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Suppose we have time series data series labeled as ty  where t=1,2,3,…T (the final period).  Some examples are the daily 

closing price of the S&500, quarterly per capita GDP, monthly unemployment, weekly movie attendance, etc.   
 
As we will show below, many time series processes demonstrate autocorrelation, that is, there is some persistence from one 
period to the next in the values.  For example, this month’s unemployment rate is highly predictive of next periods.  Likewise, 
the stock price for Apple today is highly predictive of tomorrow’s prices. 
 
A primary characteristic of autocorrelated processes are whether they are stationary or not.  The time series is considered 
covariance stationary if the series has a finite second moment and exhibits three characteristics 
 

i) Var(yt) = constant for all t  

ii) E[yt] = constant for all t 

iii) Cov(yt,ys)=Cov(yt+h,ys+h) where t>s 
 
The first characteristic says that the variance of the variable must be finite for all values of time.  The second says that the 
mean cannot depend on time.  The third characteristic says that the covariance between two points is only a function of the 
distance between the points (t-s) and not the point we are considering (t+h and s+h).   
 
We will put aside for now the importance of establishing stationarity but in general, there are two problems with non-
stationary series.  First, if data is non-stationary, the underlying assumptions of our statistical tests are wrong so we cannot do 
things like t-tests and f-tests.  Second, as we will show with some simulations, a regression of a non-stationary series on 
another non-stationary series tends to generate spurious correlation and high Type I error rates.  We will discuss these issues in 
some detail in class but for now, we want to focus on establishing whether a series is stationary or not.    
 
When we ask whether a series is stationary or not, we simply check the three criteria above and if one is violated, the series is 
non-stationary.   
 
Example 1:  A moving average representation 
 

Suppose that 1t t ty      

 

Where t is an independent and identically distributed error, so [ ] 0tE   , 
2( )tVar   , 1cov( , ) 0t t    and 

1.    A graph of this process is below with some random variables selected for t  and assuming 
2 1  .  Note 

that this model looks a lot like the first difference in monthly real per capita retail sales! 
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To check stationarity, we need simply go through the conditions above.  For ii) note that [ ] 0tE y  because 

[ ] 0tE   and 1[ ] 0.tE      For condition i), the variance is a little harder --  
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For condition iii), we note that 1 1 1 1cov( , ) [( [ ])( [ ])] [ ]t t t t t t t ty y E y E y y E y E y y       because 

1[ ] [ ] 0t tE y E y   .  Note as well that 1 1 2t t ty       so 
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You can show that 
2cov( , ) h

t t hy y    for h>1 so the Cov(yt,ys) is only a function of x-s, not x or s.  

 
 

Example 2:  A linear time trend  
 

Consider a linear model of the form 0t t ty t     where [ ] 0tE   , 
2( )tVar   and 1cov( , ) 0t t    .  The 

time series for quarterly population in the US monthly or quarterly real per capita GDP look like a linear time trend.   
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Note from the start that 
 

0 0 0[ ] [ ] [ ]t t t t t tE y E t t E t                 

 
and hence, the expected value of yt is a function of time so we violate condition ii) above and hence, this is a non-
stationary series.  This model is called “trends stationary” because the model can be made stationary by “de-trending.”   
 
 

 
 
Example 3:  An AR(1) process.   
 

The series for ty   is autocorrelated – which means that current values are correlated with the past.  The process can 

be very complicated or rather simple.  In this case, we will consider the simplest time of autocorrelated process – 
AR(1) – autocorrelation or order 1 where the variable is only correlated with a one-period lag. 
 
Define the AR(1) process to be  
 

(1) 1t t ty y    

 

At the start, we have to make the assumption that | | 1  .  It will become clear later on why we have to make this 

assumption.  We will maintain many of the original assumptions about the errors, namely that 
 

[ ] 0tE   and
2[ ]tVar   for all t and 1cov[ , ] 0t ty    

 

The autocorrelated process described in (1) and the assumption that | | 1  means that “shocks” to the time series in 

one period will eventually “die out” in the series.  To demonstrate this point, suppose there is some “shock” such that 

ty  is unusually high.  How much of that will persist into the future?   Note that the series for time period t+1 is 

defined as 
 

(2) 1 1t t ty y     

 

If we make the assumption that [ ] 0tE y   and 
2[ ]t yVar y   for all t, then  

 

(3) 
2

1 1 1 1cov( , ) [ ] [( ) ] [ ] [ ]t t t t t t t t t ty y E y y E y y E y E y            
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Because 
2 2[ ]t yE y  and 1[ ]t tE y  =0, then 

 

(4)  
2

1cov( , )t t yy y    

 
Note that  
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Not consider something how long the shock persists h periods in the future.  Write the definition of t hy  as 

 

(6) 1t h t h t hy y       

 

And note that we can write 1t hy    as 

 

(7) 1 2 1t h t h t hy y         

 
And substituting this into (6), we get  
 

(8)  
2

1 2 1 2 1[ ]t h t h t h t h t h t h t h t h t hy y y y                              

 
Doing this again, we know that  
 

(9) 2 3 2t h t h t hy y         

 
So (8) can be written as  
 
(10)
 

2 2 3 2

2 1 3 2 1 3 2 1[ ]t h t h t h t h t h t h t h t h t h t h t h t hy y y y                                           

 
If we continue to make these substitutions, then we will eventually write (10) as 
 
 

(11) 1 2

1 2 1....h h h

t h t t t t h t hy y       

           

 
 

Looking at the covariance between t hy   and ty  

 

(12)   2 1 2

1 2 1cov( , ) ( , ) [( .... ]h h h

t h t t h t t t t t t t h t t h ty y E y y E y y y y y       

             

 

Note that 
2 2[ ]h h

t yE y   and [ ]t m tE y  =0 for all m>0, then 
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(13) 2cov( , ) h

t h t Yy y     

 
 
Note from (13) that the covariance is a function of the distance between t and t+h but not t, so criteria iii) for weak 
stationarity is satisfied.   Recognizing the definition of correlation coefficients 
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Example 4:  A Highly persistent series – the random walk 
 

Consider the AR(1) process 1t t ty y    and relax the assumption that | | 1  .  The model then can be re-

written as  
 

(15) 1t t ty y    

 
This series is called a random walk and the series has a number of important properties.  Stock prices are thought to 
follow a random walk.  Given the highly persistent nature of the series, it is easy to demonstrate the history of y as a 

function of the errors t .  Note that the observation for period t-1 can be written as 

 

(16) 1 2 1t t ty y      

  
And substituting this into equation (15), we can re-write the equation as 
 

(17) 2 1t t t ty y       

 

Noting that 2 3 2t t ty y     we can re-write the equation again as 

 

(16) 3 2 1t t t t ty y          

 

Doing this for all n observations in the series, we can write the series for ty  as 

 

(17) 0 1 2 2 2 1......t t t t ty y                

 
Note that 
 

(18)   0 1 2 2 2 1[ ] [ ] [ ] [ ] [ ] [ ] ...... [ ] [ ]t t t t tE y E y E E E E E E               

 

and because [ ] 0tE   for all t, it must be the case that 

 

(19) 0[ ] [ ]tE y E y  
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For t≥1.  This simple result has power implications about the future predictions of y.  Suppose we want data on ty  

and we want the prediction of the variable sometime in the future.  In one period, we can write 
 

(20)  1 1t t ty y     

 

And note that because 1[ ] 0tE   
 

 

(21)  1 1[ | ] [ ]t t t t tE y y y E y     

 
Two periods in the future, we know that 
 

(22)  2 1 2 1 2t t t t t ty y y            

 

And because 1 2[ ] [ ] 0t tE E     

 

(23)  2 1 2[ | ] [ ] [ ]t t t t t tE y y y E E y        

 
Extending this to h periods in the future, it is easy to show that 
 

(24) 1 2 2 1....t y t t h t h t h t ty y                   

 

And because 1 2 2 1[ ] [ ] [ ] [ ] [ ] 0t h t h t h t tE E E E E               then [ | ]t h t tE y y y   

 
The best prediction for y any time in the future is today’s y. 
 

Another important property of the series is the variance.  Note that
2[ ]tVar    and we will assume that the errors 

are not autocorrelated where cov[ , ] 0t t h    for all h>0.  Because ty  is a linear combination of independent 

random variables and yo is a fixed parameter, [ ] 0oVar y  .  Therefore, given (24) 

(25) 0 1 2 2 2 1......t t t t ty y               , it is the case that 

 

(26)  0 1 2 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ...... ( ) ( )t t t t tVar y Var y Var Var Var Var Var Var               

 

Because the series is t periods long (1,2,3…t) and 
2[ ]tVar    for all t and [ ] 0oVar y   

 

(27)  
2( )tVar y t   

 

Note then that 
2lim ( )t

t
Var y t 


   .  So this is a non-stationary series. 
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Testing for unit roots 
 
Testing for a random walk is a little difficult.  It is tempting to simply run a regression of y on its lag, which is a pretty good 
approximation.  However, most of the statistics associated with OLS models assume the models are stationary and therefore, 
as we approach a non-stationary model, the typical standard tests we would calculate are now no longer valid.  Therefore, a 
whole set of other statistical models have been produced to test whether a model is a random walk or not.  
 
Start with the basic AR model  
 

(28)  1t t ty y      

 

Which is stationary so long as | | 1  .   We are interested in testing the null 0 : 1H    against the alternative : 1aH   .  To 

test this, subtract 1ty  from both sides 

 

(29)  1 1 1 1 1( 1)t t t t t t t t t ty y y y y y y                           

 
 

Note that if 1,    then the coefficient on θ will equal 0.  The transformation of the model from (28) to (29) allows us to 

proceed with a hull 0 : 0H   against the null 0 : 0H   .  The null is now that the model is non-stationary and if we cannot 

reject the null, we cannot evidence that the model is a stationary process. 
 

We can construct the standard t-tests on ̂ but this is no longer normally distributed in large samples.  Dickey and Fuller 

(1979) have demonstrated what the distribution of this test statistic looks like under the null 0 : 1H   or 0 : 0H   .   

 

Using the DJIA data from class, we first regress ln closing prices on a lag.  Note that the coefficient on the lag is ̂ 

0.9999874.  When we transform the model, we get a coefficient on ̂  -0.0000126.  The estimate t-statistic on this is -0.19.  
To get the critical values for the null, we ask for them by typing 
 
dfuller ln_close 

 

which produces the same results we have just constructed and the critical values for the one-tailed test 0 : 0H   .  The 5% 

critical value is -2.86 so we cannot reject the null the data is a non-stationary.   
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. * test for random walk 

. * run a regression of change ln(closing price)  

. * on one period lag 

. reg ln_close ln_close_1 

 

      Source |       SS       df       MS              Number of obs =   14361 

-------------+------------------------------           F(  1, 14359) =       . 

       Model |  18001.7298     1  18001.7298           Prob > F      =  0.0000 

    Residual |  1.18771395 14359  .000082716           R-squared     =  0.9999 

-------------+------------------------------           Adj R-squared =  0.9999 

       Total |  18002.9175 14360  1.25368507           Root MSE      =  .00909 

 

------------------------------------------------------------------------------ 

    ln_close |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  ln_close_1 |   .9999874   .0000678        .   0.000     .9998545     1.00012 

       _cons |   .0003808   .0004995     0.76   0.446    -.0005984      .00136 

------------------------------------------------------------------------------ 

 

. test ln_close_1==1 

 

 ( 1)  ln_close_1 = 1 

 

       F(  1, 14359) =    0.03 

            Prob > F =    0.8520 

 

.  

.  

. * now run model where null is transformed into 0 

. reg d_ln_close ln_close_1 

 

      Source |       SS       df       MS              Number of obs =   14361 

-------------+------------------------------           F(  1, 14359) =    0.03 

       Model |  2.8777e-06     1  2.8777e-06           Prob > F      =  0.8520 

    Residual |  1.18771395 14359  .000082716           R-squared     =  0.0000 

-------------+------------------------------           Adj R-squared = -0.0001 

       Total |  1.18771682 14360   .00008271           Root MSE      =  .00909 

 

------------------------------------------------------------------------------ 

  d_ln_close |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  ln_close_1 |  -.0000126   .0000678    -0.19   0.852    -.0001455    .0001202 

       _cons |   .0003808   .0004995     0.76   0.446    -.0005984      .00136 

------------------------------------------------------------------------------ 
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.  

. * now get dickey fuller test 

. dfuller ln_close 

 

Dickey-Fuller test for unit root                   Number of obs   =     14361 

 

                               ---------- Interpolated Dickey-Fuller --------- 

                  Test         1% Critical       5% Critical      10% Critical 

               Statistic           Value             Value             Value 

------------------------------------------------------------------------------ 

 Z(t)             -0.187            -3.430            -2.860            -2.570 

------------------------------------------------------------------------------ 

MacKinnon approximate p-value for Z(t) = 0.9401 

 

.  

.  

. * get the lag of the 1st difference 

. gen d_ln_close_1=d_ln_close[_n-1] 

(2 missing values generated) 

 

.  

. * run a regression of the 1st difference on its lag 

. reg d_ln_close d_ln_close_1 

 

      Source |       SS       df       MS              Number of obs =   14360 

-------------+------------------------------           F(  1, 14358) =   69.43 

       Model |  .005716048     1  .005716048           Prob > F      =  0.0000 

    Residual |  1.18199835 14358  .000082323           R-squared     =  0.0048 

-------------+------------------------------           Adj R-squared =  0.0047 

       Total |   1.1877144 14359  .000082716           Root MSE      =  .00907 

 

------------------------------------------------------------------------------ 

  d_ln_close |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

d_ln_close_1 |   .0693733   .0083254     8.33   0.000     .0530544    .0856921 

       _cons |   .0002686   .0000758     3.55   0.000     .0001201    .0004171 

------------------------------------------------------------------------------ 


