Hypothesis tests for one parameter # Couple of definitions • Standard normal distribution $z_i \sim N(0,1)$ • Normal distribution $$y_i \sim N(\mu, \sigma^2)$$ • Normal can always be turned into a standard normal by subtracting mean and dividing by standard deviation $$z_i = (y_i - \mu) / \sigma \sim N(0,1)$$ # Some Prob/Stat Review - y_i is a normal random variable - $y_i \sim N(0,\sigma^2)$ - Suppose there are n independent yi's $$W_1 = \sum_{i=1}^n y_i$$ - Then $W_1 \sim N(0,n\sigma^2)$ - (Last question on Problem set #1) Likewise - $y_i \sim N(0,\sigma^2)$ - Suppose there are n independent yi's $$W_2 = \sum_{i=1}^{n} b_i y_i$$ • Where b_i is a constant $$W_2 \sim N \left[0, \left(\sum_{i=1}^n b_i^2 \right) \sigma^2 \right]$$ # Some Prob/Stat Review - z_i is a standard normal random variable - $z_i \sim N(0,1)$ - Suppose there are n independent z_i's $$W_3 = \sum_{i=1}^n z_i^2$$ • Then W₃ is a Chi-squared random variable with n degrees of freedom - Suppose - W_k is a chi-squared distribution with k degrees of freedom - $-\ W_n$ is a chi-squared distribution with n degrees of freedom - Then S=(W_k/K)/(W_n/n) is an F distribution with (k,n) degrees of freedom - Defined over all S>0 • Suppose z is standard normal z~N[0,1] • Suppose W is a chi-squared with n degrees of freedom $$t = \frac{z}{\sqrt{\frac{W}{n}}}$$ is distributed as a student t with n DOF #### Student t - William Sealy Gosset - (1876-1937) - Statistician - Employee of Guinness - Used statistical models to isolate the highest yielding varieties of barley - <u>Homer</u> is correct • Symmetric, uni-modal PDF • Defined over all real numbers - Shape is a function of the degrees of freedom - Sigmoid CDF - E[t]=0 - V[t]>1 but approaches 1 as DOF approach ∞ - PDF shape very similar to standard normal with "fatter tails" # Normality of ε • $$y_i = \beta_0 + x_{1i} \beta_1 + x_{2i} \beta_2 + \dots x_{ki} \beta_k + \epsilon_i$$ - There are n observations - k+1 parameters to be estimated - n-k-1 degrees of freedom - Assume ε_i is normally distributed. - What does that assumption buy us? $$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \beta_{1} + \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})\varepsilon_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$ $$= \beta_{1} + \sum_{i=1}^{n} w_{i}\varepsilon_{i} \quad \text{where} \quad w_{i} \frac{(x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$ $$= \beta_{1} + \sum_{i=1}^{n} w_{i}\varepsilon_{i} \quad \text{where} \quad w_{i} \frac{(x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$ • Note that $\hat{oldsymbol{eta}}_1$ is a linear estimator, that is $$\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n w_i \varepsilon_i$$ - Note $\hat{\beta}_l$ is a linear function of the ϵ_i 's A linear function of normal variables is also normally distributed - Since the ϵ_i 's are assumed to be normal.... then $$\hat{\beta}_1$$ is normally distributed $\hat{\beta}_1 \sim Normal[\beta_1, V(\beta_1)]$ $$E[\hat{\beta}_1] = \beta_1$$ $$V(\hat{\beta}_1) = \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$ 22 General case: $$y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 +x_{ki}\beta_k + \varepsilon_i$$ then $\hat{\beta}_i$ is normally distributed $$\hat{\beta}_i \sim Normal[\beta_i, V(\beta_i)]$$ $$E[\hat{\beta}_j] = \beta_j$$ $$V(\hat{\beta}_j) = \frac{\sigma_{\varepsilon}^2}{SST_j(1 - R_j^2)}$$ where $$SST_j = \sum_{i=1}^{n} (x_{ji} - \overline{x}_j)^2$$ and $R_j^2 = the R^2$ from the regression of x_j on all the other x's because $\hat{\beta}_i$ is normally distributed, we could use the std. normal distribution for test of hypotheses IF WE KNEW $\sigma_{\scriptscriptstyle E}^2$ $$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{V(\hat{\beta}_{j})}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\sigma_{\varepsilon}^{2}}{SST_{i}(1 - R_{i}^{2})}}} \sim N(0, 1)$$ #### Problem? - $\sigma^2_{\,\,\epsilon}$ is unknown and must be estimated - Unbiased estimate is $$\hat{\sigma}_{\varepsilon}^{2} = \frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n-k-1}$$ 25 $\hat{\varepsilon}_{i} = y_{i} - \hat{\beta}_{0} - x_{1i}\hat{\beta}_{1} - x_{2i}\hat{\beta}_{2} - \dots x_{ki}\hat{\beta}_{k}$ $each \ \hat{\beta}_{j} \ is \ normally \ distributed$ $therefore, \ \hat{\varepsilon}_{i} \ a \ linear \ combination \ of$ $normally \ distributed \ variables$ 26 $$\hat{\sigma}_{\varepsilon}^{2} = \frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{n-k-1}$$ The numerator in the estimate looks something like a chi – squared. But because $\hat{\varepsilon}_i \sim N(0, \sigma_{\varepsilon}^2)$ (it does not have a var. of 1) it is not exactly in the correct form. Technically, $(n-k-1)\hat{\sigma}_{\varepsilon}^2 / \sigma_{\varepsilon}^2 \sim \chi^2 (n-k-1)^{27}$ - Because the n observations are already used to get k+1 parameters, there are only n-k-1 unique estimated errors - Therefore, the degrees of freedom of the chisquared distribution are n-k-1 $$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{V(\hat{\beta}_{j})}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\sigma_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} \sim N(0, 1)$$ and $$\frac{(n-k-1)\hat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2} \sim \chi^2(n-k-1)$$ and $$t = \frac{z}{\sqrt{\frac{W}{n}}} \sim t(n)$$ The theoretical variance for $\hat{\beta}_j$ $$V(\hat{\beta}_j) = \frac{\sigma_{\varepsilon}^2}{SST_j(1 - R_j^2)}$$ The estimated variance is then $$\hat{V}(\hat{\beta}_j) = \frac{\hat{\sigma}_{\varepsilon}^2}{SST_i(1 - R_j^2)}$$ Standard normal $$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{V(\hat{\beta}_{j})}} = \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(n-k-1)}{n-k-1}}} \sim t(n-k-1)$$ Chi-squared Degrees of freedom $$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\sigma_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\sigma_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{(n - k - 1)\hat{\sigma}_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2}}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\hat{\sigma}_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\hat{\sigma}_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\hat{\sigma}_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{Est.Var(\hat{\beta}_{j})}} \sim t(n - k - 1)$$ Instead of working with $$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\sigma_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} \sim N(0, 1)$$ we use $$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\frac{\hat{\sigma}_{\varepsilon}^{2}}{SST_{j}(1 - R_{j}^{2})}}} \sim t(n - k - 1)$$ $se(\hat{\beta}_j)$ s tan dard error of $\hat{\beta}_j$ $$se(\hat{\beta}_j) = \sqrt{\frac{\hat{\sigma}_{\varepsilon}^2}{SST_j(1 - R_j^2)}}$$ $$\frac{\hat{\beta}_j - a}{se(\hat{\beta}_j)} \sim t(n - k - 1)$$ 34 #### Testing Hypotheses about a Single Parameter: 2 tailed tests - Basic model - $y_i = \beta_0 + x_{1i} \beta_1 + x_{2i} \beta_2 + \dots + x_{ki} \beta_k + \epsilon_i$ - Economic theory suggests a particular value of the parameter - $H_0: \beta_i = a$ - H_a: β_i≠a 35 #### Two-tailed test - These are called two tail tests because falsification of the null hypothesis can be due to either large + or values (in absolute value) - Therefore, we use both "tails" of the underlying t-distribution • The distribution for $\;\hat{eta}_{j}\;$ $$\frac{\hat{\beta}_j - a}{se(\hat{\beta}_j)} \sim t(n - k - 1)$$ • Given the hypothesis is true, we can replace "a" for β_{j} 37 $$\hat{t} = \frac{\hat{\beta}_j - a}{se(\hat{\beta}_j)} \sim t(n - k - 1)$$ • If the hypothesis is true, the constructed test statistic should be centered on zero. How "far" from zero does it have to be to reject the null? 38 - Need to set the "confidence level" of the test. Usually 95% - Let 1-confidence level = α - With 95% confidence level, α =0.05 - α is the probability you reject the null when it is in fact true ...return to this later 39 - $t_{\alpha/2}(dof)$ be the cut-off from a t-distribution with dof degrees of freedom where only $\alpha/2$ percent of the distribution lies above - Given symmetry, $\alpha/2$ percent lies below $-t_{\alpha/2}(dof)$ - If we were to draw \hat{t} at random, 95% of the time it would be between $(-t_{\alpha/2}, t_{\alpha/2})$ - Therefore, if the hypothesized value of β_j is true, there is a 95% chance $\hat{\textbf{\textit{f}}}$ will be between $(-t_{\alpha/2}, t_{\alpha/2})$ 42 #### Decision Rule $$\hat{t} = \frac{\hat{\beta}_j - a}{se(\hat{\beta}_j)} \sim t(n - k - 1)$$ $$\begin{split} & \text{if } \mid \hat{t} \mid \geq t_{\alpha/2}(n-k-1) \text{ reject null} \\ & \text{if } \mid \hat{t} \mid < t_{\alpha/2}(n-k-1) \text{ cannot reject null} \end{split}$$ Most basic test - $\bullet \ y_i = \beta_0 + x_{1i} \, \beta_1 + x_{2i} \, \beta_2 + \ldots \, x_{ki} \, \beta_k + \epsilon_i$ - H₀: β_j=0 H_a: β_j≠0 43 • Is the parameter estimate statistically distinguishable from zero? # Baseball example - Regress attendance on wins do winning teams attract more fans - Data on 30 teams, 2 parameters, DOF=n-2=28 - Look at table in the back of the book for critical value of t - Vertical axis is DOF - Horizontal axis is the value of $\boldsymbol{\alpha}$ 45 | | | , | Signific | cance l | Level | | | |---------------|------|-------|----------|---------|--------|--------|-------------| | one-tailed t | ests | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | | | two-tailed to | ests | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | P-value | | | 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | for two | | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | tailed test | | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | | Degrees | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | | of | 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | | | freedom | 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | | | | 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | | | | 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | | | | 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | | | | 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | | | | 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | | | | 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | | | | 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | | | | 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | | | | 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | | | | 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | | | | 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | | | | 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | | | | 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 46 | | | 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | | | | | | Signific | ance | Level | | |--------------|------|-------|----------|--------|--------|--------| | one-tailed t | ests | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | | two-tailed t | ests | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | | | 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | Degrees | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | of | 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | | freedom | 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | | | 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | | | 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | | | 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | | | 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | | | 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | | | 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | | | 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | | | 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | | | 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | | | 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | | | 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | | L | 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | | | 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | | | 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | | Source | SS | df | | MS | | Number of obs
F(1, 28) | | |---------------------|--|------|-------|-------|-------|----------------------------|----------| | | 606784507
1.9110e+09 | | | | | Prob > F
R-squared | = 0.005 | | Total | 2.5178e+09 | 29 | 86819 | 537.6 | | Adj R-squared
Root MSE | | | attendance | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval | | wins | | | | | | 97.04894 | 523.045 | | _cons | 3095.14 | 8539 | .507 | 0.36 | 0.720 | -14397.25 | 20587.5 | | $\hat{\beta}_{i}$ - | $\frac{-a}{\hat{\beta}_j} = \frac{310}{1}$ | 0.05 | 5 - 0 | = 2.9 | 98 | | | # Statistical significance - When we reject the null hypothesis that H_0 : $\beta_j = 0$, we say that a variable is "statistically significant" - Which is short hand for saying the variable is statistically distinguishable from 0 - Statistically insignificant variables are those that we cannot reject the null H_0 : $\beta_j{=}0$ 49 # College GPA example - Data on 141 students - 2 continuous variables: - HS GPA - ACT Score - One intercept - DOF = n-k-1 = 141-3 = 138 - On the table, there is no 138, just find the closest one | | | 5 | Signific | ance | Level | | |--------------|----------|-------|----------|--------|--------|--------| | one-tailed t | ests | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | | two-tailed t | ests | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | | | 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | | 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | | Degrees of | 35 | 1.306 | 1.690 | 2.030 | 2.438 | 2.724 | | Freedom | 36 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 | | | 37 | 1.305 | 1.687 | 2.026 | 2.431 | 2.715 | | | 38 | 1.304 | 1.686 | 2.024 | 2.429 | 2.712 | | | 39 | 1.304 | 1.685 | 2.023 | 2.426 | 2.708 | | | 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | | | 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | | | 90 | 1.291 | 1.662 | 1.987 | 2.368 | 2.632 | | | 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | | | infinity | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | | | ss | df | MS | | Number of obs
F(2, 138) | | |---------------------------------|--------------------------|----------|----------|------|-----------------------------|----------| | | 3.42365506 | | | | Prob > F | = 0.000 | | Residual | 15.9824444 | 138 .1 | 15814814 | | R-squared
Adi R-squared | | | Total | 19.4060994 | 140 .1 | 38614996 | | Root MSE | | | college_gpa | Coef. | Std. Err | . t | P> t | [95% Conf. | Interval | | act | | | | | 0118838 | | | hs_gpa
cons | | | | | .2640047
.612419 | | | $\hat{t}_{act} = 0$ |).87
:1.98 ∴ <i>c</i> | annot | reiect n | ıull | | | | t < | | | ., | | | | | $ t_{act} < \hat{t}_{hsgpa} =$ | | | | | | | #### Confidence intervals - The CI represent the 95% most likely values of the parameter β_i - If the hypothesized value "a" (H₀: β_j=a) is not part of the confidence interval, it is not a likely value and we reject the null - If interval contains "a" we cannot reject null - The t-test and CI should provide the same decision if not, you did something wrong 53 #### Confidence intervals if the null is true, then $$-t_{\alpha/2}(n-k-1) \le \frac{\hat{\beta}_j - a}{se(\hat{\beta}_j)} \le t_{\alpha/2}(n-k-1)$$ which means that $$\begin{aligned} \hat{\beta}_{j} - se(\hat{\beta}_{j})t_{\alpha/2}(n-k-1) &\leq a \\ &\leq \hat{\beta}_{j} + se(\hat{\beta}_{j})t_{\alpha/2}(n-k-1) \end{aligned}$$ #### Confidence interval $$\hat{\beta}_j \pm se(\hat{\beta}_j)t_{\alpha/2}(n-k-1)$$ | reg attendan | regression
ce wins | | | | | | | |--------------|---|------|-------|--------|---------------------|---|--------------------| | Source | SS | df | | MS | | Number of obs | | | | 606784507
1.9110e+09 | | | | | F(1, 28)
Prob > F
R-squared
Adj R-squared | = 0.005
= 0.243 | | Total | 2.5178e+09 | 29 | 86819 | 537.6 | | Root MSE | | | attendance | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval | | wins | 310.0473 | | | | | 97.04894 | | | _cons | 3095.14 | 8539 | .507 | 0.36 | 0.720 | -14397.25 | 20587.5 | | | confider $\hat{\beta}_i \pm t_{\alpha/2}$ | | | l)se(, | $\hat{m{eta}}_{j})$ | | | | | , | 2.0 |)484 | (103 | 98) | | | | | $310.05 \pm$ | 2.0 |)484 | (103 | .98) | | | | | | | Signific | ance | Level | | |--------------|------|-------|----------|--------|--------|--------| | one-tailed t | ests | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | | two-tailed t | ests | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | | | 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | Degrees | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | of | 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | | freedom | 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | | | 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | | | 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | | | 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | | | 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | | | 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | | | 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | | | 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | | | 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | | | 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | | | 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | | г | 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | | L | 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | | | 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | | | 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | | Model 3.42365506 2 1.71182753 Prob F = 0.000 Residual 15.9824444 138 .115814814 R-squared = 0.176 Adj R-squared = 0.164 Root MSE = .3403 Residual 19.4060994 140 .138614996 Root MSE = .3403 Residual Re | Source | ss | đ£ | MS | | Number of obs
F(2, 138) | | |--|---------------------------------|------------|--------|-------------------|------|-----------------------------|----------| | Total 19.4060994 140 .138614996 Adj R-squared = 0.164 Root MSE = .3403 M | Model | 3.42365506 | 2 | 1.71182753 | | | | | Total 19.4060994 140 .138614996 Root MSE = .3403 | Residual | 15.9824444 | 138 | .115814814 | | | | | act .009426 .0107772 0.87 0.3830118838 .030735 hs_gpa .4534559 .0958129 4.73 0.000 .2640047 .642907 _cons 1.286328 .3408221 3.77 0.000 .612419 1.96023 confidence int . | Total | 19.4060994 | 140 | .138614996 | | | | | hs. gpa .4534559 .0958129 4.73 0.000 .2640047 .642907 .6008 1.286328 .3408221 3.77 0.000 .612419 1.96023 .612419 .6124 | college_gpa | Coef. | Std. | Err. t | P> t | [95% Conf. | Interval | | | | | | | | | | | confidence int. | ha ama | | | | | | | | | | | | | | | | | | $confice \hat{\beta}_j \pm t_c$ | lence int | . 3408 | $se(\hat{eta}_j)$ | | | | # Problem Set 3 - Regress ln(q) on ln(p) - Test whether the cigarette demand elasticity is an "elastic" response, that is ζ_d =-1 - 20 years worth of data, 51 states = 1020 - DOF = n-2 = 1018 | | | , | Signific | ance | Level | | |--------------|----------|-------|----------|--------|--------|--------| | one-tailed t | ests | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | | two-tailed t | ests | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | | | 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | Degrees | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | of | 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | | freedom | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | | | 100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | | | 250 | 1.285 | 1.651 | 1.969 | 2.341 | 2.596 | | | 500 | 1.283 | 1.648 | 1.965 | 2.334 | 2.586 | | | 750 | 1.283 | 1.647 | 1.963 | 2.331 | 2.582 | | | 1000 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | | | 1018 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | | | infinity | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | | Just lool | king at conf | idenc | e interval, v | ve can | reject the nu | ll | |--|---|------------------|---|---------------------|---|-------------------------| | Source | ss | df | MS | | Number of obs
F(1, 1018) | | | | 36.0468802
42.0153163 | | | | Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.4618 | | Total | 78.0621965 | 1019 | .07660667 | | Root MSE | | | ln_q | Coef. | Std. | Err. t | P> t | [95% Conf. | Interval] | | | | | 3302 -29.55
3221 62.07 | | | 9.113751 | | $ln(q_i) = \beta_0$ $H_0: \beta_1 = -$ | $\frac{1}{1} + \ln(p_i)\beta_1 + \ln(p_i)\beta_1$ | - ε _i | $\hat{t} = \frac{\hat{\beta}_1 - a}{se(\hat{\beta}_1)}$ | $=\frac{-0.8}{0.0}$ | $\frac{3081}{0273} = \frac{0.19}{0.02}$ | $\frac{92}{273} = 7.03$ | | | | | W/2 | 0.025 | 1018) = 1.96 | | | | | | $ \hat{t} > 1.96$ | ∴ reje | ect null | | | | | | | | | 61 | #### P-value - Alternative way of characterizing the data contained in the t-test - Given that the null is true, the **p-value** is probability of obtaining a result at least as extreme as the one that was actually observed - Calculate \hat{t} - In the two tailed test, the p-value is then $$p-value = \Pr(t \le -|\hat{t}|) + \Pr(t > |\hat{t}|)$$ | Source | ss . | df | | | Number of obs
F(1, 28) | | |------------|------------|--------|------------|-------|--|--------------------| | | 606784507 | 1 | 606784507 | | Prob > F
R-squared
Adj R-squared | = 0.005
= 0.241 | | Total | 2.5178e+09 | 29 | 86819537.6 | | Root MSE | | | attendance | Coef. | Std. E | Irr. t | P> t | [95% Conf. | Interval | | wins | 310.0473 | 103.98 | 325 2.98 | 0.006 | 97.04894 | 523.045 | | _cons | 3095.14 | 8539.5 | 0.36 | 0.720 | -14397.25 | 20587.5 | | | | | | | | | | DOULCE | SS | df | | MS | | Number of obs | | | |------------|------------|--------|-------|--------|-------|---------------------------|-----|--------------------| | Model | 3.42365506 | 2 | 1.711 | .82753 | | F(2, 138)
Prob > F | | | | Residual | 15.9824444 | 138 | .1158 | 14814 | | R-squared | = | 0.1764 | | Total | 19.4060994 | 140 | .1386 | 14996 | | Adj R-squared
Root MSE | | | | ollege_gpa | | | | | | [95% Conf. | Int | erval] | | act | .009426 | | | | | 0118838 | | 307358 | | hs_gpa | | | | | | .2640047
.612419 | | 5429071
.960237 | | _cons | 1.200320 | . 3400 | 5221 | 3.77 | 0.000 | .012419 | | . 500237 | • A small p-value gives you confidence that you can reject the null hypothesis – you would not get a value this large (in absolute value) at random, therefore, the $\rm H_o$ must be false Note - Using p-value, t-test, confidence interval are three ways to get the same results - The decision rule (reject or not reject) should not vary across test methods - Good check on your work -- #### Errors in Prediction - Statistical tests can be used as tests of theoretical hypothesis - Do demand curves slope down? - Do wages increase w/more education? - These are only statistical tests they ask, in a probabilistic sense, what is the likely state of the world - Consider H_0 : $\beta_i = 0$ - Suppose the t-test is small, so you *cannot reject* the null hypothesis. There is always a chance that you are wrong. 69 # Example 1: New Drug - Reduces deaths from stroke by 10%. However a clinical trial cannot reject the null hypothesis that there is no effect - t-statistic on the active ingredient is 1.12 - Cannot reject null that $\beta_i = 0$ 70 # Two possible situations - Drug does not work and your test is correct - Drug does work, but the statistical model did not have enough power to detect a statistically significant impact | | Тиро І о | nd II Enne |) 40 O | | |---------------|----------------------|---|---|----| | | Турета | ınd II Erro | DIS | | | | | Dec | ision | | | | | Cannot rejectH _o | Reject H _o | _ | | True
State | H _o true | Correct decision | Type I error
Reject true
hypothesis | | | | H _o false | Type II error
Accept false
hypothesis | Correct decision | 72 | - Type I false positive - Type II false negative - In regression, H_0 : $\beta_i = 0$ - Type I you reject that β_i =0 when it equals 0 - Type II you cannot reject β_i =0 when $\beta_i \neq 0$ 73 # What is the probability you will make a "wrong" decision - Type I error reject null when it is in fact true - $H_0: \beta_i = 0$ - Get large t-statistic so reject null - There is a chance that, by accident, you will get a large t-stat - What is that chance? 1 confidence level = α so α is the probabilty 74 - Type II errors: Do not reject null when it is in fact false - $H_o: \beta_i = 0$ - Get small t-statistic so do not reject null - What is the probability this will happen? - 1- β called the "power of the test" - Factors that increase power - Increase sample size - Increase variation in X's - Depending on the problem, need to balance the probabilities of Type I and II errors - If concerned about Type I errors, so you increase the size of the confidence interval Increase the chance of Type II error #### Example: Criminal Court - Consider criminal court: - H_o: not guilty - Job of jury decide guilty or not guilty - Type I error reject true hypothesis convict an innocent man - Type II error accept a false hypothesis —let guilty man go free - Decision rule: guilt beyond a reasonable doubt - Requires low p-value, high confidence level (99.99% confidence interval) to convict – minimize Type I 77 #### Example: Mammography - Low level radiation exam to detect breast exam - H_o: no breast cancer - Type I error False positive find a cancer growth but it does not exist - Type II error False negative fails to detect a growth - What do you minimize? 78 - Consider the doctor's liability - Suppose a Type II error happens failed to find tumor -- patient dies – gets sued for malpractice - Suppose a Type I error detect tumor, perform surgery when none was needed – - For the doctor, what type of error has more "downside" risk? 05% CLie "industry standard" Changing confidence level - 95% CI is "industry standard" - Only 5% error rate - But, maybe want to decrease Type I error rate - Decrease false positives - Increase confidence level to 99% - Maybe you really need to be sure something causes cancer before you ban the substance - In contrast, you might want to decrease chance of Type II error - Reduce the size of the confidence interval - Maybe do not require as definitive evidence before you let on the market a new drug to treat in uncurable disease 81 #### In STATA - reg y x1 x2 x3, level(#) - The # is a number from 10 to 99.99 - the top number has a low Type I (.01%) - very high Type II error rare 82 #### Test score data from CA - 420 schools - 6 graders given math/reading exams - Outcome is average score on both exams - Four covariates - Student/teacher ratio - Average family income (in thousands of \$) - % ESL - % on free and reduced lunchs 83 | s
variable name | | | value | | abla labal | | | |--|-------------|----------------------------|------------------|---------------------------------|--------------------|----------------|-----| | variable Halle | | TOTILL | | Vall | able label | | | | average_score | float | %9.0g | | | age score | (math+read) | std | | student_teacher | float | %9.0g | | stud | lent/teacher | r ratio | | | avg_income | | | | | age family | | | | esl_pct | float | %9.0g | | | | th english | | | | | | | | cond langua | | | | meal_pct | float | %9.0g | | | ds on free.
als | reduced pri | ces | | . sum average_s | | udent_tea
bs | | | _pct meal_p | | | | Variable | | | | | | | | | | 4 | 20 654 | .1565 | 19.05335 | 605.55 | 706.75 | | | average_sc~e | | 20 654
20 19. | | 19.05335
1.891812 | | | | | average_sc~e | 4 | 20 19. | 64043 | 1.891812 | 14 | | | | average_sc~e
student_te~r | 4
4
4 | 20 19.
20 15.
20 15. | 64043 1
31659 | 1.891812
7.22589
18.28593 | 14
5.335 | 25.8 | | | average_sc~e
student_te~r
avg_income | 4 | 20 19.
20 15. | 64043 1
31659 | 1.891812
7.22589 | 14
5.335 | 25.8
55.328 | | | Source
+
Model
Residual | | df MS 4 30623.3818 415 71.3640159 | | Number of obs
F(4, 415)
Prob > F
R-squared | = 429.12
= 0.0000 | | | | |---|------------|--|-------------------|--|---|---|--------------|----------------------------| | Total | | | | | Adj R-squared
Root MSE | = | | | | verage_sc~e | Coef. | Std. | Err. | t | P> t | [95% Conf. | Int | erval] | | avg_income esl_pct meal_pct _cons | 1943282 | . 2286
. 083
. 0313
. 0274
5 . 308 | 331
796
084 | -2.45
8.10
-6.19
-14.46
127.26 | 0.015
0.000
0.000
0.000
0.000 | -1.00977
.5111805
256011
4502427
665.1726 | .8
1
3 | 387875
326454
424895 | | Notice t | he t_stati | etic | οn | Stude | nt/tes | acher ratio | · i s | . 2 4 | | | Significance Level | | | | | | | | | |--------------|--------------------|-------|-------|--------|--------|--------|--|--|--| | one-tailed t | ests | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | | | | | two-tailed t | ests | 0.200 | 0.100 | 0.050 | 0.020 | 0.010 | | | | | | 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | | | | | | 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | | | | | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | | | | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | | | | Degrees | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | | | | of | 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | | | | | freedom | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | | | | | | 100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | | | | | | 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | | | | | | 200 | 1.286 | 1.653 | 1.972 | 2.345 | 2.601 | | | | | | 300 | 1.284 | 1.650 | 1.968 | 2.339 | 2.592 | | | | | | 400 | 1.284 | 1.649 | 1.966 | 2.336 | 2.588 | | | | | | 415 | 1.284 | 1.649 | 1.966 | 2.335 | 2.588 | | | | | | infinity | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | | | | | To chang | ge CI, use | e this | option | | | | |---------------------|---------------------------------|--------------------------------|-----------------------------|-------------------------|--|--------------------------------| | | me regression
score student | | | | ce level
meal_pct, leve | el(99) | | Source SS | | df MS | | | Number of obs | | | Model
Residual | | 4 30623.3818
415 71.3640159 | | | F(4, 415)
Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.8053 | | Total | 152109.594 | 419 | 363.030056 | | Root MSE | = 8.4477 | | average_sc~e | Coef. | Std. E | rr. t | P> t | [99% Conf. | Interval] | | | .674984
1943282
3963661 | .0833 | 96 -6.19
34 -14.46 | 0.000
0.000
0.000 | .4593461
2755301 | .8906219
1131263
3254406 | | • | ence int $\frac{1}{n^2}(n-k-1)$ | | $e(\hat{oldsymbol{eta}}_j)$ | | | | | 0.5604 | ± 2.588 | 3(0.2 | 286) = | -1.1 | 52, 0.03 | [] 87 |