

Making the model more complicated

- So far, a very simple model
- Two groups
- Two periods
- However, the "treatment" may cover more than 1 group
- The treatment may happen at very different time periods across groups
- How to generalize this type of model for
- Many treatments
- Multiple groups being treated

Example: States as laboratories

- Tremendous variation across states in their laws
- Variation across states in any given year
- Variation over time within a state
- Examples
- Minimum wages, welfare policy, Medicaid coverage, traffic safety laws, use of death penalty, drinking age, cigarette taxes,

Empirical example: Motorcycle Helmet laws

- 1967, Feds require states to have helmet law to get all federal highway money
- By 1975, all states have qualifying law
- 1976, Congress responds to state pressure and eliminate penalties
- 20 states weaken their law and only require coverage for teens
- 8 states repeal law completely
- 1991 Federal law again provides incentives for laws covering everyone
- A bunch of states pass universal laws
- Congress changes its mind and in 1995 eliminate penalties
- Again many states drop the law
- Currently
- 20 states have universal law
- 27 have teen coverage only

FARS

- Fatal Accident Reporting System
- Census of motor vehicle accidents that produce a fatality
- Produced since 1975
- Detail information about
- Accident
- Vehicles
- Drivers
- Helmets are estimated to reduce the likelihood of death in a motorcycle crash by 37\%. (Center for Disease Control)
- http://www.cdc.gov/motorvehiclesafety/pdf/ mc2012/MotorcycleSafetyBook.pdf
- Where does this number come from?
- Select sample from FARS, 1988-2005
- Unique sample
- Two riders on motor cycle
- At least one died (accident was severe enough to produce a death)
- Where one of the riders used a helmet, the other did not

Results for TX alone					
* run a model for Texas . reg mcdrl speed65 unemp bac_08 trend helmet_law if state=="TX"					
Source	ss	df MS		Number of obs $=$	$=18$
				F(5, 12)	$=\quad 9.43$
Model	1.86115335	$5 \quad .37223067$		Prob $>\mathrm{F}$	$=0.0008$
Residual	. 473677129	12 . 039473094		R-squared	$=0.7971$
				Adj R-squared	$=0.7126$
Total	2.33483048	17.137342969		Root MSE	$=.19868$
mcdrl	Coef.	Std. Err.	$p>\|t\|$	[95\% Conf.	Interval]
speed65	. 1689669	. $2624034 \quad 0.64$	0.532	-. 4027609	. 7406947
unemp	. 1301635	. $0747096 \quad 1.74$	0.107	-. 0326147	. 2929418
bac_08	. 6692796	$\begin{array}{lr}.2457196 & 2.72 \\ .02475 & -1.42\end{array}$	0.018	. 1339026	1. 204657
Telmet_law	-. -.459292142		0.180 0.016	-.1025494 -.8178398	-. .10215458
${ }^{\text {cons }}$	-. 5765997	. $464616{ }^{-1.24}$	0.238	-1.588911	. 4357116^{18}

define:

$$
\begin{gathered}
i=1,2, \ldots n ; \quad t=1,2, \ldots T \\
S_{i}=1 \text { if state } i,=0 \text { otherwise } \\
W_{t}=1 \text { if year } t,=0 \text { otherwise } \\
\text { Law }_{i t}=1 \text { if state } i \text { has helmet law } \\
\text { in year } t,=0 \text { otherwise } \\
y_{i t}=\beta_{0}+R E F O R M_{i t} \beta_{1}+x_{i} \beta_{2}+ \\
\sum_{j=2}^{n} S_{j} \alpha_{j}+\sum_{k=2}^{T} W_{k} \lambda_{k}+\varepsilon_{i t}
\end{gathered}
$$

- Why k=2 to N and $\mathrm{j}=2$ to T ?
- What does α measure?
- What does λ measure?
- Question: impact of MC helmet laws on motorcycle fatalities
- Data: 48 states, 18 years (1988-2005), 864 observations
- Outcome \ln (motor cycle death rate)
- Death rates = deaths/100,000 population
- Treatment variable: $=1$ if state i has a motor cycle law in year $\mathrm{t},=0$ otherwise

Background

- Transponder installed in cars that is turned on when car is stolen
- Recover 95\% of stolen cars, compared to 60% for cars without Lojack
- One-time cost at installation
- Requires working in unison with local
- Starts in MA in 1986 and spreads to 12 cities by 1994
- Model: examine changes in crime before/after Lojack is introduced to cities without Lojack
- Time trends are key in this analysis police authorities, so market entrance is city-by-city

Dynamics

- Lojack installed in new cars, so market penetration is a function of
- New car sales
- Fraction of new cars w/ Lojack
- After 5 yrs, only 2% of all cars have Lojack once it enters an area

Potential benefits

- Does not reduce your chance of having your car stolen, but
- Reduces your costs, given that your car is stolen
- Given previous point, will reduce your insurance costs
- Chance any car will have Lojack is low.
- If high volume chop shop, will encounter Lojack
- 50 cars annually, 3% market penetration, 78% chance get at least one car with Lojack
- With 100 cars, this rises to 95%
- $\operatorname{Prob}($ at least one Lojack car) $=1$ Prob(no Lojack cars)
- Prob car does not have Lojack $=0.97$
- All probs are independent
- Prob (non have Lojack) $=0.97^{50}=0.22$

Externality

-What is externality?

- How does Lojack generate externalities?
- What does this imply about whether Lojack penetration is too high or low?

Data

- 57 cities with pop > 250,000 - Why only larger cities?
- 1981-1994
- Collect data on local economic conditions, police, age distribution

Crime Rates in the US, 2005

Mean Values		
	All cities	W/ Lojack
Population	764,268	$1,402,239$
Car theft/pop	0.012	0.018
Unemp rate	6.3	6.5
Per capita inc	$\$ 19,911$	$\$ 20,843$
\% black	26.0%	37.5%
\%18-24	11.5	11.5

The form of the equations estimated in the basic specifications is as follows:
(1) $\ln \left(\text { AUTO_THEFT }^{2}\right)_{i t}=\beta$ LOJACK $_{i t}+X_{i t}^{\prime} \Gamma+\lambda_{t}+\theta_{i}+\epsilon_{i t}$,
where I indexes cities and t corresponds to years. AUTO_THEFT is the auto theft rate per capita, LOJACK is one of the two Lojack proxies described earlier, and X is a vector of controls for SMSA

Linden and Rockoff

- Megan Kanka
- 7 year old girl
- Raped and murdered by neighbor who was convicted sex offender
- No one in the neighborhood knew about neighbor's history
- Lead to passage of "Megan's Law"

Megan's Law

- Sexual Offender (Jacob Wetterling) Act of 1994
- Sexual offenders required to notify state of change of address
- Time limits vary across states (10 years after conviction or life)
- Required of all child sex offenders, some

Megan's Law

- 1996 Amendment to original law required states to publicly announce location and type of offense of sex offenders
- Indiana site
- http://www.icrimewatch.net/indiana.php states require of all offenders

Economic question

- Crime negatively impacts property values
- Problem: crime is not random and neither are home purchases
- Therefore, getting an estimate of the impact of crime on housing prices is tough
- Megan's law
- Sex offenders will most likely live in poorer areas
- How to separate thus fact from their impact on house prices?

Methodology

- Compare house sales in neighborhoods before and after arrival of sex offender
- Impact should be "local" so comparison sample included homes in the same neighborhood but not near the offender

Data: NC Megan's Law Registry

- Between 1/1/1996-3/9/2003
- A total of 8287 released offenders required to register
- 1007 left the state
- Of the remaining, 103 (1.4 percent) failed to register

Data

- Location of sex offender's address
- Timing of when they moved in
- Matched to home sales data Charlotte/Mecklenburg county - 1994-2004
- Detailed characteristics of home sales - 170,000 homes
$-9,000$ within $1 / 3$ miles of a sex offender

Consider a simple OLS model

- Cross section of homes (i=1,2,..n)
- $p_{i}=$ sales price of home i
- $\mathrm{x}_{1 \mathrm{i}}, \mathrm{x}_{21}, \ldots . \mathrm{x}_{\mathrm{ki}}$ characteristics of home - (rooms, sq feet, brick exterior, Jacuzzi)
- $s_{i}=1$ if sex offender lives nearby, $=0$ otherwise

$$
\ln \left(p_{i}\right)=\beta_{0}+x_{1 i} \beta_{1}+\ldots . . x_{k i} \beta_{k}+s_{i} \alpha+\varepsilon_{i}
$$

Data set design

- Identify home that eventually get a sex offender resident
- Two types of homes
- Treated: homes within $1 / 10^{\text {th }}$ of a mile
- Control: homes within $0.1-0.3$ miles
- Two periods - before and after offender moves in
- Why just 0.1 miles?
- Why not all homes - why just $0.1-0.3$ miles?

The Difference-in-Difference model

- Data varies cross homes (i) neighborhoods (j) and time (t)
- $\mathrm{D}^{0.1}=1$ if home within 0.1 of sex offender
- $\mathrm{D}^{0.3}=1$ if home within 0.1-0.3 of sex offender
- Post = 1 if after SO arrives in a neighborhood, $=0$ otherwise
- $\alpha_{\mathrm{ji}}=1$ if home is from neighborhood j in year $t,=0$ otherwise

$$
\begin{aligned}
\ln \left(p_{i j y}\right) & =\alpha_{j t}+x_{1 j t} \beta_{1}+\ldots . . x_{k j t} \beta_{k}+ \\
D_{i j t}^{0.1} \gamma & +D_{i j t}^{0.3} * \operatorname{POST}_{i j t} \theta+D_{i j t}^{0.1} * \operatorname{POST}_{i j t} \pi+\varepsilon_{i}
\end{aligned}
$$

What does $\alpha_{j t}$ capture?
What does $D_{i j t}^{0.1} \gamma$ capture?
What does $D_{i j t}^{0.1} * \operatorname{POST}_{i j t} \pi$ capture?
What does $D_{i j t}^{0.3} * \operatorname{POST}_{i j t} \theta$ capture?

Sample: homes within of 0.3 of where a sex offender will eventually move

$$
x_{1 j i t}=\delta_{0}+D_{i j t}^{0.1} \delta_{1}+\xi_{i}
$$

Within 0.1 miles of offender	ce- and post-arrival		Probability of sale \dagger
	(5)	(6)	(7)
	$\begin{array}{r} -0.006 \\ (0.012) \end{array}$	$\begin{array}{r} -0.006 \\ (0.012) \end{array}$	$\begin{gathered} -0.029 \\ (0.035) \end{gathered}$
Within 0.1 miles \times post-arrival Dist $=0.1$ milies \times post-arrivai $(0.1$ Miles $=1)$ Within $1 / 3$ miles of offender	$\begin{gathered} -0.036 \\ (0.021)+ \\ \hline \end{gathered}$	$\begin{gathered} -0.116 \\ (0.059)+ \\ 0.107 \\ (0.064)+ \end{gathered}$	$\begin{gathered} 0.126 \\ (0.059)^{*} \end{gathered}$
Within $1 / 3$ miles \times post-arrival	$\begin{gathered} 0.003 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.016) \end{gathered}$	$\begin{gathered} -0.055 \\ (0.040) \end{gathered}$
$\mathrm{H}_{0} \text { : within } 0.1 \text { miles } \times$ $\text { post-arrival }=0$	$\begin{gathered} p \text {-value }= \\ 0.0828 \end{gathered}$	$\begin{gathered} p-\text { value }= \\ 0.0502 \\ \vdots \end{gathered}$	$\begin{gathered} p \text {-value }= \\ 0.0361 \\ \checkmark \end{gathered}$
Sample size	9,086	9,086	1,519,364
R^{2}	0.75	0.75	0.01

Questions:

