The Consistency of OLS Estimates
 ECON 30331

Bill Evans

Fall 2008

Model: (1) $y_{i}=\beta_{0}+x_{i} \beta_{1}+\varepsilon_{i}$

We've demonstrated in class that the estimate for $\hat{\beta}_{1}$

$$
\text { (2) } \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Recalling the properties of summations, note that numerator can be written as

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right) \tag{3}
\end{equation*}
$$

Note further that the true relationship between y and x is given by equation (1) above. Substituting (1) into the numerator of (2) generates

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{4}
\end{equation*}
$$

Break apart the terms in the numerator

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \beta_{0}\left(x_{i}-\bar{x}\right)+\sum_{i=1}^{n} \beta_{1} x_{i}\left(x_{i}-\bar{x}\right)+\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{5}
\end{equation*}
$$

We can simplify the terms in (5) using the properties of summations:
In the first term in the numerator, note that β_{0} is a constant and can be pulled outside the summation. As a result, we have the summation of a deviation from a mean, which equals zero

$$
\sum_{i=1}^{n} \beta_{0}\left(x_{i}-\bar{x}\right)=\beta_{0} \sum_{i-1}^{n}\left(x_{i}-\bar{x}\right)=\beta_{0}(0)=0
$$

In the second term in the numerator, β_{1} is a constant and it can pulled outside the summation. Recall also that $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)$ so

$$
\sum_{I=1}^{n} \beta_{1} x_{i}\left(x_{i}-\bar{x}\right)=\beta_{1} \sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)=\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

The first term in the numerator drops out, the second term reduces to β_{1} and therefore, we can write the OLS estimate for $\hat{\beta}_{1}$ as

$$
\begin{equation*}
\hat{\beta}_{1}=\beta_{1}+\frac{\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{6}
\end{equation*}
$$

Divide the numerator and denominator on the right hand side of (6) by ($\mathrm{n}-1$)

$$
\hat{\beta}_{1}=\beta_{1}+\frac{\frac{\sum_{i=1}^{n} \varepsilon_{i}\left(x_{i}-\bar{x}\right)}{n-1}}{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\beta_{1}+\frac{\hat{\sigma}_{\varepsilon x}}{\hat{\sigma}_{x}^{2}}
$$

Note that the numerator in the middle of (7) is the sample covariance of x and ε while the denominator is the sample variance of x . Re-write (7) to read. Now, what happens to the estimate $\hat{\beta}_{1}$ when the sample size increases.

$$
\begin{equation*}
p \lim \left(\hat{\beta}_{1}\right)=\beta_{1}+p \lim \left[\frac{\hat{\sigma}_{\varepsilon x}}{\hat{\sigma}_{x}^{2}}\right] \tag{8}
\end{equation*}
$$

As $\mathrm{n} \rightarrow \infty$, we know that $p \lim \left(\hat{\sigma}_{\varepsilon x}\right)=\sigma_{\varepsilon x}$ and $p \lim \left(\hat{\sigma}_{x}^{2}\right)=\sigma_{x}^{2}$, that is, $\hat{\sigma}_{\varepsilon x}$ is a consistent estimate of $\sigma_{\varepsilon x}$ and $\hat{\sigma}_{x}^{2}$ is a consistent estimate of σ_{x}^{2}. If we maintain the assumption that in large samples, $\sigma_{\varepsilon x}=0$, then

$$
\begin{equation*}
p \lim \left(\hat{\beta}_{1}\right)=\beta_{1}+p \lim \left[\frac{\hat{\sigma}_{\varepsilon x}}{\hat{\sigma}_{x}^{2}}\right]=\beta_{1}+\left[\frac{\sigma_{\varepsilon x}}{\sigma_{x}^{2}}\right]=\beta_{1}+\left[\frac{0}{\sigma_{x}^{2}}\right]=\beta_{1} \tag{9}
\end{equation*}
$$

Therefore, $\hat{\beta}_{1}$ is a consistent estimate.

