Difference in Difference – Part 2

Bill Evans

Making the model more complicated

- So far, a very simple model
 - Two groups
 - Two periods
- However, the "treatment" may cover more than 1
 group
- The treatment may happen at very different time periods across groups
- How to generalize this type of model for – Many treatments
 - Multiple groups being treated

2

Example: States as laboratories

- Tremendous variation across states in their laws
 - Variation across states in any given year
 - Variation over time within a state
- Examples
 - Minimum wages, welfare policy, Medicaid coverage, traffic safety laws, use of death penalty, drinking age, cigarette taxes,

3

Empirical example: Motorcycle Helmet laws

- 1967, Feds require states to have helmet law to get all federal highway money
- · By 1975, all states have qualifying law
- 1976, Congress responds to state
 pressure and eliminate penalties
 - 20 states weaken their law and only require coverage for teens
 - 8 states repeal law completely

- 27 have teen coverage only
- 27 have leen coverage only

- Helmets are estimated to reduce the likelihood of death in a motorcycle crash by 37%. (Center for Disease Control)
- <u>http://www.cdc.gov/motorvehiclesafety/pdf/</u> mc2012/MotorcycleSafetyBook.pdf
- Where does this number come from?

FARS

- · Fatal Accident Reporting System
- Census of motor vehicle accidents that produce a fatality
- Produced since 1975
- Detail information about
 - Accident
 - Vehicles
 - Drivers

- Select sample from FARS, 1988-2005
- Unique sample
 - Two riders on motor cycle
 - At least one died (accident was severe enough to produce a death)
 - Where one of the riders used a helmet, the other did not

State group	Motor cycles registered per 100,000	Motor cycle death rate per 100,000
Never had helmet law	2366	1.18
Changed helmet law	1525	1.04
Always had helmet law	1224	0.77

	Res	ult	s for (CA	alone	
reg mcdrl sp	eed65 unemp b	ac_10 t	rend helmet_	law if s	state=="CA"	
Source	SS	df	MS		Number of obs	
+	2.14855814				F(5, 12) Prob > F	
	2.14855814					
Residual	. 225/32880		.018811074		Adi R-squared	
Total	2.37429102	17	.139664178		Root MSE	
mcdrl	Coef.	Std. H	rr. t	P> t	[95% Conf.	Interval]
speed65	.4358863	.17253	89 2.53	0.027	.0599564	.8118163
unemp	.0340391	.04858	66 0.70	0.497	0718221	.1399003
bac_10	.3175587	1571	51 2.02	0.066	0248439	.6599612
trend	.065022				.0325538	
helmet_law	8972242				-1.264563	
cons	3775448	.29391	52 -1.28	0 223	-1.017931	2628414

Results for TX alone	
* run a model for Texas . reg mcdrl speed65 unemp bac_08 trend helmet_law if state=="TX"	
Source SS df MS Number of obs = 18	
Model 1.86115335 5.37223067 Prob > F 0.0008 Residual .473677129 12.039473094 R-squared 0.7971 Adi R-squared 0.7971 .039473094 R-squared 0.7971	
Total 2.33483048 17 .137342969 Root MSE = .19868	
mcdrl Coef. Std. Err. t P> t [95% Conf. Interval]	
speed65 .1689669 .2624034 0.64 0.5324027609 .7406947	
unemp .1301635 .0747096 1.74 0.1070326147 .2929418	
bac_08 .6692796 .2457196 2.72 0.018 .1339026 1.204657	
trena0405022 .0284775 -1.42 0.1801025494 .021545	
felmet_law 4592142 .1645968 -2.79 0.01681783981005887	
cons 5765997 .464616 -1.24 0.238 -1.588911 .4357116	i

. * run basic	OLS model for	(*	1990)	onal Model
. reg mcdrl sp Source	eed65 unemp b SS		.0 helmet_law if MS	Number of obs = 48
	2.59400681 4.86098775			F(5, 42) = 4.48 Prob > F = 0.0023 R-squared = 0.3480
Total	7.45499457	47 .158	3616906	Adj R-squared = 0.2703 Root MSE = .3402
mcdrl	Coef.	Std. Err.	t P> t	[95% Conf. Interval]
speed65	.1692481	.1357937	1.25 0.220	1047947 .4432909
unemp				0466015 .1514283
bac_08			-0.40 0.693	
bac_10			0.08 0.936	
helmet_law	4684841			67807842588898
	- 0642492	.3042114	-0.21 0.833	6782726 .549574319

vars: size:	12 49,248 (99.6% of me	emory free)	10 Nov 2012 09:27
	type		label	variable label
	int			year
mcfatals	double	\$9.0q		total motor cycle fatalities
state	str2	%2s		2 digit postal code, AL, CA, etc.
fips	byte	\$8.0g		2 digit numeric fips code
helmet_law	float	%9.0g		=1 if motorcycle helmet law, =0 otherwise
speed65	float	%9.0g		=1 if speed limit is 65, 0 otherwise
speed70p	float	%9.0g		=1 if speed limit is 70 plus, 0 otherwise
bac_10	float	%9.0g		drunk driving defined as bac>=0.1, =0 otherwise
bac_08	float	%9.0g		drunk driving defined as bac>=0.08, =0 otherwise
unemp	float	%9.0g		state unemployment rate, 5 is 5%
population	float	%9.0g		state population
mregs	double	%10.0g		motor cycle registrations

	eed65 speed70			-	-	
Source	SS	dî	MS		Number of obs F(70, 793)	
Model	139.812929	70 1	99732756		F(70, 793) Prob > F	
	51.8558902			6	R-squared	
·+					Adj R squared	- 0.7050
Total	191.66882	863 .	222095967		Root MSE	= .25572
mcdrl	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
speed65	0577686	.055253	7 -1.05	0.296	1662293	.0506922
speed70p	0855586	.081530	-1.05	0.294	2456004	.0744831
unemp	0117339	.011862	5 -0.99	0.323	0350195	.0115517
bac_08	.1423512	.072506	4 1.96	0.050	.0000241	.2846783
bac_10	.1163134	.062812	9 1.85	0.064	0069859	.2396127
_Istate_2	038139	.088907	4 -0.43	0.668	2126606	.1363826
	delete som	e result:	3			
Istate_47	.2392712	.089676	2.67	0.008	.0632391	.4153033
Istate_48	.3987819	.0978	3 4.07	0.000	.2066474	.5909164
year_1989	2367341	.05237	3 -4.52	0.000	3395401	1339281
	delete som	ne result	s			
year_2005	.1032500	.070367	5 1.47	0.143	0348778	.2413796
nelmet_law	3728078	.045893	2 -8.12	0.000	4628943	2827213
cons	5392718	.127596	5 4.23	0.000	.2889049	7898387

Background

- Transponder installed in cars that is turned on when car is stolen
- Recover 95% of stolen cars, compared to 60% for cars without Lojack
- · One-time cost at installation
- Requires working in unison with local police authorities, so market entrance is city-by-city

27

- Starts in MA in 1986 and spreads to 12 cities by 1994
- Model: examine changes in crime before/after Lojack is introduced to cities without Lojack
- Time trends are key in this analysis

Markets S	TABLE I ERVED BY LOJACK AS OF DECEMBER	1994
Market	Cities > 250,000 covered	Date of entry
Massachusetts	Boston	July 1986
South Florida	Miami	December 1988
New Jersey	Newark	March 1990
Los Angeles County	Los Angeles Long Beach	July 1990
Illinois	Chicago	November 1990
Georgia	Atlanta	August 1992
Virginia	Norfolk Virginia Beach	August 1993
Michigan ^a	Detroit	February 1994
New York	New York City	June 1994
Rhode Island	None	June 1994
Tampa/St. Petersburg	Tampa	July 1994
District of Columbia	Washington, DC	September 1994

• Lojack installed in new cars, so market penetration is a function of

- New car sales

- Fraction of new cars w/ Lojack
- After 5 yrs, only 2% of all cars have Lojack once it enters an area

33

35

Potential benefits

- Does not reduce your chance of having your car stolen, but
- Reduces your costs, given that your car is stolen
- Given previous point, will reduce your insurance costs

34

- Chance any car will have Lojack is low.
- If high volume chop shop, will encounter Lojack
- 50 cars annually, 3% market penetration, 78% chance get at least one car with Lojack
- With 100 cars, this rises to 95%

- Prob(at least one Lojack car) = 1 Prob(no Lojack cars)
- Prob car does not have Lojack = 0.97
- · All probs are independent
- Prob (non have Lojack) = 0.97⁵⁰ = 0.22

Data

- 57 cities with pop > 250,000

 Why only larger cities?
- 1981-1994
- Collect data on local economic conditions, police, age distribution

	All	Metro	Non-
	areas	Areas	Metro
Violent	469	510	374
Property	3,430	3,599	3,998
Auto theft	417	467	195

SUMMARY STATISTICS					
Variable	Mean	Standard deviation	Minimum	Maximum	
All cities in sample:					
Lojack share					
(% of all vehicles)	.05	.33	0	4.95	
Years of Lojack	.17	.85	0	9	
City population	764,268	1,045,791	250,720	7,375,097	
Auto theft per capita	.012	.008	.002	.054	
Robbery, burglary, larceny per capita	.078	.021	.033	.156	
Assault, rape,					
murder per capita	.008	.004	.001	.025	
SMSA unemp.	6.3	2.1	2.2	15.9	
State per capita real income (\$1994)	19,911	2,821	13,720	31,228	
% Black	26.0	18.7	1.2	80.7	
% Aged 0–17	26.3	2.0	19.7	31.7	
% Aged 18–24	11.5	1.3	8.4	15.1	
% Aged 25-44	31.4	2.1	26.1	36.4	
Sworn officers per capita ($ imes 1000$)	2.47	.96	1.32	7.81	

SUMMARY STATISTICS				
Variable	Mean	Standard deviation	Minimum	Maximur
Cities with Lojack coverage by 12/94				
Lojack share				
(% of all vehicles)	.21	.67	0	4.95
Years of Lojack	.83	1.71	0	5
City population		1,959,315	257,617	7,375,097
Auto theft per capita	.018	.011	.002	.08
Robbery, burglary, larceny per capita Asault, rape,	.0881	.025	.044	.156
murder per capita	.011	.006	.001t	
SMSA unemp.	6.5	2.1	2.7	15.9
State per capita real income (\$1994)	20,843	3,370	13,932	31,228
% Black	37.5	21.0	10.4	80.7
% Aged 0-17	24.9	2.2	19.7	31.7
% Aged 18-24	11.5	1.5	8.4	15.1
% Aged 25-44	32.0	2.3	26.1	36.4
Sworn officers				
per capita (×1000)	3.20	1.33	1.40	7.81

N	lean Value	es
	All cities	W/ Lojack
Population	764,268	1,402,239
Car theft/pop	0.012	0.018
Unemp rate	6.3	6.5
Per capita inc	\$19,911	\$20,843
% black	26.0%	37.5%
%18-24	11.5	11.5
		42

 $\bar{\mathrm{T}}\mathrm{he}$ form of the equations estimated in the basic specifications is as follows:

(1) $\ln (AUTO_THEFT)_{it} = \beta LOJACK_{it} + X'_{it}\Gamma + \lambda_t + \theta_i + \epsilon_{it},$

where I indexes cities and t corresponds to years. $AUTO_THEFT$ is the auto theft rate per capita, LOJACK is one of the two Lojack proxies described earlier, and X is a vector of controls for SMSA

TABLE III IMPACT OF LOJACK ON CITY AUTO THEFT RATES						
Variable	(1)	(2)	(3)	(4)		
Years of Lojack availability	109 (.013)	157 (.021)	-	-		
Lojack share		-	242 (.031)	463 (.065)		
Unemployment rate	.019 (.009)	.026 (.010)	.017 (.009)	.028 (.010)		
State real per capita income (×1000)	.022 (.014)	.028 (.015)	.016 (.014)	.022 (.016)		

Linden and Rockoff

- Megan Kanka
 - 7 year old girl
 - Raped and murdered by neighbor who was convicted sex offender
- No one in the neighborhood knew about neighbor's history
- · Lead to passage of "Megan's Law"

50

Megan's Law

- Sexual Offender (Jacob Wetterling) Act of 1994
 - Sexual offenders required to notify state of change of address
 - Time limits vary across states (10 years after conviction or life)
 - Required of all child sex offenders, some states require of all offenders

Megan's Law

- 1996 Amendment to original law required states to publicly announce location and type of offense of sex offenders
- Indiana site

51

http://www.icrimewatch.net/indiana.php

- · Crime negatively impacts property values
- Problem: crime is not random and neither are home purchases
- Therefore, getting an estimate of the impact of crime on housing prices is tough
- · Megan's law
 - Sex offenders will most likely live in poorer areas
 - How to separate thus fact from their impact on house prices?

Methodology

- Compare house sales in neighborhoods before and after arrival of sex offender
- Impact should be "local" so comparison sample included homes in the same neighborhood but not near the offender

54

Data: NC Megan's Law Registry

- Between 1/1/1996 3/9/2003
- A total of 8287 released offenders required to register
- 1007 left the state
- Of the remaining, 103 (1.4 percent) failed to register

Data

- · Location of sex offender's address
- Timing of when they moved in
- Matched to home sales data Charlotte/Mecklenburg county – 1994-2004
- Detailed characteristics of home sales
 - 170,000 homes

55

- 9,000 within 1/3 miles of a sex offender

- Cross section of homes (i=1,2,..n)
- p_i =sales price of home i
- x_{1i},x₂₁,...,x_{ki} characteristics of home

 (rooms, sq feet, brick exterior, Jacuzzi)
- s_i =1 if sex offender lives nearby, =0 otherwise

 $\ln(p_i) = \beta_0 + x_{1i}\beta_1 + \dots + x_{ki}\beta_k + s_i\alpha + \varepsilon_i$

TABLE 1—CHARACTERISTICS OF HOMES SOLD IN MECKLENBURG COUNTY, 1994–2004

	All parcels	Within 1/3 mile	e of offender
	Mean (Standard deviation)	Mean (Standard deviation)	Marginal effect ir price regression ¹
Sale price	2.048	1.438	
(\$100,000)	(1.324)	(0.848)	
Square footage	2.075	1.620	0.266
(1,000 square feet)	(0.880)	(0.595)	(0.012)*
Quality rating (1 to 6)	3.251	3.066	0.047
	(1.208)	(0.979)	(0.006)*
Age (in years)	10.347	16.322	-0.008
	(12.090)	(12.815)	(0.001)*
Bedrooms	3.327	3.061	0.028
	(0.648)	(0.566)	(0.010)*
Bathrooms	2.018	1.737	0.028
	(0.592)	(0.539)	(0.008)*
			58

Data set design

- Identify home that eventually get a sex offender resident
- Two types of homes

 Treated: homes within 1/10th of a mile
 Control: homes within 0.1 0.3 miles
- Two periods before and after offender moves in
- Why just 0.1 miles?
- Why not all homes why just 0.1 0.3 miles?

The Difference-in-Difference model

- Data varies cross homes (i) neighborhoods (j) and time (t)
- $D^{0.1} = 1$ if home within 0.1 of sex offender
- $D^{0.3} = 1$ if home within 0.1-0.3 of sex offender
- Post = 1 if after SO arrives in a neighborhood, =0 otherwise
- α_{ji} = 1 if home is from neighborhood j in year t, =0 otherwise

$\ln(p_{ijy}) = \alpha_{jt} + x_{1ijt}\beta_1 + \dots + x_{kijt}\beta_k + \dots$
$D_{ijt}^{0.1}\gamma + D_{ijt}^{0.3} * POST_{ijt}\theta + D_{ijt}^{0.1} * POST_{ijt}\pi + \varepsilon_i$
What does α_{jt} capture?
What does $D_{ijt}^{0.1}\gamma$ capture?
What does $D_{ijt}^{0.1} * POST_{ijt} \pi$ capture?
What does $D_{ijt}^{0.3} * POST_{ijt} \theta$ capture?

Panel A: Pre-arrival	Log	Built in	Age in	Square feet	Number of	Number of
differences in sales		year sold	years	(1,000s)	bedrooms	bathrooms
Within 0.1 miles of offender	0.007	0.062	-1.081	0.059	0.022	< 0.001
Constant	(0.034)	(0.035)+	(1.117)	(0.047)	(0.034)	(0.036)
	11.745	0.186	16.616	1.589	3.050	1.717
	(0.036)*	(0.030)*	(1.153)*	(0.039)*	(0.028)*	(0.034)*
Sample size	4,497	4,497	4,497	4,497	4,497	4,497
R ²	0.05	0.03	0.04	0,03	0,03	0,03
Sample: I offender w	homes	s withi	n of 0.	3 of whe		

	re- and post-arrival		Probability of sale†	
	(5)	(6)	(7)	
Within 0.1 miles of offender	-0.006	-0.006 (0.012)	-0.029 (0 .035)	
Within 0.1 miles \times post-arrival	-0.036 (0.021)+	-0.116 (0.059)+	0.126 (0.059)*	
Dist*≪0.1 miles × post-arrival 0.1 Miles = 1) Within 1/3 miles of offender		0.107 (0.064)+	\smile	
/ithin 1/3 miles \times post-arrival	0.003 (0.016)	0.004 (0.016)	-0.055 (0.040)	
$_{0}$: within 0.1 miles \times post-arrival = 0	<i>p-value</i> = 0.0828	<i>p-value</i> = 0.0502	<i>p-value</i> = 0.0361	
ample size	9,086	9,086	1,519,364	
2	0.75	0.75	0.01	

