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We’ve demonstrated in class that the estimate for β̂1 
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Recalling the properties of summations, note that numerator can be written as  
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Note further that the true relationship between y and x is given by equation (1) above.  
Substituting (1) into the numerator of (2) generates  
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Break apart the terms in the numerator  
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We can simplify the terms in (5) using the properties of summations: 
 

In the first term in the numerator, note that β0 is a constant and can be pulled 
outside the summation.  As a result, we have the summation of a deviation from a 
mean, which equals zero 
 

  0)0()()( 0
1

0
1

0 ==−=− ∑∑
−=

βββ
n

i
i

n

i
i xxxx  

 



In the second term in the numerator, β1 is a constant and it can pulled outside the 

summation.  Recall also that ∑∑
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The first term in the numerator drops out, the second term reduces to β1 and therefore, we 

can write the OLS estimate for  β̂1 as 
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  Divide the numerator and denominator on the right hand side of (6) by (n-1) 
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 Note that the numerator in the middle of (7) is the sample covariance of x and ε while the 

denominator is the sample variance of x.  Re-write (7) to read.  Now, what happens to the 

estimate 1̂β  when the sample size increases.   
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As n → ∞, we know that ( )2 2ˆ ˆlim( ) lim ,x x x xp and pε εσ σ σ σ= = that is, ˆ xεσ is a 

consistent estimate of xεσ and 2ˆ xσ is a consistent estimate of 2xσ .  If we maintain the 

assumption that in large samples, xεσ = 0, then 
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 Therefore, 1̂β  is a consistent estimate. 


