The Multivariate Regression Model # Example 1 Determinants of College GPA - Sample of 141 Freshman - Collect data on College GPA (4.0 scale) - Look at importance of ACT - Consider the following model $$CGPA_i = \beta_0 + ACT_i\beta_1 + \varepsilon_i$$ 2 ### ACT - 4 tests - English/math/reading/science reasoning - Composite scores from 1-36 - Average score in 2000 was 21 - Movement from 21 to 22 represents 7 percentage points in the distribution (56th to 63th percentile) # Is this an accurate estimate of $\partial (CGPA)/\partial (ACT)$? - ACT is but one measure of ability - "Noisy" measure at best - Are there other measures available? - Consider another model (Think of this as the true model) $$CGPA_i = \beta_0 + ACT_i\beta_1 + HSGPA_i\beta_2 + \varepsilon_i$$ $$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$$ $$x_{2i} = \delta_0 + x_{1i}\delta_1 + \zeta_i$$ (7) $$\hat{\delta}_{1} = \frac{\sum_{i=1}^{n} (x_{2i} - \overline{x}_{2})(x_{1i} - \overline{x}_{1})}{\sum_{i=1}^{n} (x_{1i} - \overline{x}_{1})^{2}}$$ 13 we anticipate that $\beta_2 > 0$ and we have shown that $\hat{\delta}_2 > 0$ $E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$ then $E[\tilde{\beta}_1] > \beta_1$ On average, the value we estimated in the "False" model will be greater than the one in the "true" model 14 ### Example 2: Class Size and Performance - Data from 420 schools in CA - Outcome is average on state test for reading and math in 6th grade - Average scores around 650 for state - Key covariate: student/teacher ratio $$SCORE_i = \beta_0 + STR_i\beta_1 + \varepsilon_i$$ ### Omitted variables - Class size is but one covariate we could add - Consider others that might be correlated with X that are omitted from model - Example: % ESL - $-% \frac{1}{2}\left(-\right) =-\left(-\right) \left(-\right) =-\left(-\right) \left(-\right)$ - If they are also more or less likely to be in more crowded schools, then results could be biased $$SCORE_i = \beta_0 + STR_i\beta_1 + ESL_i\beta_2 + \varepsilon_i$$ Think of this as the "true" model $$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$$ $$x_{2i} = \delta_0 + x_{1i}\delta_1 + \zeta_i$$ (7) $$\hat{\delta}_{1} = \frac{\sum_{i=1}^{n} (x_{2i} - \overline{x}_{2})(x_{1i} - \overline{x}_{1})}{\sum_{i=1}^{n} (x_{1i} - \overline{x}_{1})^{2}}$$ we anticipate that $\beta_2 < 0$ and we have shown that $\hat{\delta}_2 > 0$ $$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \hat{\delta}_1$$ then $$E[\tilde{\beta}_1] < \beta_1$$ On average, the value we estimated in the "False" model will be smaller than the one in the "true" model ## Think of the prediction this way - In the single variable model, the Student/teacher ratio is picking up two effects - Larger class sizes reduce performance - ESL students are more likely to be in more crowded schools, and they that tend to have lower scores - Therefore, the model without ESL will estimate a too large of a negative number | Source | ss | df | MS | | Number of obs
F(2, 417) | | |--------------------|------------------------------|----------------|-------------------------------------|----------|----------------------------------|----------------------| | | 64864.3011
87245.2925 | | | (| Prob > F R-squared Adi R-squared | = 0.0000
= 0.4264 | | Total | 152109.594 | 419 | 363.030056 | | Root MSE | = 14.464 | | verage_sc~e | Coef. | std. | Err. t | P> t | [95% Conf. | Interval | | | | | | | -1.848797 | | | | | | | | 7271112
671.4641 | | | | | | | | | | | 5(1.1) = | | s 5.5/ | ss size reduc
654= 0.008 o
re | | • | | | 5(1.1) =
Estima | 5.5 which is
te impact as | s 5.5/
befo | 654= 0.008 o | or .8% - | - half the | | ### school_districts_2000.dta - Data on spending/pupil and revenues/pupil for 10,279 school districts in 2000 - Schools are funded with local, state and federal dollars - Local revenues are usually from the property tax - State and federal dollars are usually transferred to districts based on need – poorer districts get more 34 # Variable Variable Exp_pupil Med_fam_inc State/federal revenues per pupil Med_rounder_20 Mercal median family income State/federal revenues per pupil Mercal median family income Stat | Su | mma | ry Stat | istics | | | |--------|----------|---|--|--|--| | Obs | Mean | Std. Dev. | Min | Max | | | 10.729 | 7718.393 | 2069.6 | 4098.78 | 40315.48 | | | | | | | | | | 10,729 | 5139.467 | 2157.409 | 157.2581 | 22967.97 | | | 10,729 | 7.773511 | 20.28197 | 1 | 1164 | | | 10,729 | .2857616 | .0390008 | .0813769 | .5089928 | 36 | | | Obs
 | Obs Mean 10,729 7718.393 10,729 53101.24 10,729 5139.467 | Obs Mean Std. Dev.
10,729 7718.393 2069.6
10,729 53101.24 19562.17
10,729 5139.467 2157.409 | 10,729 7718.393 2069.6 4098.78
10,729 53101.24 19562.17 17453.32
10,729 5139.467 2157.409 157.2581 | Summary Statistics Obs Mean Std. Dev. Min Max | $$\exp_{-}pupil_{i} = \beta_{0} + med_{-}fam_{-}inc_{i}\beta_{1} +$$ $$sf_{-}rev_{i}\beta_{2} + \varepsilon_{i}$$ $$y_{i} = \beta_{0} + x_{1i}\beta_{1} + x_{2i}\beta_{2} + \varepsilon_{i}$$ $$E[\tilde{\beta}_{1}] = \beta_{1} + \beta_{2}\hat{\gamma}_{1}$$ what do we expect for β_2 ? what do we expect for $\hat{\gamma}_1$? 38 . corr exp_pupil med_fam_inc sf_rev_pupil (obs=10,729) 39 ### Some text - β₂ should be positive districts will spend more if they receive more resources from state and federal sources - What about \$1.7 State and Federal dollars are usually redistriobutionary. They tend top go to the districts with the highest need so we expect \$1.50 $$E[\tilde{\beta}_{1}] = \beta_{1} + \beta_{2}\hat{\gamma}_{1}$$ $$\beta_{1} > 0 \qquad \beta_{2} > 0 \qquad \hat{\gamma}_{2} < 0$$ $$0 \qquad \hat{\beta}_{1} \qquad \beta_{1}$$ $$E[\tilde{\beta}_{1}] = \beta_{1} + \beta_{2}\hat{\gamma}$$ $$(+) + (+)(-)$$ $$E[\tilde{\beta}_{1}] < \beta_{1}$$ $$41$$ | Model
Residual | | 2
10,726 | 3160196.73 | F(2, 1
Prob >
R-squa
Adj R- | 0726)
F
red
squared | = = = | 1907.22
0.0000
0.2623
0.2622 | |-------------------|----------------------------------|-------------|----------------------|--------------------------------------|------------------------------|--------|---------------------------------------| | exp_pupil | Coef. | | |
• t | [95% Con |
f. | Interval] | | f_rev_pupil | .0541612
.3807734
2885.396 | .0086279 | 56.92 0.
44.13 0. | .000 | .363861 | | .3976858 | | | | | | | | | | | | | | | | | | | # Partialing our properties | Source | SS | df | MS Nu | mber of obs | | 0,729 | |--------------|------------|-----------|------------|-------------|-------|-----------| | Model | 1.4436e+10 | 4 | 3.6091e+09 | . , | _ | 0.0000 | | Residual | 3.1514e+10 | 10.724 | 2938671.34 | | _ | 0.3142 | | | | | | Adj R-squar | red = | 0.3139 | | Total | 4.5951e+10 | 10,728 | 4283244.49 | Root MSE | = | 1714.3 | | | | | | | | | | exp_pupil | Coef. | Std. Err. | t | P> t [95 | Conf. | Interval] | | med_fam_inc | .0541014 | .0009176 | 58.96 | 0.000 .05 | 23027 | .0559 | | sf_rev_pupil | .417348 | .0084248 | 49.54 | 0.000 .400 | 08338 | .4338621 | | per_under_20 | -12172.15 | 430.7222 | -28.26 | 0.000 -130 | 16.44 | -11327.85 | | schools | -2.264741 | .8165082 | -2.77 | 0.006 -3.86 | 55248 | 664234 | | _cons | 6196.533 | 140.2428 | 44.18 | 0.000 592 | 1.631 | 6471.435 | | | | | | | | | Remember the coef. on med_fam_inc which is 0.054 43 *regress med_fam_inc on other x's reg med_fam_inc sf_rev_pupi per_under_20 schools *output residuals predict r_medfaminc, residuals *Regress exp_pupil on residuals reg exp_pupil r_medfaminc | Source | SS | df | | | f obs = | | | |--|---|-------------------------------|---|--|---|---|---| | | -+ | | | | | | 3066.57 | | | 1.0216e+10 | | | | | | | | Residual | 3.5735e+10 | | | | | | | | | | | | | | | 0.2222 | | Total | 4.5951e+10 | 10,72 | 8 4283244. | .49 Roc | ot MSE | = | 1825.2 | | exp_pupil | Coef. | Std. Er | r. t | P> t | [95% (| onf. | Interval] | | r_medfaminc | .0541014 | .00097 | 7 55.38 | 0.000 | .05218 | 364 | .0560164 | | _cons | 7718.393 | 17.6208 | 9 438.03 | 0.000 | 7683.8 | 353 | 7752.933 | | Source | SS | df | | | | | | | Model | 1.4436e+10
3.1514e+10 | 4 | 3.6091e+09
2938671.34 | F(4,
Prob
R-squ | 10724)
> F
ared | = | 1228.13
0.0000
0.3142 | | Model
Residual | 1.4436e+10 | 10,724 | 3.6091e+09
2938671.34 | F(4,
Prob
R-squ
Adj R | 10724)
> F | = | 1228.13
0.0000
0.3142
0.3139 | | Model
Residual
Total | 1.4436e+10
3.1514e+10 | 10,724 | 3.6091e+09
2938671.34
4283244.49 | F(4,
Prob
R-squ
Adj R | 10724)
> F
wared
d-squared
MSE | = | 1228.13
0.0000
0.3142
0.3139
1714.3 | | Model
Residual
Total | 1.4436e+10
3.1514e+10
4.5951e+10 | 10,724
10,728
Std. Err. | 3.6091e+09
2938671.34
4283244.49 | F(4,
Prob
4 R-squ
- Adj R
P Root | 10724)
> F
wared
d-squared
MSE | =
=
=
=
=
=
nf. I | 1228.13
0.0000
0.3142
0.3139
1714.3 | | Model Residual Total Exp_pupil Med_fam_inc f_rev_pupil | 1.4436e+10
3.1514e+10
4.5951e+10
Coef. | 10,724
10,728
Std. Err. | 3.6091e+09
2938671.34
4283244.49
t
58.96
49.54 | - F(4,
9 Prob
4 R-squ
- Adj R
9 Root
- P> t
0.000 | 10724) > F tared !-squared MSE [95% Cor | = = = = = = = = = = = = = = = = = = = | 1228.13
0.0000
0.3142
0.3139
1714.3
 | | Model Residual Total exp_pupil med_fam_inc | 1.4436e+10
3.1514e+10
4.5951e+10
Coef. | 10,724
10,728
Std. Err. | 3.6091e+09
2938671.34
4283244.49
t
58.96
49.54 | - F(4,
9 Prob
4 R-squ
- Adj R
9 Root
- P> t
0.000 | 10724) > F tared !-squared MSE [95% Cor | = = = = = = = = = = = = = = = = = = = | 1228.13
0.0000
0.3142
0.3139
1714.3
 | | Model Residual Total | 1.4436e+10
3.1514e+10
4.5951e+10
Coef.
.0541014
.417348
-12172.15 | 10,724
 | 3.6091e+09
2938671.34
4283244.49
t
58.96
49.54 | - F(4,
9 Prob
4 R-squ
- Adj R
9 Root
 | 10724)
> F
lared
-squared
MSE
[95% Cor
-0523027
4008338
-13016.44 | = = = = = = = = = = = = = = = = = = = | 1228.13
0.0000
0.3142
0.3139
1714.3
 | # Interpretation - The variation in x_{1i} that is used to generate the estimate for β_1 is only that variation in x_{1i} that is NOT predicted by the other variables in the system - The less residual variation on x_{1i} the more difficult it will be extract information about the impact of x_1 on y