Suggested Answers Problem Set 8

Bill Evans Spring 2018

- 1. a. N=25, k=5, $\hat{d} = 1.80$, lower=0.953, upper=1.886, since lower< \hat{d} <upper the test is inconclusive
 - b. N=60, k=9, $\hat{d} = 0.23$, lower=1.260, upper=1.939, since \hat{d} <lower, we can reject the null that $\rho=0$
 - c. N=45, k=2, $\hat{d} = 1.40$, lower=1.430, upper=1.615, since \hat{d} <lower, we can reject the null that $\rho=0$
- 2. a. False -- $\hat{\beta}_1$ is still unbiased even in the presence of autocorrelation
 - b. True -- $Var(\hat{\beta}_1)$ is too small in this situation
 - c. False Although the OLS and the AR(1) corrected estimates are both unbiased, because we are working with finite samples, there is little chance these two estimates will produce identical results
 - d. False Measurement error in y such as this only increases variance, it does not produce biased estimates which means part e is TRUE
 - e. True --
 - f. True with classical measurement error, the OLS estimated tends to be attenuated towards zero
- 3. The answers for this question are contained in the program titled michigan_dnd.do.

The results for models (1) - (3) are below

The means for the 2 x 2 table are as follows:

. * get means of smoked for 2 x 2 table . by michigan after: sum smoked												
-> michigan = 0, after = 0												
Variable	Obs	Mean	Std. Dev.	Min	Max							
smoked	15152	.1855861	.3887851	0	1							
-> michigan = 0, after = 1												
Variable	Variable Obs Mean Std. Dev. Min Max											
smoked	7304	.1856517	.388852	0	1							
-> michigan = 1,	after = 0											
Variable	Obs	Mean	Std. Dev.	Min	Max							
smoked	53232	.1922904	.3941037	0	1							
-> michigan = 1,	after = 1											
Variable	Obs	Mean	Std. Dev.	Min	Max							

	-+									
smoked		25	988	.1780	6979	.383	1065	(0	1

Putting these means into the 2x2 table, we obtain a difference in difference estimate of -0.0137 or, the tax hike reduce smoking rates among pregnant women in Michigan by 1.36 percentage points

	Before	After	Difference
	(1)	(2)	(2) - (1)
Michigan (1)	0.1923	0.1787	-0.0136
Iowa (2)	0.1856	0.1857	0.0001
Difference $(1) - (2)$			-0.0137

Now, estimating the model within a regression, we obtain the following:

Source	SS	df	MS		Number of obs	=	101676
Model Residual	3.3128883 15476.2314	3 1.1 101672 .152	.042961 217242		F(3,101672) Prob > F R-squared	=	0.0001
Total	15479.5443	101675 .152	245333		Root MSE	=	.39015
smoked	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
michigan after treatment _cons	.0067043 .0000656 0136581 .1855861	.0035924 .0055575 .0062931 .0031695	1.87 0.01 -2.17 58.55	0.062 0.991 0.030 0.000	0003368 0108271 0259925 .1793738		0137454 0109583 0013237 1917983

d) The primary assumption of the difference in difference model is that the comparison state provides an estimate of the time path of outcomes that would have occurred in the absence of the intervention. The data has two years pre tax hike (years 1 and 2) and one year post (year 3). We can test this assumption by running a fake difference in difference model. You are to estimate a difference in difference model assuming the tax hike occurred in year 2 and delete the data for year 3. In this case, the coefficient on the "treatment" effect should be zero, which it is.

. reg smoked michigan after2 treatment2 if year<=2

Source	SS	df	MS		Number of obs	= 68384
Model Residual	3.90186034 10554.4762	3 1. 68380 .	30062011 15435034		Prob > F R-squared	= 0.0000 = 0.0004 = 0.0003
Total	10558.3781	68383 .1	54400627		Root MSE	= .39287
smoked	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
michigan after2 treatment2 _cons	.0093967 010017 0049776 .1904517	.0050651 .0063859 .0072374 .0044507	1.86 -1.57 -0.69 42.79	0.064 0.117 0.492 0.000	0005309 0225334 0191628 .1817284	.0193244 .0024995 .0092076 .1991751

This is easier to see in a $2 \ge 2$ box. Using only data from year 2 and 1, we see that the both states experienced a drop in smoking of roughly the same size between year 2 and 1. From the regression estimate, we cannot reject the null that the drop is the same across the two states.

	Before	After	Difference
	(year 1)	(year 2)	(year 2) - (year 1)
Michigan (1)	0.1998	0.1848	-0.0150
Iowa (2)	0.1905	0.1805	-0.0100
Difference $(1) - (2)$			-0.0050

4. A program to answer this question is in the program titled smoked_dnd. The results for models (1) through (3) are below.

Model 1

Source	SS	df	1	MS		Number of obs	=	1020
Model Residual	32.8291921 45.2330044	2 1017	16.41 .0444	 14596 76897 		F(2, 1017) Prob > F R-squared Adj R-squared	= = =	369.06 0.0000 0.4206 0.4194
Total	78.0621965	1019	.076	60667		Root MSE	=	.2109
packs_pc_l	Coef.	Std. H	Err.	t	P> t	[95% Conf.	In	terval]
rpcil real_tax _cons	0647348 0093986 5.81216	.0436 .00042 .42910	796 151 - 643	-1.48 -22.64 13.54	0.139 0.000 0.000	1504473 0102132 4.970011	(6	0209777 0085841 .654309

Model 2

- . * add state effects
- . reg packs_pc_l rpcil real_tax _Is*

	Source	SS	df		MS		Number of obs	=	1020
_	Model Residual	70.6170713 7.44512522	52 967	1.3 .007	580206 699199		F(52, 967) Prob > F R-squared	= = =	176.38 0.0000 0.9046
_	Total	78.0621965	1019	.07	660667		Root MSE	=	.08775
_	packs_pc_l	Coef.	Std.	Err.	t t	P> t	[95% Conf.	In	terval]
_	rncil	- 7787655	033	 2236	-23 44	0 000	- 8439642	_	7135668
	real tax	- 0074131	0000	2477	-29 92	0 000	- 0078993		0069269
	Istate 2	- 3447585	030	1021	-11 45	0 000	-4038315		2856855
	Istate_3	2408913	.031	3047	-7.70	0.000	3023244		1794583
	_Istate_4	4076549	.0293	3303	-13.90	0.000	4652132		3500966
	dele	ete some resi	ults						
	Istate 49	1535768	.0290	0644	-5.28	0.000	2106134		0965401
	Istate 50	3799918	.0310	0106	-12.25	0.000	4408476	_	.319136
	Istate 51	2216287	.028	5039	-7.75	0.000	2777615		1654958
	cons	13.107	.335	5447	39.06	0.000	12.44852	1	3.76548
_									

Model 3

. * add year effects

. reg packs_pc_l rpcil real_tax _Is* _Iy*

	Source	SS	df		MS		Number of obs	=	1020
	Model Residual	73.7119499 4.35024662	71 948	1.03	3819648 4588868		Prob > F R-squared	_ _ _	0.0000
_	Total	78.0621965	1019	.0'	7660667		Root MSE	=	.06774
_	packs_pc_l	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	rpcil real_tax Istate 2	.2818674 0062409 .0926469	.0585	5799 2227 1122	4.81 -28.03 2.89	0.000 0.000 0.004	.1669061 0066779 .0296277		3968287 0058039 .155666
	de	elete some res	ults						
	_Istate_50	.1260896	.0350	074	3.60	0.000	.0573885		1947906
	_Istate_51	.0543776	.0264	1025	2.06	0.040	.0025635		1061916
	_Iyear_1982	0180335	.013	3415	-1.34	0.179	04436		.008293
	de	elte some resu	lts						
	_Iyear_1999	3664177	.0232	2861	-15.74	0.000	412116		3207194
	_Iyear_2000	373204	.0255	5011	-14.63	0.000	4232492		3231589
	_cons	2.294338	.5966	5798	3.85	0.000	1.123372	3	.465304

Notice that as we add more control variables, the coefficient on real_tax increases along the number line (falls in absolute value) from -0.0094, to -0.0074, -0.0062. This suggests that the model we initially estimated at the start of class (model 1) is biased for two reasons. First, the fact that the coefficient increased along the number lines when we added state effects suggests that high cigarette consuming states tend to also be low taxing states. This is not surprise – states that produce tobacco tend to not tax the product much and residents in these states smoke a lot. Not controlling for the fact that states with greater than average propensity to smoke are less likely to tax will seriously bias down the parameter estimates. Note also that because the coefficient increases along the number line when we ad in time effects, it must be the case that there is persistent negative correlation between consumption and taxes over time. Over the past 40 years, smoking in the US has fallen considerably as people have learned about the dangers of smoking. At the same time, states have found it easier to raise taxes cigarettes (it is easy to raise taxes on a product when a minority of the population consume it.). Therefore, no controlling for the fact that consumption levels have declined and taxes have increases will also bias down the estimates.

Notice as well that massive increase in the R^2 as we add state and year effects. Most of the variation in smoking rates is between states (Utah is always lower than Nevada) than within a state over time.

In model (3), a 10 cent increase in real taxes will reduce per capita cigarette consumption by 6.2%.

5. a) Start with
$$\operatorname{var}(\hat{\beta}_1) = \frac{\sigma_{\varepsilon}^2 \sum_{i=1}^n (z_i - \overline{z})^2}{\left[\sum_{i=1}^n (x_i - \overline{x})(z_i - \overline{z})\right]^2}$$
 and place $\sum_{i=1}^n (z_i - \overline{z})^2$ in the denominator

$$\operatorname{var}(\hat{\beta}_{1}) = \frac{\sigma_{\varepsilon}^{2}}{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(z_{i} - \overline{z})\right]^{2}}$$
$$\frac{\sum_{i=1}^{n} (z_{i} - \overline{z})^{2}}{\sum_{i=1}^{n} (z_{i} - \overline{z})^{2}}$$

Divide the numerator and denominator by $\sum_{i=1}^{n} (x_i - \overline{x})^2$ which produces

$$\operatorname{var}(\hat{\beta}_{1}^{2SLS}) = \frac{\sigma_{\varepsilon}^{2}}{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(z_{i} - \overline{z})\right]^{2}} \left[\frac{\frac{1}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}{\frac{1}{\sum_{i=1}^{n} (x_{i} - \overline{z})^{2}}}\right] = \frac{\frac{\sigma_{\varepsilon}^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}{\left[\sum_{i=1}^{n} (x_{i} - \overline{z})^{2}\right]^{2}} \cdot \frac{1}{\sum_{i=1}^{n} (z_{i} - \overline{z})^{2}} = \frac{1}{\sum_{i=1}^{n} (z_{i} - \overline{z})^{2}} \cdot \frac{1}{\sum_{i=1}^{n} (z_{i} -$$

Notice that the numerator is nothing more than $Var(\hat{\beta}_1^{OLS})$ where $Var(\hat{\beta}_1^{OLS}) = \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$. In the

denominator, divide the numerator and denominator by $(n-1)^2$

$$\frac{\left[\sum_{i=1}^{n} (x_i - \overline{x})(z_i - \overline{z})\right]^2 / (n-1)^2}{\left(\sum_{i=1}^{n} (z_i - \overline{z})^2 \right) \left(\sum_{i=1}^{n} (x_i - \overline{x})^2 - n-1\right)} = \frac{\hat{\sigma}_{xy}^2}{\hat{\sigma}_z^2 \hat{\sigma}_x^2} = \left(\frac{\hat{\sigma}_{xy}}{\hat{\sigma}_z \hat{\sigma}_x}\right)^2 = \hat{\rho}_{xy}^2 \text{ so therefore}$$

$$\operatorname{var}(\hat{\beta}_{1}^{2SLS}) = \frac{\operatorname{Var}(\hat{\beta}_{1}^{OLS})}{\hat{\rho}_{xz}^{2}}$$

- b) If Z does a poor job of explaining Z then $\hat{\rho}_{xz} \rightarrow 0$ and $var(\hat{\beta}_1^{2SLS})$ blows up because the denominator approaches zero.
- 6.a) There is room for concern that this condition is not met in this case. It is clear that BMI of siblings will be correlated. However, there is some concern that having heavier siblings may signal something about an individual's earnings capacity. Suppose that some obese people have a number of habits that lead to their obesity: lack of discipline, impulsivity, inability to sacrifice today (e.g. diet, exercise) for goals in the future. It is likely that these same traits are negatively rewarded in the job market. This is why the OLS estimates are subject to an omitted variable bias. However, suppose these traits are transmitted to children through the parents either through genetics or nurture. If this is the case, then a sibling's obesity would contain some of the information about people from this family having these negative traits as well.

a) We know that $p \lim(\hat{\beta}_1^{2SLS}) = \beta_1 + \frac{\sigma_{z\varepsilon}}{\sigma_{zx}}$ and from the text above, this suggests that $\sigma_{z\varepsilon} < 0$, and hence,

 $p \lim(\hat{\beta}_1^{2SLS})$ is biased down.

- 7. The program that generates these results is called twin1st.do and the log is twin1st.log
 - a) 60.4% of women worked last year, average weeks worked is 23 weeks and median labor income was \$1005.

b) The answers for part b are below. The coefficient on second is -6.8 meaning that among women with one or more kids, the presence of the second child reduces weeks worked by an average of 6.8 weeks/year.

. * . r	********** run OLS of eg weeks se	*** part b weeks on sec cond	cond						
	Source	SS	df		MS		Number of obs	=	12500
	Model Residual	71801.5838 6378669.1	1 12498	7180 510.)1.5838 375188		Prob > F R-squared	_ _ _	0.0000
	Total	6450470.68	12499	516.	078941		Root MSE	=	22.591
	weeks	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	second _cons	-6.813862 28.98838	.574	4749 1307	-11.86 54.56	0.000	-7.939921 27.94694	-5 3	.687803 0.02983

c) In part c, the presence of a twin increases the probability of having a second child by 27.5 percentage points. Why is this coefficient not 1? At the time of the birth, the presence of the twin increases family size from 1 to 2. However, many of the women who had a twin on the 1st birth would have had a second one anyway so that is the reason the twin1st coefficient is less than 1.

Notice that in the reduced form regression (weeks worked on twin1st) produces a coefficient of -0.99. Women assigned a twin on the first birth are working 1 week fewer per ye. Notice that -0.99/0.2746 = -3.605 which is exactly the 2SLS estimate below.

According to the OLS model, the presence of the 2nd kid reduces work by almost 7 weeks per year. In the 2SLS model, however, this number reduces to -3.6. The OLS estimate is too large by a factor of 2 suggesting large omitted variables problems in the OLS model.

second	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
twin1st _cons	.2746051 .7253949	.0058031 .0039923	47.32 181.70	0.000	.2632301 .7175694	.2859801 .7332204
 * run the re * on weeks w reg weeks tw Source 	educed form, i vorked (y) vinlst SS	mpact of tw df	ins (z) MS		Number of obs	= 12500
Model Residual	3054.30028 6447416.38	1 3054 12498 515.	.30028 875851		F(1, 12498) Prob > F R-squared Adi R-squared	$= 5.92 \\ = 0.0150 \\ = 0.0005 \\ = 0.0004$
Total	6450470.68	12499 516.	078941		Root MSE	= 22.713
weeks	Coef.	Std. Err.		P> t	[95% Conf.	Interval]
twin1st _cons	990038 23.62865	.4068821 .279916	-2.43 84.41	0.015 0.000	-1.78759 23.07997	1924865 24.17732
* run the 2sl . * ivregress 2 . ivregress 2 Instrumental	s model (Wald 2sls y (x=z) sls weeks (se variables (29	d estimate) econd=twin1: SLS) regres:	st) sion		Number of c Wald chi2(1 Prob > chi2 R-squared Root MSE	bbs = 1250 $bbs = 5.9^{\circ}$ c = 0.014 $c = 0.008^{\circ}$ $c = 22.61^{\circ}$
weeks	Coef.	Std. Err	Z	P> z	[95% Con	of. Interval
second _cons	-3.605315 26.24392	1.475498 1.278193	-2.44 20.53	4 0.015 3 0.000	5 -6.497239) 23.73871	e713391 28.7491
Instrumented: Instruments:	second twin1st					

. .

d) In this model, we run an OLS model similar to that in part B) but we add additional covavariates. Notice that the estimated impact of havin a second kid increases in magnitude from -6.8 to -9.26, providing strong evidence that the observed characteristics of the mother are correlated with whether the mother had a second child.

Model | 501874.986 7 71696.4266

Prob > F = 0.0000

Residual	 +-	5948595.69	12492	476	.192419		R-squared Adi R-squared	=	0.0778
Total		6450470.68	12499	516	.078941		Root MSE	=	21.822
weeks		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
second agem agefst black other_race educm married		-9.255974 1.000666 -1.110525 2.722332 2.647268 1.321557 -5.520823	.5768 .0462 .065 .6233 1.177 .084 .5492	3304 2932 5915 3304 L034 7274 2189	-16.05 21.62 -16.85 4.37 2.26 15.60 -10.05	0.000 0.000 0.000 0.000 0.024 0.000 0.000	-10.38665 .9099239 -1.239728 1.500509 .3518603 1.155478 -6.597377	8 1 3 4 1 -4	.125297 .091407 9813213 .944156 .942676 .487636 .444269
_cons		11.67178	1.634	4199 	7.14	0.000	8.4685	1	4.87506

e) In this problem, we estimate the model from part e) but by 2SLS using twinst as the instrument for second. Notice that the modle with covariates produces an 2SLS estimate on second of -3.8, which is only slightly larger than the Wald estimate in part c). This means that having a twin on the 1st birth is only weakly correlated with the observed characteristics (agem, agefst, black, etc.).

. ********** part f						
. * run the 2sls with additional covariates in the model						
. ivregress 2sls weeks agem agefst black other_race educm married (second=twin1st)						
Instrumental v	ariables (2SI	LS) regressi	-on	-	Number of obs Wald chi2(7) Prob > chi2 R-squared Root MSE	= 12500 = 799.03 = 0.0000 = 0.0713 = 21.892
weeks	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
second	-3.840711	1.388089	-2.77	0.006	-6.561314	-1.120107
agem	.893219	.052759	16.93	0.000	.7898133	.9966247
agefst	-1.00932	.0702044	-14.38	0.000	-1.146918	8717218
black	2.761305	.6253911	4.42	0.000	1.535561	3.987049
other race	2.651669	1.174782	2.26	0.024	.3491376	4.9542
educm	1.338171	.0850866	15.73	0.000	1.171404	1.504938
married	-6.005684	.5624385	-10.68	0.000	-7.108044	-4.903325
_cons	8.371989	1.810752	4.62	0.000	4.822981	11.921
Instrumented: Instruments:	second agem agefst	black other	race edu	ıcm marr	ied twin1st	

8. a. One would anticipate that people in most need of medical care (i.e., highest risk or mortality) would also receive the greatest amount of care or $cov(x_i.\varepsilon_i) > 0$. We know that $E[\hat{\beta}_1] = \beta_1 + \frac{\sigma_{x\varepsilon}}{\sigma_x^2}$. Since we anticipate that $\beta_1 < 0$ and $cov(x_i.\varepsilon_i) > 0$, then $E[\hat{\beta}_1] > \beta_1$.

- b) The two figures suggest that babies with slightly lower weight than 1500 grams have a lot more spent on them, which translates into better health since mortality for this group is lower.
- c) The 2SLS estimate is the reduced for divided by the 1st stage or $\hat{\beta}_1 = \hat{\pi}_1 / \hat{\theta}_1 = -0.02280 / 7670 = -2.97E 6$. this means that for every additional \$10K in spending on a low weight infant, mortality falls by (10,000)(-2.97E-6) by 0.0297 or 2.97 percentage points.
- d) RDD models assume that the health of infants just above and below 1500 grams are functionally the same in the absence of treatment. Therefore, we can use the stark increase in treatment intensity right below 1500 grams to estimate the impact of spending on outcomes.
- e) This RDD model only estimates the impact of greater health care spending at 1500 grams it does not say anything about increased spending on health care at other birth weights. RDD models have high internal validity in most situations they have low external validity.