We are going to simplify the model and assume that $\beta_0=0$. Therefore, we can write the model as

\[(2) \quad y_i = x_i \beta_1 + \epsilon_i\]

You can easily demonstrate for yourself that the estimate for $\hat{\beta}_1$ will be

\[(3) \quad \hat{\beta}_1 = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}\]

We demonstrated this on problem set 3.

Now, assume that x is measured with some error. Let x_i represent the true value of x and let x_i^* be the measured value of x where $x_i^* = x_i + v_i$. The variable v_i is a random error with $E[v_i]=0$, $V[v_i]=\sigma_v^2$ and v_i is uncorrelated with both x and ϵ, so $\text{cov}(v_i, x_i) = \text{cov}(v_i, \epsilon_i) = 0$.

If we use x_i^* in the regression instead of x_i the OLS estimate for $\hat{\beta}_1$ will now be

\[(4) \quad \hat{\beta}_1^* = \frac{\sum_{i=1}^{n} y_i x_i^*}{\sum_{i=1}^{n} (x_i^*)^2}\]

To find the true underlying properties of the estimate, we must substitute two values in equation (4). First, in the numerator, we must substitute in the true value for y_i, given by equation (2).

Next, we must substitute the true value for x_i^* given by $x_i^* = x_i + v_i$

\[(5) \quad \hat{\beta}_1^* = \frac{\sum_{i=1}^{n} (\beta_i x_i + \epsilon_i)(x_i + v_i)}{\sum_{i=1}^{n} (x_i + v_i)^2}\]

Complete the squares in the numerator and in the denominator.
\[\hat{\beta}_1 = \frac{\sum_{i=1}^{n}(\beta_1 x_i^2 + \beta_1 x_i v_i + \epsilon_i x_i + \epsilon_i v_i)}{\sum_{i=1}^{n}(x_i^2 + 2x_i v_i + v_i^2)} \]

And breaking apart the terms in the numerator and denominator

\[\hat{\beta}_1 = \frac{\beta_1 \sum_{i=1}^{n} x_i^2 + \beta_1 \sum_{i=1}^{n} x_i v_i + \sum_{i=1}^{n} \epsilon_i x_i + \sum_{i=1}^{n} \epsilon_i v_i}{\sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i v_i + \sum_{i=1}^{n} v_i^2} \]

Note that we can divide each term in the numerator and denominator by (n-1).

\[\hat{\beta}_1 = \frac{\left[\beta_1 \sum_{i=1}^{n} x_i^2 + \beta_1 \sum_{i=1}^{n} x_i v_i + \sum_{i=1}^{n} \epsilon_i x_i + \sum_{i=1}^{n} \epsilon_i v_i \right] / (n-1)}{\left[\sum_{i=1}^{n} x_i^2 + 2\sum_{i=1}^{n} x_i v_i + \sum_{i=1}^{n} v_i^2 \right] / (n-1)} \]

Now let’s make some substitutions. Recall that the definition of the sample variance of x is

\[\hat{\sigma}_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

But recall also that we assumed that \(\bar{x} = 0 \) therefore

\[\hat{\sigma}_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} x_i^2 \]

Likewise, recall that the sample covariance between x and \(\epsilon \) is by definition

\[\hat{\sigma}_{xe} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(\epsilon_i - \bar{\epsilon}) \]

Which using the properties of summations we can write as

\[\hat{\sigma}_{xe} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})\epsilon_i \]

But recall also that we assumed that \(\bar{x} = 0 \) therefore

\[\hat{\sigma}_{xe} = \frac{1}{n-1} \sum_{i=1}^{n} x_i \epsilon_i \]
Using these same arguments, it is easy to show that

\[
\frac{1}{n-1} \sum_{i=1}^{n} v_i^2 = \hat{\sigma}_v^2 \quad \text{and} \quad \frac{1}{n-1} \sum_{i=1}^{n} x_i v_i = \hat{\sigma}_{xv} \quad \text{and} \quad \frac{1}{n-1} \sum_{i=1}^{n} \varepsilon_i v_i = \hat{\sigma}_{xe}
\]

Substituting all these values into equation (7), we obtain

\[
(8) \quad \hat{\beta}_1^* = \frac{\beta_1 \hat{\sigma}_x^2 + \beta_1 \hat{\sigma}_{vx} + \hat{\sigma}_{xe} + \hat{\sigma}_{ve}}{\hat{\sigma}_x^2 + 2 \hat{\sigma}_{ve} + \hat{\sigma}_v^2}
\]

Note one thing about equation (8). There are two random variables in the model – \(\varepsilon \) and \(v \). We cannot take the expected value of ratios of random variables, so we cannot identify whether \(\hat{\beta}_1 \) is unbiased. Therefore, we can only examine the consistency of \(\hat{\beta}_1 \).

Now, let’s take the plim of \(\hat{\beta}_1 \). When the sample size grows (\(n \to \infty \)), we know that each of the variances and covariances in (8) are consistent estimates, and therefore

\[
p \lim(\hat{\sigma}_x^2) = \sigma_x^2 \quad \text{and} \quad p \lim(\hat{\sigma}_{xv}) = \sigma_{xv} \quad \text{and} \quad p \lim(\hat{\sigma}_{xe}) = \sigma_{xe}, \text{ etc.}
\]

Therefore,

\[
(9) \quad p \lim(\hat{\beta}_1^*) = \frac{\beta_1 \sigma_x^2 + \beta_1 \sigma_{xv} + \sigma_{xe} + \sigma_{ve}}{\sigma_x^2 + 2 \sigma_{ve} + \sigma_v^2}
\]

Recall from above that we assumed \(\sigma_{sv} = \sigma_{ve} = 0 \) and we always assume \(\sigma_{xe} = 0 \) which means (9) reduces to

\[
(10) \quad p \lim(\hat{\beta}_1^*) = \frac{\beta_1 \sigma_x^2}{\sigma_x^2 + \sigma_v^2} = \beta_1 \left(\frac{\sigma_x^2}{\sigma_x^2 + \sigma_v^2} \right)
\]

The ratio \(\left(\frac{\sigma_x^2}{\sigma_x^2 + \sigma_v^2} \right) = \theta \) is called the reliability ratio. It represents the fraction of the variance in \(x_i^* \) that is due to the true variance in \(x \). In equation (10) notice that with any measurement error \(0 \leq \theta \leq 1 \) and \(p \lim(\hat{\beta}_1^*) = \beta_1 \theta < \beta_1 \). Therefore, as \(\sigma_v^2 \) increases, the measurement error in \(x_i^* \) increases and \(p \lim(\hat{\beta}_1^*) \) declines – in the limit, as \(n \to \infty \) \(\hat{\beta}_1 \) will not converge to the true value when there is measurement error in \(x \).