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Suggested Answers, Problem Set 3 
ECON 30331 

 
Bill Evans 
Spring 2018 
 
 
1. The following short program will generate the results for this question 
 
log using ps3_q1.log, replace 

use state_cig_data 

 

*generate ln real prices 

gen ln_r_p=ln(retail_price/cpi) 

 

* generate ln quantities 

gen ln_q=ln(packs_pc) 

 

* get regression estimates 

reg ln_q ln_r_p 

predict errors, residuals 

 

sum error 

 

corr error ln_r_p 

 

log close 

 

The results are as follows 

 
 

      Source |       SS       df       MS              Number of obs =    1020 

-------------+------------------------------           F(  1,  1018) =  873.39 

       Model |  36.0468802     1  36.0468802           Prob > F      =  0.0000 

    Residual |  42.0153163  1018  .041272413           R-squared     =  0.4618 

-------------+------------------------------           Adj R-squared =  0.4612 

       Total |  78.0621965  1019   .07660667           Root MSE      =  .20316 

 

------------------------------------------------------------------------------ 

        ln_q |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      ln_r_p |  -.8076941   .0273302   -29.55   0.000    -.8613241   -.7540641 

       _cons |   8.834473   .1423221    62.07   0.000     8.555195    9.113751 

------------------------------------------------------------------------------ 

 

. predict errors, residuals 

 

.  

. sum error 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

      errors |      1020    2.92e-10    .2030564  -.7283315   .8014919 

 

.  

. corr error ln_r_p 
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(obs=1020) 

 

             |   errors   ln_r_p 

-------------+------------------ 

      errors |   1.0000 

      ln_r_p |   0.0000   1.0000 

  

 

a.  1̂  =-0.807,  0̂ = 8.83, R2=0.46.   

b. The model is of the form 0 1ln( ) ln( )i i iq p      so 1

ln( ) %
0.81

ln( ) %

q

q change in qq

pp change in p

p






    


 

The parameter 1̂  is therefore an elasticity.  A 10% increase in price will generate an 8.1 percent reduction 

in consumption.  
 

c. Note that the sample mean of the errors is zero 
1

ˆ ˆ(1/ )
n

i

i

n 


  =0 

d. The sample correlation between the estimated error and x is also zero. 
 
 
1. Look at the following results 
 
. keep if year==1985 

(969 observations deleted) 

 

. reg packs_pc federal_tax 

note: federal_tax omitted because of collinearity 

 

      Source |       SS       df       MS              Number of obs =      51 

-------------+------------------------------           F(  0,    50) =    0.00 

       Model |           0     0           .           Prob > F      =       . 

    Residual |  24487.9416    50  489.758831           R-squared     =  0.0000 

-------------+------------------------------           Adj R-squared =  0.0000 

       Total |  24487.9416    50  489.758831           Root MSE      =   22.13 

 

------------------------------------------------------------------------------ 

    packs_pc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 federal_tax |          0  (omitted) 

       _cons |   120.5275   3.098889    38.89   0.000     114.3031    126.7518 

------------------------------------------------------------------------------ 

 

sum federal_tax 

 

Variable Obs Mean Std. Dev. Min Max 

       

federal_tax 51 16  0 16 16 

 

 
The model cannot be estimated because there is no variation in the federal tax across states in 1985.  
Residents of CA, LA, IN, etc., all pay exactly the same tax.  Look at the descriptive statistics for federal_tax 
– the standard deviation is zero.  Recall the definition of the OLS estimate 
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1

2

1

( )( )
ˆ

( )

n

i i

i

n

i

i

y y x x

x x

 



 








.  In this case x does not vary across i so ix x x   which means that 

2

1

( )
n

i

i

x x


 = 0 and the model cannot be estimated. 

 
2.  If y is the teacher’s evaluation and x is the average class grade, then if we estimate the model 

0 1i i iy x     , the estimated residual 0 1
ˆ ˆ

î i iy x      represents the component of teaching 

quality that is not predicted by how easilya  teacher grades.  If î >0 then a teacher is over-performing given 

how hard they grade and if î <0 then they are under-performing given how hard they grade.  Given this 

interpretation of the estimated error, the Dean could simply use î as the basis for teaching awards. 

 
 

3. The true model is 0 1i i iy x      and the estimate for β0 is 0 1
ˆ ˆy x   .  To figure out the 

properties of the estimate, substitute in the truth.  In this case, given the true model, the truth can be 

characterized as 0 1y x     and therefore 0 1 0 1 1
ˆ ˆ ˆy x x x            

 
 Taking expectation of both sides, we get 
 

      0 0 1 1
ˆ ˆE E E x E E x          

   
 

 

 There are four terms on the right hand side.  First, not that β1 is a constant so by definition,  0 0E   .  

Likewise, x  and 1  are constants so  1 1E x x  .  Third, recall that  x  is fixed but 1̂  is a random 

variable.  In class however, we demonstrated that 1̂  is an unbiased estimate of 1  so 

 

1 1 1
ˆ ˆE x xE x      

   
 

 

Finally, note that 1 2

1
( ..... )n

n
   

 
   
 

 and therefore 

 

 1 2

1
[ ] [ ] [ ] ..... [ ]nE E E E

n
   

 
   
 

 

 

 By assumption, E[εi]=0 for all i, so [ ] 0E   .  Substituting these values into the original equation 

 

      0 0 1 1 0 1 1 0
ˆ ˆE E E x E E x x x                  

   
 

 

 Therefore, since 0 0
ˆE    

 
, 0̂  is an unbiased estimate. 
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4. We know that we can write the estimate of 1̂  as 1
1 1 1 2

2

1

( )
ˆˆ
ˆ

( )

n

i i

i x

n

x
i

i

x x

x x






  








   






 

And therefore, whether 1̂  is unbiased is a function of the expected correlation between x and ε.  Ask the 

questions, does the realization of ε convey any information about the likely value of x?  In this case, one can 
easily argue that we would expect the popular songs are also the most downloaded songs –so we would 

expect ˆ 0x  and therefore we expect 1 1
ˆ[ ]E    so in this case, the estimated parameter is biased and 

overstates the impact of downloads on sales. 
 

5. In this case, x is dosage and y is the change in cholesterol levels.  1
1 1 1 2

2

1

( )
ˆˆ
ˆ

( )

n

i i

i x

n

x
i

i

x x

x x






  








   






.  

Ask the questions, does the realization of ε convey any information about the likely value of x?  In this case, 
the answer is clearly no.  X is determined by chance– some people assigned a high dosage, some a low dose, 
and some none at all.  But, the important fact is that dosage is determined randomly so we expect that on 

average it will not be correlated with ε.  In this case, 1̂  is an unbiased estimate. 

 
 
6. Remember that in a regression model, we want x to be exogenous (fixed) and y to be endogenous (the 

choice variable).  We teach in intermediate micro that BOTH prices and output are determined by the 
market so how can one be considered fixed?  Because of the fact that prices are also determined by market, 

tt is unlikely you are getting the right estimate for 1̂ . Let’s start with the basic framework where we know 

that 1 1 2

ˆˆ
ˆ
x

x


 


  .  Does the realization of i  reveal anything about xi (price)?  Consider an area like New 

York or San Francisco which has high demand ( 0).i   Is that reflected in prices?  Well, it most likely 

means that prices are also higher than average ( ix x  ).  In contract, in Warren, OH where demand is low 

( 0)i  we would expect price to be lower ix x .  Therefore ˆ
x is potentially positive and hence 1̂ is 

biased up.   Other outcomes are possible.  Suppose in an area with high demand ( 0)i  firms respond and 

build more capacity which drives down prices.  Think of the problem this way -- if you regress quantity on 
price, how do you know you get the demand curve and not the supply curve?   

 
7.  In this problem, we exploit the properties of natural logs, ln(ab)=ln(a)+ln(b).   In the initial model, we have 

ln(Qi)=β0 +ln(Pi)β1+εi .  Now, we rescale prices by multiplying all observation by the same constant, and 
therefore, the model would be ln(Qi)=θ0 +ln(PiC)θ1+υi .  Re write this as  

 
 ln(Qi)=θ0 +ln(Pi) θ1 +ln(C)θ1+υi 
 
 Notice that ln(C)θ1 is a constant and it can be grouped with θ0 
 

ln(Qi)=θ0+ln(C)θ1 + ln(Pi) θ1 +υi 
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The previous model will produce exactly the same estimate on the ln(price) coefficient as before, so θ1 will 
equal β1.  
 

Another way to think about it is that the original estimate is 1
1

2

1

(ln(p ) ln( ))(ln(q ) ln(q))
ˆ

(ln(p ) ln( ))

n

i i

i

n

i

i

p

p

 



 








 

And with the re-scaled price, the new estimate would be 

* *

1
1

* * 2

1

(ln(p ) ln( ))(ln(q ) ln(q))

ˆ

(ln(p ) ln( ))

n

i i

i

n

i

i

p

p

 



 








 where  

*

i ip p C .  Noting that ln(ab)=ln(a)+ln(b), we can write 
*ln( ) ln( ) ln( )i ip p C  and 

*ln( ) ln( ) ln( )p p C  and hence 
* *ln(p ) ln( ) ln(p ) ln( )i ip p   so 1 1

ˆ̂    

 
 
 

8. This is not a very good idea.  Consider the estimate for 1̂ .  We can always drop one the means in the 

numerator so initially drop x .  Next, recall that in all regression models, by construction, ̂ =0.  Therefore, 
the estimate reduces to 
 

1 1 1
1

2 2 2

1 1 1

ˆ ˆ ˆ ˆ ˆ( )( ) ( )

ˆ

( ) ( ) ( )

n n n

i i i i i i

i i i

n n n

i i i

i i i

x x x x

x x x x x x

    

   

  

  

  

  

  

  
 

 
 
We have all seen the numerator before.  Look at your notes from the second day of class and look at the 
first order conditions of the basic minimization problem.  
 

 



n

i

iii xxySSE
1

101 02/)2( 


 

 
Which can be reduced to read 
 

 0 1

1 1

ˆ 0
n n

i i i i i

i i

y x x x  
 

      

 

Where  0 1î i iy x     .  The OLS model chooses 0 1
ˆ ˆand   such that xi is, by construction, 

uncorrelated with î .  Therefore, in the estimate for 1̂ , the numerator will be by construction equal to 

zero and in any model, 1̂ will also, by construction, equal 0.  Therefore, it does not inform us at all about 

whether xi and εi are correlated.  This is a dumb idea. 
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9. The OLS estimate for 
1̂  in this case is

* *

* 1
1

2

1

( )( )
ˆ

( )

n

i i

i

n

i

i

y y x x

x x

 



 









 

Note that we can write the numerator as 
*

1

( )
n

i i

i

y x x


 so the estimate would reduce to 

*

* 1
1

2

1

( )
ˆ

( )

n

i i

i

n

i

i

y x x

x x

 













 

Recall that 
*

0 1i i i i i iy y v and y x        so substitute these values into the equation above 

*

0 1
* 1 1
1

2 2

1 1

( ) ( )( )
ˆ

( ) ( )

n n

i i i i i i

i i

n n

i i

i i

y x x x v x x

x x x x

  

  

 

    

 

 

 

 

 

Note that by construction 
1

( ) 0
n

i

i

x x


  and 
2

1 1

( ) ( )
n n

i i i

i i

x x x x x
 

     

So the estimate simplifies to  

* 1 1
1 1

2 2

1 1

( ) ( )
ˆ

( ) ( )

n n

i i i i

i i

n n

i i

i i

x x v x x

x x x x



   

 

 

  

 

 

 

 

 
Taking expectations and remembering that E[β1]= β1 we get 
 

* 1 1
1 1

2 2

1 1

( ) ( )
ˆ[ ]

( ) ( )

n n

i i i i

i i

n n

i i

i i

x x v x x

E E E

x x x x



   

 

   
    

     
    
      

 

 

 

 
Because we have assumed that cov(εi,xi)=0 and cov(vi,xi)=0, both expectations on the right hand side are 
zero and therefore 
 

*

1 1
ˆ[ ]E    

 

Even with measurement error in y, the OLS estimate for 1̂  is still unbiased.  Is this a great estimator or 

what? 
 
10. There are two ways to do this – Show that R2 equals the correlation coefficient or the reverse – show that 

the correlation coefficient equals R2.   Either way, you need to know the definition of the correlation 
coefficient.  
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1

2 2

1 1

ˆ ˆ( )( ) / ( 1)

ˆ ˆ( , )

ˆ ˆ( ) / ( 1) ( ) / ( 1)

n

i i

i
i i

n n

i i

i i

y y y y n

y y

y y n y y n

 

 

  


  

     
  
  



 

  

 
Notice that the (n-1)’s in both the numerator and denominator cancel so the squared correlation coefficient 
equals 

 
2

12

2 2

1 1

ˆ ˆ( )( )

ˆ ˆ( , )

ˆ ˆ( ) ( )

n

i i

i

i i n n

i i

i i

y y y y

y y

y y y y

 

 

 
  

 

 



 
.   

 
 
 

a) Show that the correlation coefficient equals the R2. Notice that the denominator is (SST)(SSM).  Now let’s 
work with the numerator.  Recall that we can write the numerator as 

2 2

1 1

ˆ ˆ ˆ ˆ( )( ) ( )
n n

i i i i

i i

y y y y y y y
 

   
      

   
   and note that ˆˆ

i i iy y   .  Therefore,  

2 2 2

1 1 1 1

2 2

2 2

1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( )

n n n n

i i i i i i i i i

i i i i

n n

i i i

i i

y y y y y y y y y y y

y y y y y SSM

 
   

 

     
            

     

   
       
   

   

 

 

 

Note that we use the fact that 
1

ˆ ˆ ˆ( ) 0
n

i i

i

y y


  in the first row above (you can find the derivation for this 

when we did the construction of the R2.  Therefore 
2

2 2ˆ ˆ( , ) .
( )

i i

SSM SSM
y y R

SST SSM SST
     

 
 

b) Show the R2 equals the correlation coefficient.  In problem set 2, we showed that we could write the R2 

as

2

12

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

y y x x

R

x x y y



 

  
   

  
   

        



 
.  The hint says that 

2 2 2

1

1 1

ˆˆ ˆ( ) (x )
n n

i i

i i

y y x
 

    which 

means that 
2 2 2

1

1 1

ˆˆ ˆ(x ) ( ) /
n n

i i

i i

x y y 
 

    and 1
ˆ ˆ(x ) ( ) /i ix y y    so  
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2 2

2
1 12 1

2 2 2 2

2
1 1 1 11

1
ˆ ˆ( )( ) ˆ ˆ( )( )

ˆ

1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ

n n

i i i i
i i

n n n n

i i i i

i i i i

y y y y y y y y

R

y y y y y y y y





 

   

      
        

      
        

                    

 

   
 

 


