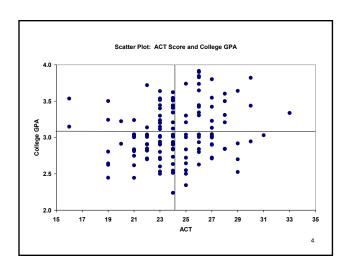
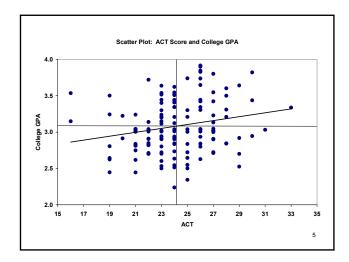
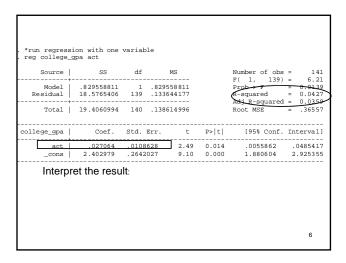
The Multivariate Regression Model

Example 1 Determinants of College GPA

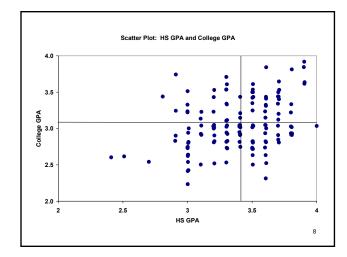

- Sample of 141 Freshman
- Collect data on College GPA (4.0 scale)
- Look at importance of ACT
- Consider the following model

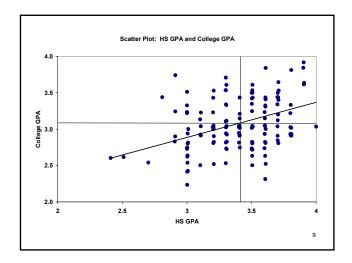

$$CGPA_i = \beta_0 + ACT_i\beta_1 + \varepsilon_i$$

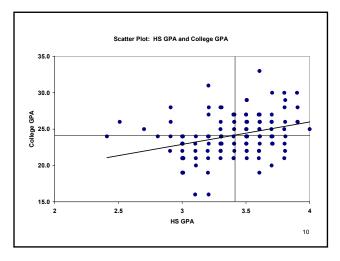

2

ACT

- 4 tests
 - English/math/reading/science reasoning
- Composite scores from 1-36
- Average score in 2000 was 21
- Movement from 21 to 22 represents 7 percentage points in the distribution (56th to 63th percentile)





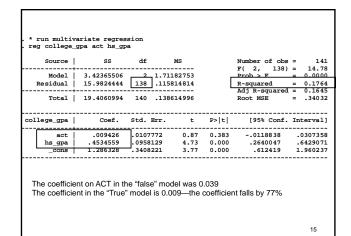

Is this an accurate estimate of $\partial (CGPA)/\partial (ACT)$?

- ACT is but one measure of ability
- "Noisy" measure at best
- Are there other measures available?
- Consider another model (Think of this as the true model)

$$CGPA_i = \beta_0 + ACT_i\beta_1 + HSGPA_i\beta_2 + \varepsilon_i$$

$$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$$

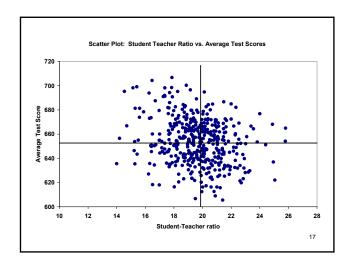
$$x_{2i} = \delta_0 + x_{1i}\delta_1 + \zeta_i$$

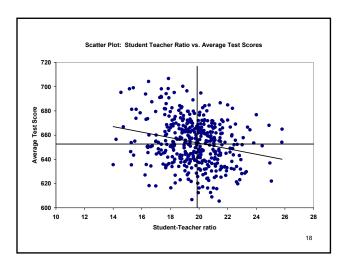

(7)
$$\hat{\delta}_{1} = \frac{\sum_{i=1}^{n} (x_{2i} - \overline{x}_{2})(x_{1i} - \overline{x}_{1})}{\sum_{i=1}^{n} (x_{1i} - \overline{x}_{1})^{2}}$$

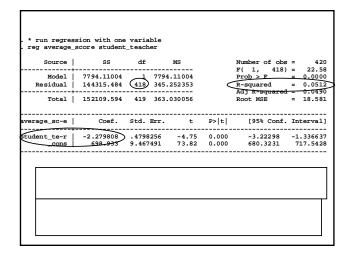
13

we anticipate that $\beta_2 > 0$ and we have shown that $\hat{\delta}_2 > 0$ $E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$ then $E[\tilde{\beta}_1] > \beta_1$

On average, the value we estimated in the "False" model will be greater than the one in the "true" model


14



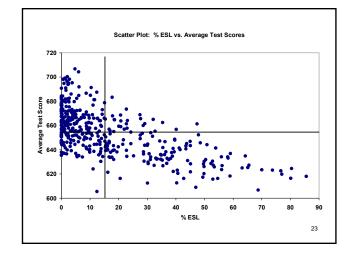

Example 2: Class Size and Performance

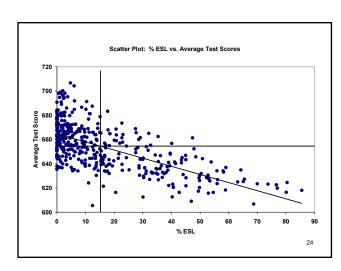
- Data from 420 schools in CA
- Outcome is average on state test for reading and math in 6th grade
- Average scores around 650 for state
- Key covariate: student/teacher ratio

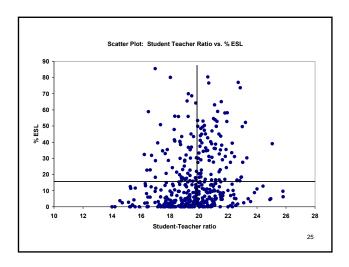
$$SCORE_i = \beta_0 + STR_i\beta_1 + \varepsilon_i$$

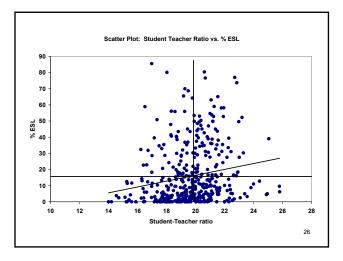
Omitted variables

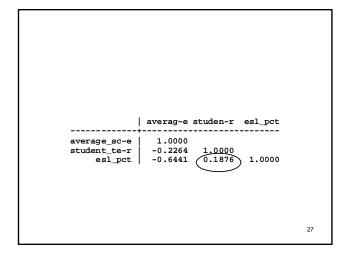
- Class size is but one covariate we could add
- Consider others that might be correlated with X that are omitted from model
- Example: % ESL
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) \left(-\right) =-\left(-\right) \left(-\right)$
 - If they are also more or less likely to be in more crowded schools, then results could be biased

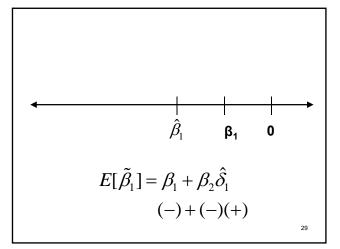

$$SCORE_i = \beta_0 + STR_i\beta_1 + ESL_i\beta_2 + \varepsilon_i$$


Think of this as the "true" model


$$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$$


$$x_{2i} = \delta_0 + x_{1i}\delta_1 + \zeta_i$$

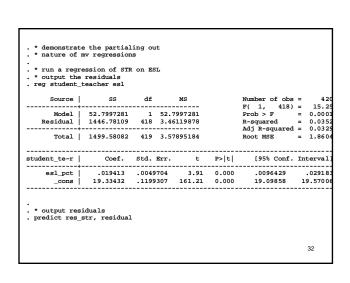

(7)
$$\hat{\delta}_{1} = \frac{\sum_{i=1}^{n} (x_{2i} - \overline{x}_{2})(x_{1i} - \overline{x}_{1})}{\sum_{i=1}^{n} (x_{1i} - \overline{x}_{1})^{2}}$$

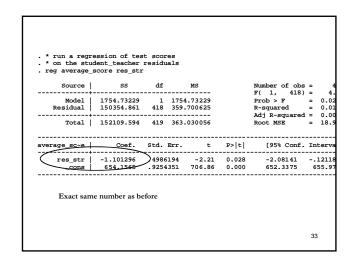

we anticipate that $\beta_2 < 0$ and we have shown that $\hat{\delta}_2 > 0$

$$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$$

then

$$E[\tilde{\beta}_1] < \beta_1$$

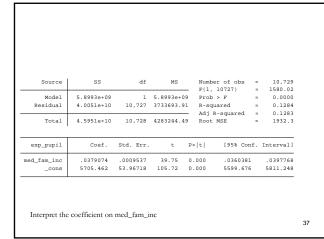

On average, the value we estimated in the "False" model will be smaller than the one in the "true" model



Think of the prediction this way

- In the single variable model, the Student/teacher ratio is picking up two effects
 - Larger class sizes reduce performance
 - ESL students are more likely to be in more crowded schools, and they that tend to have lower scores
- Therefore, the model without ESL will estimate a too large of a negative number

Source	ss	df	MS		Number of obs F(2, 417)	
	64864.3011 87245.2925			(Prob > F R-squared Adi R-squared	= 0.0000 = 0.4264
Total	152109.594	419	363.030056		Root MSE	= 14.464
verage_sc~e	Coef.	std.	Err. t	P> t	[95% Conf.	Interval
					-1.848797	
					7271112 671.4641	
5(1.1) =		s 5.5/	ss size reduc 654= 0.008 o re		•	
5(1.1) = Estima	5.5 which is te impact as	s 5.5/ befo	654= 0.008 o	or .8% -	- half the	


school_districts_2000.dta

- Data on spending/pupil and revenues/pupil for 10,279 school districts in 2000
- Schools are funded with local, state and federal dollars
- Local revenues are usually from the property tax
- State and federal dollars are usually transferred to districts based on need – poorer districts get more

34

Variable Variable Exp_pupil Med_fam_inc State/federal revenues per pupil Med_rounder_20 Mercal median family income State/federal revenues per pupil Mercal median family income Mercal median family income Stat

Su	mma	ry Stat	istics		
Obs	Mean	Std. Dev.	Min	Max	
10.729	7718.393	2069.6	4098.78	40315.48	
10,729	5139.467	2157.409	157.2581	22967.97	
10,729	7.773511	20.28197	1	1164	
10,729	.2857616	.0390008	.0813769	.5089928	
					36
	Obs 	Obs Mean 10,729 7718.393 10,729 53101.24 10,729 5139.467	Obs Mean Std. Dev. 10,729 7718.393 2069.6 10,729 53101.24 19562.17 10,729 5139.467 2157.409	10,729 7718.393 2069.6 4098.78 10,729 53101.24 19562.17 17453.32 10,729 5139.467 2157.409 157.2581	Summary Statistics Obs Mean Std. Dev. Min Max

$$\exp_{-}pupil_{i} = \beta_{0} + med_{-}fam_{-}inc_{i}\beta_{1} +$$

$$sf_{-}rev_{i}\beta_{2} + \varepsilon_{i}$$

$$y_{i} = \beta_{0} + x_{1i}\beta_{1} + x_{2i}\beta_{2} + \varepsilon_{i}$$

$$E[\tilde{\beta}_{1}] = \beta_{1} + \beta_{2}\hat{\gamma}_{1}$$

what do we expect for β_2 ? what do we expect for $\hat{\gamma}_1$?

38

. corr exp_pupil med_fam_inc sf_rev_pupil
(obs=10,729)

39

Some text

- β₂ should be positive districts will spend more if they receive more resources from state and federal sources
- What about \$1.7 State and Federal dollars are usually redistriobutionary. They tend top go to the districts with the highest need so we expect \$1.50

$$E[\tilde{\beta}_{1}] = \beta_{1} + \beta_{2}\hat{\gamma}_{1}$$

$$\beta_{1} > 0 \qquad \beta_{2} > 0 \qquad \hat{\gamma}_{2} < 0$$

$$0 \qquad \hat{\beta}_{1} \qquad \beta_{1}$$

$$E[\tilde{\beta}_{1}] = \beta_{1} + \beta_{2}\hat{\gamma}$$

$$(+) + (+)(-)$$

$$E[\tilde{\beta}_{1}] < \beta_{1}$$

$$41$$

Model Residual		2 10,726	3160196.73	F(2, 1 Prob > R-squa Adj R-	0726) F red squared	= = =	1907.22 0.0000 0.2623 0.2622
exp_pupil	Coef.			 • t	[95% Con	 f.	Interval]
f_rev_pupil	.0541612 .3807734 2885.396	.0086279	56.92 0. 44.13 0.	.000	.363861		.3976858

Partialing our properties

Source	SS	df	MS Nu	mber of obs		0,729
Model	1.4436e+10	4	3.6091e+09	. ,	_	0.0000
Residual	3.1514e+10	10.724	2938671.34		_	0.3142
				Adj R-squar	red =	0.3139
Total	4.5951e+10	10,728	4283244.49	Root MSE	=	1714.3
exp_pupil	Coef.	Std. Err.	t	P> t [95	Conf.	Interval]
med_fam_inc	.0541014	.0009176	58.96	0.000 .05	23027	.0559
sf_rev_pupil	.417348	.0084248	49.54	0.000 .400	08338	.4338621
per_under_20	-12172.15	430.7222	-28.26	0.000 -130	16.44	-11327.85
schools	-2.264741	.8165082	-2.77	0.006 -3.86	55248	664234
_cons	6196.533	140.2428	44.18	0.000 592	1.631	6471.435

Remember the coef. on med_fam_inc which is 0.054

43

*regress med_fam_inc on other x's
reg med_fam_inc sf_rev_pupi per_under_20 schools

*output residuals
predict r_medfaminc, residuals

*Regress exp_pupil on residuals
reg exp_pupil r_medfaminc

Source	SS	df			f obs =		
	-+						3066.57
	1.0216e+10						
Residual	3.5735e+10						
							0.2222
Total	4.5951e+10	10,72	8 4283244.	.49 Roc	ot MSE	=	1825.2
exp_pupil	Coef.	Std. Er	r. t	P> t	[95% (onf.	Interval]
r_medfaminc	.0541014	.00097	7 55.38	0.000	.05218	364	.0560164
_cons	7718.393	17.6208	9 438.03	0.000	7683.8	353	7752.933
Source	SS	df					
Model	1.4436e+10 3.1514e+10	4	3.6091e+09 2938671.34	F(4, Prob R-squ	10724) > F ared	=	1228.13 0.0000 0.3142
Model Residual	1.4436e+10	10,724	3.6091e+09 2938671.34	F(4, Prob R-squ Adj R	10724) > F	= = = = = = = = = = = = = = = = = = = =	1228.13 0.0000 0.3142 0.3139
Model Residual Total	1.4436e+10 3.1514e+10	10,724	3.6091e+09 2938671.34 4283244.49	F(4, Prob R-squ Adj R	10724) > F wared d-squared MSE	= = = = = = = = = = = = = = = = = = = =	1228.13 0.0000 0.3142 0.3139 1714.3
Model Residual Total	1.4436e+10 3.1514e+10 4.5951e+10	10,724 10,728 Std. Err.	3.6091e+09 2938671.34 4283244.49	F(4, Prob 4 R-squ - Adj R P Root	10724) > F wared d-squared MSE	= = = = = = nf. I	1228.13 0.0000 0.3142 0.3139 1714.3
Model Residual Total Exp_pupil Med_fam_inc f_rev_pupil	1.4436e+10 3.1514e+10 4.5951e+10 Coef.	10,724 10,728 Std. Err.	3.6091e+09 2938671.34 4283244.49 t 58.96 49.54	- F(4, 9 Prob 4 R-squ - Adj R 9 Root - P> t 0.000	10724) > F tared !-squared MSE [95% Cor	= = = = = = = = = = = = = = = = = = =	1228.13 0.0000 0.3142 0.3139 1714.3
Model Residual Total exp_pupil med_fam_inc	1.4436e+10 3.1514e+10 4.5951e+10 Coef.	10,724 10,728 Std. Err.	3.6091e+09 2938671.34 4283244.49 t 58.96 49.54	- F(4, 9 Prob 4 R-squ - Adj R 9 Root - P> t 0.000	10724) > F tared !-squared MSE [95% Cor	= = = = = = = = = = = = = = = = = = =	1228.13 0.0000 0.3142 0.3139 1714.3
Model Residual Total	1.4436e+10 3.1514e+10 4.5951e+10 Coef. .0541014 .417348 -12172.15	10,724 	3.6091e+09 2938671.34 4283244.49 t 58.96 49.54	- F(4, 9 Prob 4 R-squ - Adj R 9 Root 	10724) > F lared -squared MSE [95% Cor -0523027 4008338 -13016.44	= = = = = = = = = = = = = = = = = = =	1228.13 0.0000 0.3142 0.3139 1714.3

Interpretation

- The variation in x_{1i} that is used to generate the estimate for β_1 is only that variation in x_{1i} that is NOT predicted by the other variables in the system
- The less residual variation on x_{1i} the more difficult it will be extract information about the impact of x_1 on y