Measurement Error in X
 ECON 30331

Bill Evans

Fall 2008

Model: (1) $y_{i}=\beta_{0}+x_{i} \beta_{1}+\varepsilon_{i}$
We are going to simplify the model and assume that $\beta_{0}=0$. Therefore, we can write the model as
(2) $y_{i}=x_{i} \beta_{1}+\varepsilon_{i}$

You can easily demonstrate for yourself that the estimate for $\hat{\beta}_{1}$ will be

$$
\text { (3) } \quad \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

We demonstrated this on problem set 3 .
Now, assume that x is measured with some error. Let x_{i} represent the true value of x and let x_{i}^{*} be the measured value of x where $x_{i}^{*}=x_{i}+v_{i}$. The variable v_{i} is a random error with $\mathrm{E}\left[\mathrm{v}_{\mathrm{i}}\right]=0$, $\mathrm{V}\left[\mathrm{v}_{\mathrm{i}}\right]=\sigma_{v}^{2}$ and v_{i} is uncorrelated with both x and ε, $\operatorname{socov}\left(v_{i}, x_{i}\right)=\operatorname{cov}\left(v_{i}, \varepsilon_{i}\right)=0$.

If we use x_{i}^{*} in the regression instead of x_{i} the OLS estimate for $\hat{\beta}_{1}$ will now be
(4) $\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n} y_{i} x_{i}^{*}}{\sum_{i=1}^{n}\left(x_{i}^{*}\right)^{2}}$

To find the true underlying properties of the estimate, we must substitute two values in equation (4). First, in the numerator, we must substitute in the true value for y , given by equation (2). Next, we must substitute the true value for x_{i}^{*} given by $x_{i}^{*}=x_{i}+v_{i}$

$$
\begin{equation*}
\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n}\left(\beta_{1} x_{i}+\varepsilon_{1}\right)\left(x_{i}+v_{i}\right)}{\sum_{i=1}^{n}\left(x_{i}+v_{i}\right)^{2}} \tag{5}
\end{equation*}
$$

Complete the squares in the numerator and in the denominator

$$
\begin{equation*}
\hat{\beta}_{1}^{*}=\frac{\sum_{i=1}^{n}\left(\beta_{1} x_{i}^{2}+\beta_{1} x_{i} v_{i}+\varepsilon_{i} x_{i}+\varepsilon_{i} v_{i}\right)}{\sum_{i=1}^{n}\left(x_{i}^{2}+2 x_{i} v_{i}+v_{i}^{2}\right)} \tag{6}
\end{equation*}
$$

And breaking apart the terms in the numerator and denominator

$$
\text { (7) } \quad \hat{\beta}_{1}^{*}=\frac{\beta_{1} \sum_{i=1}^{n} x_{i}^{2}+\beta_{1} \sum_{i=1}^{n} x_{i} v_{i}+\sum_{i=1}^{n} \varepsilon_{i} x_{i}+\sum_{i=1}^{n} \varepsilon_{i} v_{i}}{\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} v_{i}+\sum_{i=1}^{n} v_{i}^{2}}
$$

Note that we can divide each term in the numerator and denominator by ($\mathrm{n}-1$).

$$
\begin{equation*}
\hat{\beta}_{1}^{*}=\frac{\left[\beta_{1} \sum_{i=1}^{n} x_{i}^{2}+\beta_{1} \sum_{i=1}^{n} x_{i} v_{i}+\sum_{i=1}^{n} \varepsilon_{i} x_{i}+\sum_{i=1}^{n} \varepsilon_{i} v_{i}\right] /(n-1)}{\left[\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} v_{i}+\sum_{i=1}^{n} v_{i}^{2}\right] /(n-1)} \tag{7}
\end{equation*}
$$

Now let's make some substitutions. Recall that the definition of the sample variance of x is

$$
\hat{\sigma}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

But recall also that we assumed that $\bar{x}=0$ therefore

$$
\hat{\sigma}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}
$$

Likewise, recall that the sample covariance between x and ε is by definition

$$
\hat{\sigma}_{x \varepsilon}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right)
$$

Which using the properties of summations we can write as

$$
\hat{\sigma}_{x \varepsilon}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \varepsilon_{i}
$$

But recall also that we assumed that $\bar{x}=0$ therefore

$$
\hat{\sigma}_{x \varepsilon}=\frac{1}{n-1} \sum_{i=1}^{n} x_{i} \varepsilon_{i}
$$

Using these same arguments, it is easy to show that

$$
\frac{1}{n-1} \sum_{i=1}^{n} v_{i}^{2}=\hat{\sigma}_{v}^{2} \text { and } \frac{1}{n-1} \sum_{i=1}^{n} x_{i} v_{i}=\hat{\sigma}_{x v} \text { and } \frac{1}{n-1} \sum_{i=1}^{n} \varepsilon_{i} v_{i}=\hat{\sigma}_{\varepsilon x}
$$

Substituting all these values into equation (7), we obtain

$$
\begin{equation*}
\hat{\beta}_{1}^{*}=\frac{\beta_{1} \hat{\sigma}_{x}^{2}+\beta_{1} \hat{\sigma}_{v x}+\hat{\sigma}_{x \varepsilon}+\hat{\sigma}_{v \varepsilon}}{\hat{\sigma}_{x}^{2}+2 \hat{\sigma}_{v \varepsilon}+\hat{\sigma}_{v}^{2}} \tag{8}
\end{equation*}
$$

Note one thing about equation (8). There are two random variables in the model $-\varepsilon$ and v. We cannot take the expected value of ratios of random variables, so we cannot identify whether $\hat{\beta}_{1}$ is unbiased. Therefore, we can only examine the consistency of $\hat{\beta}_{1}$.

Now, let's take the plim of $\hat{\beta}_{1}$. When the sample size grows ($\mathrm{n} \rightarrow \infty$), we know that each of the variances and covariances in (8) are consistent estimates, and therefore

$$
p \lim \left(\hat{\sigma}_{x}^{2}\right)=\sigma_{x}^{2} \text { and } p \lim \left(\hat{\sigma}_{x v}\right)=\sigma_{x v} \text { and } p \lim \left(\hat{\sigma}_{x \varepsilon}\right)=\sigma_{x \varepsilon}, \text { etc. }
$$

Therefore,
(9) $p \lim \left(\hat{\beta}_{1}^{*}\right)=\frac{\beta_{1} \sigma_{x}^{2}+\beta_{1} \sigma_{v x}+\sigma_{x \varepsilon}+\sigma_{v \varepsilon}}{\sigma_{x}^{2}+2 \sigma_{v \varepsilon}+\sigma_{v}^{2}}$

Recall from above that we assumed $\sigma_{x v}=\sigma_{v \varepsilon}=0$ and we always assume $\sigma_{x \varepsilon}=0$ which means (9) reduces to

$$
\begin{equation*}
p \lim \left(\hat{\beta}_{1}^{*}\right)=\frac{\beta_{1} \sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}=\beta_{1}\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}\right) \tag{10}
\end{equation*}
$$

The ratio $\left(\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}\right)=\theta$ is called the reliability ratio. It represents the fraction of the variance in x_{i}^{*} that is due to the true variance in x . In equation (10) notice that with any measurement error $0 \leq \theta \leq 1$ and $p \lim \left(\hat{\beta}_{1}^{*}\right)=\beta_{1} \theta<\beta_{1}$. Therefore, as σ_{v}^{2} increases, the measurement error in x_{i}^{*} increases and $p \lim \left(\hat{\beta}_{1}^{*}\right)$ declines - in the limit, as $(\mathrm{n} \rightarrow \infty) \hat{\beta}_{1}$ will not converge to the true value when there is measurement error in x .

