Suggested Answers, Problem Set 1
 ECON 30331

Bill Evans
Spring 2018

1. a. $\int_{50}^{100} \frac{d x}{50}=\left.\frac{x}{50}\right|_{50} ^{100}=\frac{100-50}{50}=1$
b.

$$
\operatorname{Pr}(x \leq 65)+\operatorname{Pr}(X>90)=\int_{50}^{65} \frac{d x}{50}+\int_{90}^{100} \frac{d x}{50}=\left.\frac{x}{50}\right|_{50} ^{65}+\left.\frac{x}{50}\right|_{90} ^{100}=
$$

$$
\frac{65-50}{50}+\frac{100-90}{50}=0.30+0.20=0.50
$$

2. a. $\operatorname{Pr}(x \leq a)=\int_{0}^{a} \beta e^{-\beta x} d x$. Let $-\beta \mathrm{x}=\mathrm{u}$ and $-\beta \mathrm{dx}=\mathrm{du}$

$$
\operatorname{Pr}(x \leq a)=\int_{0}^{a}-e^{u} d u=-\left.\mathrm{e}^{u}\right|_{0} ^{a}=-\left.\mathrm{e}^{-\beta x}\right|_{0} ^{a}=-\mathrm{e}^{-\beta a}--e^{0}=1-\mathrm{e}^{-\beta a}
$$

b. $\quad \operatorname{Pr}(x \leq a)=1-\mathrm{e}^{-\beta a}$ if $\beta=0.001$ and $\mathrm{a}=500$
$\operatorname{Pr}(x \leq 500)=1-\mathrm{e}^{-0.001(500)}=1-e^{-0.5}=0.393$
c. $\quad \operatorname{Pr}(x>1500)=1-\operatorname{Pr}(\mathrm{x} \leq 1500)=1-\left(1-\mathrm{e}^{-0.001(1500)}\right)=e^{-0.001(1500)}=e^{-1.5}=0.223$
3. a. $\operatorname{Prob}(Z \leq 0.35)=0.6368$
b. $\operatorname{Prob}(Z>-1.50)=1-\operatorname{Prob}(Z \leq-1.5)=1-0.0669=0.9332$
a. $\operatorname{Prob}(-1.22<\mathrm{z} \leq 0.57)=\operatorname{Prob}(\mathrm{z} \leq 0.57)-\operatorname{Prob}(\mathrm{z} \leq-1.22)=0.7157-0.1112=0.6045$
4. Let s be snowfall

$$
s \sim N\left(\mu, \sigma^{2}\right)=N\left(64,12^{2}\right)
$$

a. $\operatorname{Pr}(r \leq 12)=\operatorname{Pr}\left(z=\frac{s-\mu}{\sigma} \leq \frac{12-\mu}{\sigma}\right)=\operatorname{Pr}\left(z \leq \frac{12-64}{12}\right)=\operatorname{Pr}(z \leq-4.33)=\Phi(-4.33)=0.000$

It is essentially zero

$$
\begin{aligned}
\operatorname{Pr}(r>80) & =1-\operatorname{Pr}(r \leq 80)=1-\operatorname{Pr}\left(z=\frac{r-\mu}{\sigma} \leq \frac{80-\mu}{\sigma}\right)=1-\operatorname{Pr}\left(z \leq \frac{80-64}{12}\right) \\
& =1-\operatorname{Pr}(z \leq 1.33)=1-\Phi(1.33)=1-0.9082=0.0918
\end{aligned}
$$

5. If you plot out the points, you will see that the points lie along a positively-sloped straight line, so X perfectly predicts Y and vice versa. This means that the estimated correlation coefficient $\hat{\rho}$ must equal 1.
6. $\mathrm{I}=\mathrm{a}+\mathrm{bGPA}+\mathrm{cLSAT}=15 \mathrm{GPA}+\mathrm{LSAT}$
$a=0, b=800, c=1$
$\mu_{\mathrm{g}}=3.2$ and $\mu_{\mathrm{ssat}}=150 \quad \sigma_{\mathrm{g}}=1.2$ and $\sigma_{\mathrm{s}}=\varrho_{\mathrm{gs}}=0.5 \quad \sigma_{\mathrm{gs}}=\varrho_{\mathrm{gs}} \sigma_{\mathrm{g}} \sigma_{\mathrm{s}}$
$\mathrm{E}[\mathrm{I}]=15 \mu_{\mathrm{g}}+\mu_{\text {last }}=15(3.2)+150=198$
$\operatorname{Var}(\mathrm{I})=\mathrm{b}^{2} \sigma_{\mathrm{g}}{ }^{2}+\mathrm{c}^{2} \sigma_{\text {last }^{2}}+2 \mathrm{bc} \sigma_{\mathrm{gl}}$
Because I did not give you σ_{gl} but instead, I provided ϱ_{gl}, you must use the fact that $\sigma_{\mathrm{gs}}=\varrho_{\mathrm{gs}} \sigma_{\mathrm{g}} \sigma_{\mathrm{s}}$

$$
\operatorname{Var}(\mathrm{I})=15^{2}(1.2)^{2}+\left(1^{2}\right)(5)^{2}+2(15)(1)(1.2)(5)(0.5)=439
$$

7. \quad a. $\quad \operatorname{Pr}($ Died $)=0.556$
b. $\quad \operatorname{Pr}($ Was wearing a helmet $)=0.496$
c. $\quad \operatorname{Pr}($ Died \mid Was wearing a helmet $)=\operatorname{Pr}(\mathrm{D} \mid \mathrm{W})=\operatorname{Pr}(\mathrm{D} \cap \mathrm{W}) / \operatorname{Pr}(\mathrm{W})$

$$
=0.213 / 0.496=0.429
$$

d. $\quad \operatorname{Pr}($ Died \mid Was not wearing a helmet $)=\operatorname{Pr}(\mathrm{D} \mid \sim \mathrm{W})=\operatorname{Pr}(\mathrm{D} \cap \sim \mathrm{W}) / \operatorname{Pr}(\sim \mathrm{W})$

$$
=0.343 / 0.504=0.681
$$

e. The probability of death in a severe crash falls from 0.681 to 0.429 when wearing a helmet. This is a $(0.429-0.681) / 0.681=-0.37$ or a 37% reduction in the risk

If you look at the NHTSA document I linked to in the problem set, it notes that the chance of mortality falls by 37% for someone wearing a helmet.
8. In this case, $\bar{x}=18$ and $s=8$ and $\mathrm{n}=25$. The 95% confidence interval for μ is:

$$
\begin{aligned}
& \mu=\bar{x} \pm \mathrm{t}(\mathrm{n}-1)_{0.025} \mathrm{~s} / \mathrm{n}^{0.5} \\
& \mathrm{t}(\mathrm{n}-1)_{0.025}=\mathrm{t}(15)_{0.025}=2.064 \\
& \mu=\bar{x} \pm \mathrm{t}(\mathrm{n}-1)_{0.025} \mathrm{~s} / \mathrm{n}^{0.5}=18 \pm 2.064\left(8 / 25^{0.5}\right)=18 \pm 3.30=[14.7,21.03] \\
& \mathrm{H}_{0}: \mu=21
\end{aligned}
$$

Using the confidence interval, we see that 21 is within the confidence interval so we cannot reject the null that the company's statement is correct.
9. a. The 95% confidence interval is

$$
\begin{aligned}
& \mathrm{d}=\Delta \pm \mathrm{t}\left(\mathrm{n}_{1}+\mathrm{n}_{2}-2\right) \mathrm{s}_{\mathrm{p}}\left[\left(1 / \mathrm{n}_{1}\right)+\left(1 / \mathrm{n}_{2}\right)\right]^{0.5} \\
& \mathrm{t}(20+20-2)_{0.025}=\mathrm{t}(38)_{0.025}=2.024 \\
& \mathrm{~s}_{\mathrm{p}}{ }_{\mathrm{p}}=\left[\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{\mathrm{w}}^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}^{2}\right] /\left(\mathrm{n}_{1}+\mathrm{n}_{2}-1\right)=\left[19 * 12^{2}+19 * 8^{2}\right] / 38=104 \\
& \mathrm{~s}_{\mathrm{p}}=10.2 \\
& \left(\left(1 / \mathrm{n}_{1}\right)+\left(1 / \mathrm{n}_{2}\right)\right)^{0.5}=((1 / 20)+(1 / 20))^{0.5}=0.316 \\
& \mathrm{x}_{1}-\mathrm{x}_{2}=-16--7=-9
\end{aligned}
$$

$$
\mathrm{d}=\Delta \pm \mathrm{t}\left(\mathrm{n}_{1}+\mathrm{n}_{2}-2\right) \mathrm{s}_{\mathrm{p}}\left[\left(1 / \mathrm{n}_{1}\right)+\left(1 / \mathrm{n}_{2}\right)\right]^{0.5}=-9 \pm 2.024(10.2)(0.316)=-9 \pm 6.3=[-15.53,-2.47]
$$

b. Since 0 is not in the confidence interval, we can reject the null that the weight loss is the same in the two progrms.
c. The t-ratio for this problem is $\mathrm{t}=\mid(\Delta-\mathrm{d}) /\left(\mathrm{se}(\Delta) \mid\right.$. Recall that the se $(\Delta)=\mathrm{s}_{\mathrm{p}}\left(\left(1 / \mathrm{n}_{1}\right)+\right.$ $\left.\left(1 / \mathrm{n}_{2}\right)\right)^{0.5}=10.2^{*} .316=3.22$, so $\mathrm{t}=\mid(\Delta-\mathrm{d}) /(\operatorname{se}(\Delta)|=|(-16--7) / 3.22|=2.795$ which falls above the 99% critical value of 2.712 . So in this case, we can still reject the null.
10. Given a linear combination of random variables, $\mathrm{Z}=\mathrm{a}+\mathrm{bY}_{1}+\mathrm{cY}$ 2, the handout demonstrates that $\operatorname{Var}(\mathrm{Z})=b^{2} \operatorname{Var}\left(\mathrm{Y}_{1}\right)+c^{2} \operatorname{Var}\left(\mathrm{Y}_{2}\right)+2 b c \operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$. In this case $\mathrm{Z}=\mathrm{Y}_{1}+\mathrm{Y}_{2}$ so $\mathrm{a}=0, \mathrm{~b}=1$ and $\mathrm{c}=1$. We are also given the fact that Y_{1} and Y_{2} have the same variance, σ_{y}^{2}, plus Y_{1} and Y_{2} are independent so we also know that $\operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)=\sigma_{12}=0$. Plugging all these values into the equation above, $\operatorname{Var}(\mathrm{Z})$ $=2 \sigma_{y}^{2}$
11. Given the results above, if $Z=Y_{1}+Y_{2}+Y_{3}+\ldots . . Y_{n}$ and each value Y_{i} is independent of Y_{i}, then $\operatorname{Var}(\mathrm{Z})=\operatorname{Var}\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}+\ldots . . \mathrm{Y}_{\mathrm{n}}\right)=\operatorname{Var}\left(\mathrm{Y}_{1}\right)+\operatorname{Var}\left(\mathrm{Y}_{2}\right)+\ldots . . \operatorname{Var}\left(\mathrm{Y}_{\mathrm{n}}\right)=n \sigma_{\mathrm{y}}^{2}$

