michigan	
	(i)	(ii)	(iii)	(iv)
After-increase indicator variable	$\begin{gathered} 0.016 \\ (0.045) \end{gathered}$	$\begin{gathered} \hline-0.004 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.082 \\ (0.084) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.073) \end{gathered}$
High-earnings-group indicator variable	$\begin{gathered} -1.522 \\ (1.099) \end{gathered}$	$\begin{gathered} -0.594 \\ (0.930) \end{gathered}$	$\begin{gathered} 5.577 \\ (4.811) \end{gathered}$	$\begin{gathered} 3.607 \\ (4.162) \end{gathered}$
After-increase \times high-earnings-group indicator variable	$\begin{gathered} 0.215 \\ (0.069) \end{gathered}$	$\begin{gathered} 0.162 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.157 \\ (0.153) \end{gathered}$	$\begin{gathered} 0.203 \\ (0.132) \end{gathered}$

Questions to ask?

- What parameter is identified by the quasiexperiment? Is this an economically meaningful parameter?
- What assumptions must be true in order for the model to provide and unbiased estimate of β_{3} ?
- Do the authors provide any evidence supporting these assumptions?

Card and Krueger

Minimum wage laws

- Minimum wage laws imposed by state, local and Federal governments
- "covered" sector includes most jobs
- States/locals can raise but not lower Federal minimum wage

Federal Minimum Wages

- $01 / 01 / 1981$	$\$ 3.35$
- $04 / 01 / 1990$	$\$ 3.80$
- $04 / 01 / 1991$	$\$ 4.25$
- $10 / 01 / 1996$	$\$ 4.75$
- $09 / 01 / 1997$	$\$ 5.15$
- $07 / 24 / 2007$	$\$ 5.85$
- $07 / 24 / 2008$	$\$ 6.55$
- $07 / 24 / 2009$	$\$ 7.25$

Some State Minimum Wage Laws

- WA $\$ 8.55$
- OR $\$ 8.40$
- CT/DC $\$ 8.25$
- VT $\$ 8.04$
- IL/MA/CA $\$ 8.00$

Textbook model of Minimum Wage

- Original conditions: $\mathrm{W}_{\mathrm{e}}, \mathrm{L}_{\mathrm{e}}$
- Minimum wage imposed, $\mathrm{W}_{\mathrm{m}}>\mathrm{W}_{\mathrm{e}}$
- Labor supply: higher wage encourages more work - labor supply increases to $L_{\text {s }}$
- Labor demand: higher wage is a shift along the demand curve to L_{d}
- New unemployment rate: $\mathrm{L}_{\mathrm{s}}-\mathrm{L}_{\mathrm{d}}$
- Job loss from minimum wage: $\mathrm{L}_{\mathrm{e}}-\mathrm{L}_{\mathrm{d}}$

Research Question?

- What happens to labor demand when minimum wage laws increased?
- Economic significance: test of theory of demand
- Policy significance: key question faced by lawmakers every time there is a proposed change in the minimum wage law.

NJ Minimum Wage Hike

- Federal MW stuck at $\$ 3.35$ for most of the 90 s
- Because of inflation, real value of MW fell considerably
- Nov 1989 law raised MW in 2 steps
- To $\$ 3.80$ on $4 / 1 / 90$
- To $\$ 4.25$ on $4 / 1 / 91$
- NJ law
- Passed in early 1990
- Went into effect April 1, 1992
- Raised minimum wage from $\$ 4.25-\$ 5.05 / \mathrm{hr}, 18 \%$ increase
- In 1992, NJ slipped into a recession
- In March of 1992, State legislature voted to phase it in over two years,
- Governor vetoed
- Vote margin not large enough to override veto
- Law went into effect as planned

Questions

- Why is NJ a good setting to test the impact of minimum wage on employment?
- Why is the fast food industry a good industry to examine?

Research methodology

- Examine employment before and after law goes into effect in NJ fast food restaurants
- Compare this change to changes in employment for employers not impacted by law
- Fast food restaurants in PA
- "Control group"

Table 1: Sample Frame

Table 1: Sample Frame				
	NJ Stores		PA Stores	
	Contacted	Interview	Contacted	Interview
Wave 1	364	331	109	79
Wave 2	331	321	79	78

Notes about sample

- Restaurants from 4 chains --BK, KFC, Roy's, Wendy's - no McDonalds
- Key outcome, Full time equivalents
- FTE
- FTE $=$ Full time $+.5^{*}$ halftime

Table 2 - Means at Wave 1

Outcome	NJ	PA	t-stat on difference
\%BK	41.1	44.3	-0.5
\% Roys	24.8	21.5	0.6
FTE	20.4	23.3	-2.0
\% full time	32.8	35.0	-0.7
Starting wage	4.61	4.63	-0.4
Hours open	14.4	14.5	-0.3

$\begin{array}{l}\text { Change in mean FTE } \\ \text { employment, balanced } \\ \text { sample of stores }{ }^{\mathrm{c}}\end{array}$	$\begin{array}{c}-2.28 \\ (1.25)\end{array}$	$\begin{array}{c}0.47 \\ (0.48)\end{array}$	$\begin{array}{c}2.75 \\ (1.34)\end{array}$
Change in mean FTE	-2.28	0.23	2.51

5. Change in mean FTE	-2.28	0.23	2.51
employment, setting	(1.25)	(0.49)	(1.35)
FTE at temporarily			
closed stores to 0^{d}			

Table 3 - row 4
$工$
Change in full time equivalent employment Mean and (standard error of mean)

$P A\left(\bar{x}_{1}\right)$	$N J\left(\bar{x}_{2}\right)$	Diff $\left(\bar{x}_{2}-\bar{x}_{1}\right)$
-2.28	0.47	2.75
(1.25)	(0.48)	(1.34)

Why did employment increase

- Maybe PA is a poor control - notice that employment in NJ increased, but in PA it fell. Most of the effect is generated by an increase in the employment in PA
- What would we like to know tp help prove PA is a good control?
- Fast food is a monopsony?
- Nah - fast food restaurants are all different

Alternative control groups

- Maybe PA is a bad control - are there other control groups available?
- High wage stores in NJ
- Stores currently paying above the new MW
- Will not be impacted by the new law - it is not binding

Table 3 - row 4

Change in full time equivalent employment Mean and (standard error of mean)		
High Wage stores in	Low Wage stores in	Diff $[\Delta=(2)-(1)]$
$\mathrm{NJ}(1)$	$\mathrm{NJ}(2)$	
-2.16	1.21	3.36
(1.01)	(0.82)	(1.30)

