

Scatter plot

- Sample of N observations
- Students, doctors, state, countries etc.
- For each observation, 2 pieces of data (X,Y)
- Plot each point for all observations in sample

Covariance

- Measure of co-movement between variables
- Does the realization that X is above average convey any information about the likely value of Y?
- Identifies whether variables are 'statistically’ related

Covariance

- x and y are random variables
- $\mathrm{E}[\mathrm{x}]=\mu_{\mathrm{x}} \quad \operatorname{Var}(\mathrm{x})=\sigma_{\mathrm{x}}^{2}$
- $\mathrm{E}[\mathrm{y}]=\mu_{\mathrm{y}} \quad \operatorname{Var}(\mathrm{y})=\sigma_{\mathrm{y}}^{2}$
- $\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]=\sigma_{\mathrm{xy}}$

$$
=\mathrm{E}[\mathrm{xy}]-\mu_{\mathrm{x}} \mu_{\mathrm{y}}=\sigma_{\mathrm{xy}}
$$

If $\operatorname{cov}(x, y)>0$ and $y>\bar{y}$,
then, on average, $x>\bar{x}$

If $\operatorname{cov}(x, y)<0$ and $y>\bar{y}$, then, on average, $x<\bar{x}$

Problem

- Covariance is scale dependent
- Covariance between height and weight will differ if measured in centimeters \& kilograms or inches \& pounds
- Not an attractive property for a measure of comovement

Demonstrate: Can show yourself

$$
\begin{aligned}
& \operatorname{cov}(x, y)=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=\sigma_{x y} \\
& \quad \operatorname{define}: z=a+b x \\
& \operatorname{cov}(z, y)=E\left[\left(z-\mu_{z}\right)\left(y-\mu_{y}\right)\right] \\
& z=a+b x \\
& \mu_{z}=a+b \mu_{x} \\
& \left(z-\mu_{z}\right)=b\left(x-\mu_{x}\right) \\
& \operatorname{cov}(z, y)=E\left[b\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
& \quad=b E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=b \sigma_{x y}
\end{aligned}
$$

Correlation coefficient

$$
\begin{aligned}
& \rho(x, y)=\sigma_{x y} /\left(\sigma_{x} \sigma_{y}\right) \\
& -1 \leq \rho(x, y) \leq 1
\end{aligned}
$$

- Unlike the covariance, the correlation coefficient is NOT scale dependent
- The value is the same regardless of how x and y are measured

Sample estimates

$\hat{\sigma}_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$
$\hat{\sigma}_{y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$
$\hat{\sigma}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
$\hat{\rho}=\frac{\hat{\sigma}_{x y}}{\hat{\sigma}_{x} \hat{\sigma}_{y}}$
Correlation coefficient
$\rho(x, y)=\sigma_{x y} /\left(\sigma_{x} \sigma_{y}\right)$
$-1 \leq \rho(x, y) \leq 1$

- Unlike the covariance, the correlation coefficient is
NOT scale dependent
- The value is the same regardless of how x and y are
measured
Sample estimates
$\hat{\sigma}_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$
$\hat{\sigma}_{y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$
$\hat{\sigma}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
$\hat{\rho}=\frac{\hat{\sigma}_{x y}}{\hat{\sigma}_{x} \hat{\sigma}_{y}}$

Cross-Sectional data

- Height and weight, men
- Husband/wife age
- Husband/wife educ
- Husband/wife height
- Father/son income
- Father/son educ.

Cross-Sectional Data

Cross-Sectional Data

- IQ's of Identical twins
- IQ's of fraternal twins
- IQ's of identical twins raised apart
- IQ's of siblings
- IQ's of unrelated children reared together

Limitation

- Correlation coefficient is a convenient way to measure a statistical relationship between two variables
- It does not however signify anything more than statistical observation
- It also does no get us any closer to saying whether something is causally related
- Correlation does not equal causation

Limitation	
- Correlation coefficient is a convenient way to measure a	
statistical relationship between two variables	
- It does not however signify anything more than	
statistical observation	
- It also does no get us any closer to saying whether	
something is causally related	
- Correlation does not equal causation	

Among undergrads in Intro Micro

- Math SAT/verbal SAT
- HS rank/total SAT
- GPA in micro/SAT
- GPA in micro/HS percentile

Births to unwed mothers

- Risen from 5% in 1960 to 37% in 2006
- Predictive of many child outcomes
- Low birth weight, increased mortality, poor performance in schools, etc.
- Many potential explanations
- Poor performance of male wages, rising divorce, availability of abortion
- Is there a magic bullet explanation?

Number people who drowned by falling into a swimmingpool
correlates with
Number of films Nicolas Cage appeared in

Economics as a science

- Utilize (more so than most social sciences) the scientific method
- Build models - test them with data - refine the models based on results
- Unless theory (models) can be tested, not much of a theory
- Economics has produced extensive statistical tools to test models

Basic economic model

- People/firms/organizations are purposeful
- Examples
- Firms maximize profits
- People maximize happiness/utility
- There are however limits or constraints on behavior
- Consumers must pay prevailing prices

Link between models/data

- Basic economic model has a prediction:
- How quickly will demand fall when prices rise
- What happens to outcomes (endogenous) when an external condition is changed (exogenous)
- Statistical goal: estimate the slope of the demand curve $\partial \mathrm{X} / \partial \mathrm{P}_{\mathrm{x}}$
- Firms have competitors

Break variables into 2 groups

- Exogenous (external conditions)
- Constraints on behavior
- "Treatments" Factors that can be altered
- "Independent" variables
- Endogenous outcomes
- Choice variables
- Outcomes of systems
- "Dependent" variables

Theory of Demand

- Core model of intermediate micro
- Model set up
- Consumers derive utility from consumption of 2 goods (x, y)
- $\mathrm{U}=\mathrm{U}(\mathrm{x}, \mathrm{y})$
- Utility function has specific properties
- Pick utility maximizing bundle of (x, y) subject to constraints
- Fixed prices for goods: P_{x} and P_{y}
- Fixed income, I
- Two implicit functions:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{f}\left(\mathrm{P}_{x}, \mathrm{P}_{y} \mathrm{I}\right) \\
& \mathrm{Y}=\mathrm{g}\left(\mathrm{P}_{x}, \mathrm{P}_{y} \mathrm{I}\right)
\end{aligned}
$$

- 3 "exogenous" variables: $\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}$ and I
- 2 "endogenous" variables: x and y
- Comparative statics: $\partial \mathrm{X} / \partial \mathrm{P}_{\mathrm{x}}$ or $\partial \mathrm{X} / \partial \mathrm{I}$

Basic model: OLS

- Ordinary least squares regression
- Maybe 95% of statistics in social sciences
- Highly stylized models with tremendous capacity
- Capacity comes from assumptions
- If assumptions are correct - huge rewards
- If assumptions are wrong, model is piece of junk

Example

- State running a budget deficit
- Can raise taxes on cigarettes to cover shortfall
- Problem: when tax rate (t) increase, demand falls (Q) and will impact revenues
- $\operatorname{Rev}=\mathrm{tQ}$
- $\partial \operatorname{Rev} / \partial \mathrm{t}=\mathrm{t}[\partial \mathrm{Q} / \partial \mathrm{t}]+\mathrm{Q}$
- Key question: what is $\partial \mathrm{Q} / \partial \mathrm{t}$

Model - $Y_{i}=\beta_{0}+X_{i} \beta_{1}+\varepsilon_{i}$ - Linear - One input/one output - $\mathrm{Y}=$ quantity of cigarettes - $\mathrm{X}=$ taxes on cigarettes - Parameter of interest $-\partial Y / \partial X=\beta_{1}$	
	42

Problem

- Can always estimate basic model

$$
Y_{i}=\beta_{0}+X_{i} \beta_{1}+\varepsilon_{i}
$$

- This does not mean the estimate for β_{1} is any good
- Two typical problems that invalidate the estimate of β_{1}
- Reverse causation (x may cause y but y may also cause x)
- Omitted variables bias (some third factor may explain both y and x and hence, explain at least part of the reason why they are statistically related).

Reverse Causation: An Economic Example

- Public finance economists are interested in the productivity of government spending
- Two largest components of local spending are schools and public safety
- Will hiring more police reduce crime?

Omitted variables bias

- Teen childbearing is associated with a number of poor economics outcomes later in life
- Lower education
- Lower earnings
- Higher rates of welfare participation

Outcomes of women aged 30-34 by
Teen motherhood status

Outcome	Teen mother	Not a teen mother
< a HS degree	19.8%	6.6%
\geq college degree	9.0%	43.0%
In poverty	30.9%	13.0%
On welfare	6.9%	2.6%
Income from work	$\$ 23,884$	$\$ 36,206$

Omitted variables bias

- Teen childbearing is associated with a number of poor economics outcomes later in life
- Lower education
- Lower earnings
- Higher rates of welfare participation
- Teen moms are not an random sample of the population - more likely from
- Poor schools
- Families with lower-educated moms
- Families with teen mothers themselves

Washington Post, August 15, 1997, page A3
Lasting Effects Found From Spanking Cbildren Antisocial Behavior Is Increased, Study Says

Spanking children is apt to cause more long-term behavioral problems than most parents who use that approach to discipline may realize, a new study reports.

Children who get spanked regularly are more likely over time to cheat or lie, to be disobedient at school and to bully others, and have less remorse for what they do wrong, according to the study by researchers at the University of New Hampshire. It is being published this month in the medical journal Archives of Pediatrics and Adolescent Medicine. "When parents use corporal punishment to reduce antisocial behavior, the long-term effect tends to be the opposite," the study concludes.

4 tasks

- Outline basic statistical models
- How do we get the estimates?
- Demonstrate properties - we want to know
- When do we get "good" estimates?
- When do we not??
- Illustrate how they are used in research
- Do the estimates provide good internal and external validity
- Demonstrate how to obtain results using STATA

Take away skills

- Some will use these techniques in the future - make your professor proud
- Some will not - your job is then to be a critical reader of the newspaper

