Suggested Answers
 Problem Set 7

Bill Evans

Spring 2018

1. The program that generates these results is called measurement_error_example.do. Below are a few tables that summarize the results for this problem. Please note that the variables v 2 and v 3 that are used to construct the new variables are produced from draws to a random number generator. Each time you run a program, the computer will generate a different sequence of random numbers so your results will differ slightly. Given the sample sizes, the mean and standard deviation of v 2 should close to 0 and 1 respectively, while the same values for v 3 should be 0 and 2 .

Means, Standard Deviations, and Variances of Key Variables

Variable	Mean	Std. deviation	Variance
years_educ	13.16	2.80	7.84
v2	-0.000	0.995	0.99
v3	-0.0006	2.006	4.02
educ2	13.16	2.96	8.76
educ3	13.16	3.46	11.97
ln(weekly_earn)	6.067	0.513	0.26
y2	6.066	1.12	1.25
y2	6.068	2.07	4.28

OLS Estimates

	Dependent	Independent Variable	Parameter on Independent	Std error on independent
Pa	Lntriable	Lneekly_earn)	years_educ	0.0741
0.0012				
1c	Ln(weekly_earn)	educ2	0.0655	0.0011
1d	Ln(weekly_earn)	educ3	0.0486	0.0010
1e	y2	years_educ	0.0743	0.0028
1e	y3	years_educ	0.081	0.0052

a) When education does not have measurement error, the coefficient on that variable is 0.0741 indicating that each additional year of education increases earnings by 7.4 percent.
b) The random variable $z 2$ has a mean of roughly zero and a variance of approximately 1 . Therefore, the new constructed variable educ2 has a mean of 13.16 which is exactly the mean of years_educ, but now the variance of years_educ has increased by approximately 1 , from 7.84 to 8.82 .
c) When \ln (weekly earn) is regressed on educ 2 , notice that the coefficient on the education variable falls to 0.0655 . Notice also that the ratio of this estimate to the one without measurement error is simply $0.0655 / 0.0741=0.884$. Is this to be expected? Yes. Recall two facts. First, in large samples, when there is random measurement error in x , the coefficient on x falls by the size of the reliability ratio. Notice that the variance of educ2 is simply the variance of years_educ plus the variance of v 2 . Therefore, the reliability ratio is $\theta=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}=7.84 / 8.76=0.89$. The reliability ratio suggests that the coefficient on educ2 should be about 12 percent lower and it is roughly 12 percent lower.
d) Educ3=years_educ +v 3 and notice that the variance for educ 3 is about 4 larger than the variance of years_educ. Therefore, the reliability ratio in this context is $\theta=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}=7.84 / 11.97=0.65$. This suggests that using educ3 instead of years_educ should reduce the coefficient on education by 33 percent. Notice that the ratio of the new to the original estimate is $0.0486 / 0.0741=0.655$ or about 35 percent lower.
e) On problems set 3, we demonstrated that with random measurement error in the dependent variable, the estimate for β_{1} is still unbiased (problem set 2) but the standard error should rise considerably. In this problem, notice that the two variables with measurement error (y 2 and y 3) have essentially the same mean as ln_weekly_earn but the variance increases by 1 and 4 respectively over the initial value. Therefore, when we replace ln_weekly_earn with y2 and y3, we see aomw change in the coefficient estimate for β_{1} but a large change in the estimate for the standard error of β_{1}.
2. Because we must use the noisy value of y in our estimates, the parameter estimate for β_{1} in this case will be

$$
\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}^{*}-\bar{y}^{*}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Note that we can write the numerator as $\sum_{i=1}^{n} y_{i}^{*}\left(x_{i}-\bar{x}\right)$ so the estimate would reduce to

$$
\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n} y_{i}^{*}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Recall that $y_{i}^{*}=y_{i}+v_{i}$ and $y_{i}=\beta_{0}+x_{i} \beta_{1}+\varepsilon_{i}$ so substitute these values into the equation above
$\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n} y_{i}^{*}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(\beta_{0}+x_{i} \beta_{1}+\varepsilon_{i}+v_{i}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$

Note that by construction $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$ and $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

So the estimate simplifies to

$$
\hat{\beta}_{1}^{*}=\beta_{1}+\frac{\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}+\frac{\sum_{i=1}^{n} v_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Taking expectations and remembering that $E\left[\beta_{1}\right]=\beta_{1}$ we get
$E\left[\hat{\beta}_{1}^{*}\right]=\beta_{1}+E\left[\frac{\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]+E\left[\frac{\sum_{i=1}^{n} v_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]$
It is still the case that $E\left[\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}\right)\right]=0$ so the middle term drops out. The final term however is problematic.
For the final term, divide the numerator and denominator by ($\mathrm{n}-1$), so
$E\left[\frac{\sum_{i=1}^{n} v_{i}\left(x_{i}-\bar{x}\right) /(n-1)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)}\right]=E\left(\frac{\hat{\sigma}_{x v}}{\hat{\sigma}_{x}^{2}}\right)=\left(\frac{\sigma_{x v}}{\hat{\sigma}_{x}^{2}}\right)$
and hence
$E\left[\hat{\beta}_{1}^{*}\right]=\beta_{1}+\frac{\sigma_{x v}}{\hat{\sigma}_{x}^{2}}$
we assumed that $\operatorname{cov}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)<0$ so $\sigma_{x v}<0$ and therefore $E\left[\hat{\beta}_{1}^{*}\right]<\beta_{1}$. We anticipate that regulations reduce drinking so we expect $\beta_{1}<0$. However is students are LESS likely to respond in situations with more regulation, then it will appear the regulations are more effective and the estimate for $\hat{\beta}_{1}^{*}$ will be biased down.
3. Below are the estimates for the three samples. Notice that the mean beta is pretty similar across the three samples, especially for the last two larger samples (10% and 50%). However, notice the range of outcomes is incredibly large for samples of only 20 (sample 0.1). The range in values across the 20 draws is anywhere from -0.026 to 0.157 which is enormous. Moving to a 50% random sample from the original data, the range now only varies from 0.071 to 0.077 . Note moving from a sample of .1 to 10 increases the sample size by a factor of 100 which means the standard deviation in the beta should fall by the square root of 100 or 10 - and it does - moving from 0.039 to 0.0037 .

Sample 0.1

Variable \|	Obs	Mean	Std. Dev.	Min

Sample 10

Variable \|	Obs	Mean	Std. Dev.	Min

Sample 50

Variable \|	Obs	Mean	Std. Dev.	Min	Max
betal \|	20	.0742017	.0015058	.0713476	.077194

4. Recursively substitute. Note that $y_{t}=y_{t-1}+\alpha+\varepsilon_{t}$ and also $y_{t-1}=y_{t-2}+\alpha+\varepsilon_{t-1}$

So $y_{t}=y_{t-2}+2 \alpha+\varepsilon_{t-1}+\varepsilon_{t}$. Note also that $y_{t-2}=y_{t-3}+\alpha+\varepsilon_{t-2} y_{t}=y_{t-3}+3 \alpha+\varepsilon_{t-2}+\varepsilon_{t-1}+\varepsilon_{t}$.
Doing this many times, we will eventually find that
$y_{t}=y_{0}+t \alpha+\varepsilon_{1}+\varepsilon_{2}+\ldots \varepsilon_{t-2}+\varepsilon_{t-1}+\varepsilon_{t}$
$y_{t}=y_{0}+\alpha t+\sum_{j=1}^{t} \varepsilon_{j}$
$E\left[y_{t}\right]=y_{0}+\alpha t+E\left[\sum_{j=1}^{t} \varepsilon_{j}\right]$
We know the last term equals zero so $E\left[y_{t}\right]=y_{0}+\alpha t$ meaning the expected value is time dependent - as the period increases, the mean of the dependent variable is changing.

For variance, we know that by definition $V\left(y_{t}\right)=E\left[\left(y_{t}-E\left(y_{t}\right)\right)^{2}\right]$. For this case, note that we can write
$y_{t}=y_{0}+\alpha t+\sum_{j=1}^{t} \varepsilon_{j}$ so
$V\left(y_{t}\right)=E\left[\left(y_{t}-E\left(y_{t}\right)\right)^{2}\right]=E\left[\left(y_{0}+\alpha t+\sum_{j=1}^{t} \varepsilon_{j}-y_{0}-\alpha t\right]=E\left[\left(\sum_{j=1}^{t} \varepsilon_{j}\right)^{2}\right]\right.$
And we showed in class that
$E\left[\left(\sum_{j=1}^{t} \varepsilon_{j}\right)^{2}\right]=t \sigma_{\varepsilon}^{2}$

In this case, both the mean and the variance are changing over time so this is a non-stationary series.
5. If $y_{t}=y_{t-1}+\delta t+\varepsilon_{t}$ the $y_{t}-y_{t-1}=\Delta y_{t}=y_{t-1}-y_{t-1}+\delta t+\varepsilon_{t}=\delta t+\varepsilon_{t}$ and $E\left[\Delta y_{t}\right]=E[\delta t]+E\left[\varepsilon_{t}\right]=\delta t$

In this case, the differencing does not produce a stationary series because the mean is still a function of time. Note that
$\operatorname{Var}\left[\Delta y_{t}\right]=E\left[\left(\Delta y_{t}-E\left[\Delta y_{t}\right]\right)^{2}\right]=E\left[\left(\delta t+\varepsilon_{t}-\delta t\right)^{2}\right]=E\left[\left(\varepsilon_{t}\right)^{2}\right]=\sigma_{\varepsilon}^{2}$

$$
\begin{aligned}
& \operatorname{Cov}\left[\Delta y_{t}, \Delta y_{t-1}\right]=E\left[\left(\Delta y_{t}-E\left[\Delta y_{t}\right]\right)\left(\Delta y_{t-1}-E\left[\Delta y_{t-1}\right]\right)\right] \\
& \quad=E\left[\left(\delta t+\varepsilon_{t}-\delta t\right)\left(\delta(t-1)+\varepsilon_{t-1}-\delta(t-1)\right)\right]=E\left[\varepsilon_{t} \varepsilon_{t-1}\right]=0
\end{aligned}
$$

6.

a) Notice that since $y_{t}=y_{t-1}+\varepsilon_{t}$ then $y_{t+1}=y_{t}+e_{t+1}$. Taking expectations condition on observing y_{t} Then $E\left[y_{t+1} \mid y_{t}\right]=y_{t}+E\left[e_{t+1} \mid y_{t}\right]$. Since $E\left[e_{t+1} \mid y_{t}\right]=0$ then $E\left[y_{t+1} \mid y_{t}\right]=y_{t}$
b) By construction, $y_{t+2}=y_{t+1}+e_{t+2}$ and since $y_{t+1}=y_{t}+e_{t+1}$ then $y_{t+2}=y_{t+1}+e_{t+2}=\left[y_{t}+e_{t+1}\right]+e_{t+2}=y_{t}+e_{t+1}+e_{t+2}$. Since $E\left[e_{t+1} \mid y_{t}\right]=0$ and $E\left[e_{t+2} \mid y_{t}\right]=0$ then $E\left[y_{t+2} \mid y_{t}\right]=E\left[y_{t} \mid y_{t}\right]+E\left[e_{t+1} \mid y_{t}\right]+E\left[e_{t+2} \mid y_{t}\right]=y_{t}$
c) Since $E\left[y_{t+1} \mid y_{t}\right]=y_{t}$ and $E\left[y_{t+2} \mid y_{t}\right]=y_{t}$ then we can safely conclude that $E\left[y_{t+h} \mid y_{t}\right]=y_{t}$
7. Thus was a crowd-sourced Monte Carlo. It was clear that 64 of the 65 students did the exercise correctly. There were a total of $64^{*} 10$ or 640 regressions. In the first part, a total of 593 or 92.7% of the models rejected the null. The implication is that with non-stationary series, Type I error rates are real high.

The second part of the exercise was to make all of the series stationary by first differencing and then see how many rejections of the null we obtain. The Type I error rate should be 5% and low and behold, there were 32 rejections in all of the 640 regressions or EXACTLY 5\%.

Not bad.
8. A sample program called wilcox.do is on the class web page.
a) Below are regression results for parts a and b . Note that the coefficient on the $1^{\text {st }}$ difference in $\ln (\mathrm{OASI})$ is 0.075 and the lag is 0.053 . These are close to the estimates in Wilcox - but not spot on. The P-value on the F test that the coefficients on d_oasi_ln and d_oasi_ln_1 are zero is 0.027 so we can reject the null.

. * part b -- generate the f test
. test d_oasi_ln d_oasi_ln_1
(1) d_oasi_ln = 0
(2) d_oasi_ln_1 = 0

$$
\begin{aligned}
F(2,246) & =3.66 \\
\text { Prob }>F & =0.0272
\end{aligned}
$$

c. The results when levels are used instead of 1 st differences are quite different. The coefficient for on oasi_ln triples and the coefficient for oasi_ln_1 increases by a factor of 5 . Recall that when you regress a non-stationary series on a non-stationary series, there is a high type I error rate due to spurious correlation. This is just that example.
. * part c
. * run the model but ignore the fact that
. * variables are non stationary and regress

```
. * levels on levels
. reg retail_ln time oasi_ln oasi_ln_1
\begin{tabular}{|c|c|c|c|}
\hline Source & SS & df & MS \\
\hline Model & . 554763472 & 3 & . 184921157 \\
\hline Residual & . 382233746 & 247 & . 001547505 \\
\hline Total & . 936997218 & 250 & . 003747989 \\
\hline
\end{tabular}
\begin{tabular}{rc} 
Number of obs & \(=251\) \\
F( 3, 247) & \(=119.50\) \\
Prob \(>\) F & \(=0.0000\) \\
R-squared & \(=0.5921\) \\
Adj R-squared & \(=0.5871\) \\
Root MSE & \(=.03934\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline retail_ln & Coef. & Std. Err. & t & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline time & -. 0007771 & . 0001065 & -7.29 & 0.000 & -. 000987 & -. 0005673 \\
\hline oasi_ln & . 2016764 & .1006617 & 2.00 & 0.046 & . 0034116 & . 3999412 \\
\hline oasi_ln_1 & . 3035478 & .1010089 & 3.01 & 0.003 & . 1045991 & . 5024964 \\
\hline cons & 3.220011 & . 2197767 & 14.65 & 0.000 & 2.787135 & 3.652886 \\
\hline
\end{tabular}
```

. test oasi_ln oasi_ln_1
(1) oasi_ln = 0
(2) oasi_ln_1 = 0
F(2, 247) $=78.48$ Prob $>\mathrm{F}=0.0000$

