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Assumption 1:  Model is linear in parameters 

 0 1 1 2 2 3 3 ....i i i i ki k iy x x x x            

 
 
Assumption 2:  All parameters are estimable 

For this to be the case, at least two things have to be true.   
 
First, for each independent variable, there must be variation within the n observations for 
each of the xji’s.  What does this mean?  Well, suppose we have a simple bivariate model of 
the form 

 

  0 1 1i i iy x      

 

 We know the OLS estimate for 1  would be 
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Now suppose that there is no variation in the x1i that is x1i=a constant k for all observations 

i.  In this case, x1i= 1x and the denominator in the estimate for 1̂  is zero.  Therefore, when 

there is no variation in the sample in x1i one cannot estimate the model. 
 
Second, each variable added to the model must provide some new piece of information.  
Another way of saying this is that none of the variables can be a linear combination of the 
remaining variables in the model.  Suppose there is a model with 3 covariates 
 

 0 1 1 2 2 3 3i i i i iy x x x          

 
But variable β3 is a linear combination of the other variables in the model.  So for example, 

suppose 3 1 2i i ix a bx cx    where a, b and c are constants.  As a concrete example, 

suppose that x1 is the fraction < 24 years of age, x2 is the fraction25 to 64, and x3 is the 
fraction 65 and over.  Note that by construction x1+x2+x3=1.  Therefore if you know x1 and 
x2, you know exactly x3. Let’s see what this does to the model. 
 

Substituting the definition 3 1 2i i ix a bx cx    into the equation above, we see that 
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0 1 1 2 2 1 2 3( )i i i i i iy x x a bx cx u         
  

But when we collect like terms, we see that 
 

0 3 1 1 3 2 2 3( ) ( ) ( )i i i iy a x b x c              

 
Finally note that in actuality, we can only estimate the following model 

 

0 1 1 2 2i i i iy x x u       

 

Where 0 0 3 1 1 3 2 2 3( ), ( ), ( )a b and c              .  In this case, the model 

has 4 parameters (the betas) but you only have 3 degrees of freedom (the thetas) so the 
parameters are under-identified – 3 equations but 4 unknowns.  Therefore the original 3 
covariate model CANNOT be estimated. 

 
 
Deriving estimates in the multivariate case: 
 

Model:  0 1 1 2 2 3 3 ....i i i i ki k iy x x x x            

 
 There are: n observations 
   k continuous exogenous variables 
   1 constant 
 

Estimated error:   0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i i ki ky x x x          
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There are k+1 unknowns so we need k+1 first order conditions (FOCs) to identify the model  
 

FOC 1:   0 1 1 2 2 1
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FOC 2:  0 1 1 2 2 2
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  :     : 
  :     : 

FOC k:  0 1 1 2 2
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FOC k+1:   0 1 1 2 2
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This is a system of  k+1 unknowns and k equations. 
 
Each of these equations has a -2 in front which can be eliminated by multiplying both sides by a -
1/2. 
 

FOC 1:   0 1 1 2 2 1

1

ˆ ˆ.... 0
n

i i i ki k i

i

y x x x x   


      

 

FOC 2:  0 1 1 2 2 2
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FOC k:  0 1 1 2 2
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FOC K+1:  0 1 1 2 2
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Expanding the terms under the summation: 

FOC 1: 
2
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FOC 2: 
2
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  :   : 
  :   : 
  :   : 
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FOC k+1:  0 1 1 2 2

1 1 1 1

ˆ ˆ ˆ ˆ
n n n n

i i k ki i

i i i i

n x x x y   
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This is a system of k+1 equations and k+1 unknowns.  For k+1 parameters, it is difficult to show 
what the solution to this system is without linear algebra.  [For those who have NOT had linear 
algebra-skip to the next section].  However for those who have had linear algebra, this is a pretty 
straightforward problem. Write the k+1 equations in matrix notation 
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And therefore, the key problem is the inversion of a (k+1) x (k+1) matrix 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Some properties of the OLS estimates 
 

 The mean of î is still zero 

 
Recall that the k+1 FOC is 
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Which can be written as 
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  Recall also that 0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i i ki ky x x x          so 
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  Which means that once again ˆ 0   
    

It is still a mean regression 
 

Recall that the k+1 FOC 

   0 1 1 2 2
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 Can be written as  

  0 1 1 2 2
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 Solving for 0
ˆn , we get that  
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Dividing through by n, and recognizing that
1

1 n

ji j

i

x x
n 

 we get that 

0 1 1 2 2
ˆ ˆ ˆ ˆ...... k ky x x x        

 
Any therefore 

0 1 1 2 2
ˆ ˆ ˆ ˆ..... k ky x x x        

The regression still fits the means of x’s through the means of the y’s 
 

The correlation between î jiand x is still zero 

 
 Recall the definition of the first order condition for a particular variable k 
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 Which can be written as  
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Recall also that 0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i i ki ky x x x          so 

 
1

ˆ 0
n

i ki

i

x


  

So by construction, the estimated residuals are uncorrelated (independent) of the actual x’s
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The Bias Associated with Omitted Variables in the Multivariate model 
 
Recall that the estimated parameters are a function of the Yi’s and the Yi’s are a function of εi’s which 
is the true source of randomness in the model.  Therefore, the properties of the estimates will be a 
function of the properties of the estimates are a function of the εi’s .   
 

The linear model is 0 1 1 2 2 3 3 ....i i i i ki k iy x x x x            and so we will have to simply 

expand some of the assumptions.  Our assumptions concerning the errors are now conditioned on 
all the covariates in the model 
 

1) 1 2[ ] [ | , ,... ] 0i i i i kiE E x x x    

2)  i jCov ,    0 for all i j     

3) 
2

1 2( ) ( | , ,... )i i i i kiVar Var x x x      

 
In the simple bivariate model, we assumed εi and xi we uncorrelated.  Now, we assume εi is 
uncorrelated with each of the x’s. 
 
Assumptions 2) and 3) are essentially used to identify the variance of the estimate.  As before, the key 
assumption for whether the estimates are unbiased is assumption 1.   
 
To illustrate the properties of the multivariate model, let’s reduce the dimension of the problem 

somewhat.  Suppose the true model is one with two variables  0 1 1 2 2i i i iy x x        

 
But the researcher only estimates a regression with one variable, x1i.  Maintain assumption 1) above 

which implies that E(x1iεi)=0 and E(x2iεi)=0 (the real errors are uncorrelated with covariates).  Let 1  

represent the OLS estimate from the simple bivariate regression of y on x1.  From the previous 
section, we know that  
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Use the fact that 1 1 1 1

1 1
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n n

i i i i

i i

y y x x y x x
 

     and substitute the true value for y into the 

numerator, 1 1 0 1 1 2 2 1 1

1 1

( ) ( )( )
n n

i i i i i i

i i

y x x x x x x   
 

       .  Finally, let the denominator 

equal SSTx1.  Equation (1) can be written as  
 

1 1 0 1 1 2 2 1 1
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Expand the numerator: 

0 1 1 1 1 1 1 2 2 1 1 1 1

1 1 1 1
1

1

( ) ( ) ( ) ( )

(3)

n n n n

i i i i i i i

i i i i
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      
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   

 

 
 
There are four terms in the numerator 
 

0 1 1 0 1 1

1 1 0

1 1 1

( ) ( )
0

( 1) 0

n n

i i

i i

x x x

x x x x

term
SST SST SST
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 

 

 

2

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1
1

1 1 1

( ) ( )( ) ( )

( 2)

n n n

i i i i i

i i i

x x x

x x x x x x x x x

term
SST SST SST

  

  

   

  
  

 

2 2 1 1 2 2 2 1 1

1 1

1 1

( ) ( )( )

( 3)

n n

i i i i

i i

x x

x x x x x x x

term
SST SST

 
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  


 

 

1 1 1 1

1 1

1 1

( ) ( )

( 4)

n n

i i i i

i i

x x

x x x x

term
SST SST

 
 

 


 

 

 
Term 1 drops out, term 2 reduces to β1, and substituting the definitions for terms 3 and 4 into 
equation (3). 
 

2 2 2 1 1 1 1

1 1
1 1

1 1

( )( ) ( )

(3)

n n

i i i i

i i

x x

x x x x x x

SST SST

 

   

  

  
 

 

 
Now, take the expectations of both sides 
 

2 2 2 1 1 1 1

1 1
1 1

1 1

( )( ) ( )

(5) [ ] [ ]

n n

i i i i

i i

x x

x x x x x x

E E E E
SST SST

 

   

   
     

     
   
      

 
 

 

 By definition: 1 1[ ]E    because β1 is a constant 

 
Note also in the final term that because we still maintain cov(x1i, εi)=0 
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 Now, work on the middle term 
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because all variables are assumed to be fixed 
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Note that if we were to run a synthetic regression of x2i on x1i,   2 0 1 1i i ix x     , the estimate 

for 1̂  would be 
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( )( )
ˆ(7)

( )

n

i i

i

n

i

i

x x x x

x x

 



 








 

 
which is exactly the final term in equation (6).  Substituting equation (7) into equation (8) reduces the 
definition to 
 

1 1 2 1
ˆ(8) [ ]E       

 

The bias in 1[ ]E   generated by NOT including x2i in the model is therefore a function of two thing:   

The covariance between x1i and x2i and the impact of x2i on y 
 
The following table summarizes the results 
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Direction in the bias for 1[ ]E   

 

 Cov(x1,x2)>0 Cov(x1,x2)<0 

β2>0 Positive Negative 

β2<0 Negative Positive 
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The Partialing out Properties of Multivariate Regression Models 
 
 
For this example, we are going to examine a simple regression with only two covariates.  The model 
is of the form 
 

0 1 1 2 2(1) i i i iy x x        

 
Using the first-order conditions for this model, one can show, solving three equations and three 

unknowns that the estimate for 1  is 

 

2

1 1 2 2 1 1 2 2 2

1 1 1 1
1 2

2 2

1 1 2 2 1 1 2

1 1 1

( )( ) ( ) ( )( ) ( )( )
ˆ(2)

( ) ( ) ( )( )

n n n n

i i i i i i i

i i i i

n n n

i i i i

i i i

x x y y x x x x x x x x y y

x x x x x x x x

    

  

       


 

     
 

   

  

 

 
This is a complicated equation and you will NOT be asked to derive it.  Note one thing.  Suppose 

that in your sample, 1ix  and 2ix are uncorrelated.  This means that 
1 1 2

1

( )( ) 0
n

i i

i

x x x x


   and 

equation (2) reduces to read 
 

2

1 1 2 2 1 1

1 1 1
1

2 2 2

1 1 2 2 1 1

1 1 1

( )( ) ( ) ( )( )
ˆ(3)

( ) ( ) ( )

n n n

i i i i i

i i i

n n n

i i i

i i i

x x y y x x x x y y

x x x x x x

   

  

    

 

  

  

  
 

 
which is the estimate we would obtain from a regression of yi on x1i. When covariates are 
uncorrelated, we do not need multivariate regression models, bivariate regressions will do.   
  

But if the covariates are correlated, what variation in x1i is used to produce the estimate for 1̂ ?  

 

To answer this, consider a different regression.  Regress 1ix  on 2ix  which is a model of the form 

 

(4) 1 0 2 1i i ix x      

 
We know the OLS estimates of the parameters for this model will be  
 

2 2 1 1

1
1

2

2 2

1

( )( )

ˆ(5)

( )

n

i i

i

n

i

i

x x x x

x x

 



 








 and 0 1 2 1

ˆ ˆ(6) x x    

 
And construct the estimated error from this regression  
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1 0 2 1
ˆ ˆ ˆ(7) i i ix x      

 

Consider what ˆi represents.  Suppose 1ix  and 2ix are correlated. This means that some of the value 

of 1ix  is predictable by the value of 2ix and vice versa.  The variable ˆi measures the variation in 1ix  

that is NOT predictable by 2ix .  This is the unique component of 1ix that the model will use when 

generating an estimate of 1
ˆ .   To see this, consider a third regression:  suppose we were to regress 

the dependent variable y on the predicted error ˆi , which is a model of the form 

 

0
ˆ(8) i i i iy u     

 

Note that the estimate for 1̂ will be of the form 

 

1
1

2

1

ˆ ˆ( )( )

ˆ(9)

ˆ ˆ( )

n

i i i

i

n

i i

i

y y 



 





 








 

 

Note as well that 1 0 2 1
ˆ ˆ ˆ
i i ix x      and 1 0 2 1

ˆ ˆ ˆ
i x x     which means 

that 1 1 2 2 1
ˆ ˆ ˆ( ) ( ) ( )i i i ix x x x       where 1̂  is defined above in equation (5).  Substitute this 

value into equation (9) and we produce 
 

 

 

1 1 2 2 1

1 1
1

22

1 1 2 2 1

1 1

ˆ ˆ ˆ( )( ) ( ) ( ) ( )

ˆ(10)

ˆ ˆ ˆ( ) ( ) ( )

n n

i i i i i i

i i

n n

i i i i

i i

y y x x x x y y

x x x x

  



  

 

 

     

 

   

 

 
 

 
Working with the numerator, one can show that 
 

 1 1 2 2 1 1 1 1 2 2

1 1 1

ˆ ˆ(11) ( ) ( ) ( ) ( )( ) ( )( )
n n n

i i i i i i i

i i i

x x x x y y x x y y x x y y 
  

             

 

Substitute the definition of 1̂  from equation (5) into (11) and group like terms and you get 
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2 2 1 1

1
1 1 2 2

21 1
2 2

1

2

1 1 2 2 2 2 1 1 2 2

1 1 1 1

2

2 2

1

( )( )

(12) ( )( ) ( )( )

( )

( )( ) ( ) ( )( ) ( )( )

( )

n

i in n
i

i i i in
i i

i

i

n n n n

i i i i i i i

i i i i

n

i

i

x x x x

x x y y x x y y

x x

x x y y x x x x x x x x y y

x x



 



   



 

    



       






 



   



 

 
Notice this looks surprising like the numerator in equation (2).  Now, work with the denominator in 
equation (10). 
 

        
2 2 22

1 1 2 2 1 1 1 1 2 2 1 1 1 2 2

1 1 1 1

ˆ ˆ ˆ(13) ( ) ( ) 2
n n n n

i i i i i i

i i i i

x x x x x x x x x x x x  
   

            

 
 

Substitute the definition of 1̂  from equation (5) and group like terms and this term reduces to  

 

      

 

2

2 2

1 1 2 2 1 1 2 2

1 1 1

2

2 2

1

(14)

n n n

i i i i

i i i

n

i

i

x x x x x x x x

x x

  



 
     

 



  


 

 

Substituting (14) into the denominator and (12) into the numerator, the estimate for 1̂ now read 

 

      

 

2

1 1 2 2 2 2 1 1 2 2

1 1 1 1

2

2 2

1 1
1 2

2 2 2

1 1 2 2 1 1 2 2
1

1 1 1

2

2 2

1

( )( ) ( ) ( )( ) ( )( )

ˆ ˆ( )( ) ( )

ˆ(15)

ˆ ˆ( )

n n n n

i i i i i i i

i i i i

n n

i i i i

i i

n
n n n

i i
i i i i

i
i i i

n

i

i

x x y y x x x x x x x x y y

y y x x

x x x x x x x x

x x

 



 

   

 


  



       

  

 
       
 



   

 

   



Notice that the  
2

2 2

1

n

i

i

x x


 term in the numerator and denominator cancels out and (16) reduces 

to  
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      

2

1 1 2 2 2 2 1 1 2 2

1 1 1 1
1 2

2 2

1 1 2 2 1 1 2 2

1 1 1

( )( ) ( ) ( )( ) ( )( )

ˆ(16)

n n n n

i i i i i i i

i i i i

n n n

i i i i

i i i

x x y y x x x x x x x x y y

x x x x x x x x

    

  

       


 

     
 

   

  

 

 

The key result is that the 1̂  we obtain in a multivariate regression model is the same estimate we 

obtain from running a regression of y on the estimated residuals from equation (7).  This result shows 

that the variation in x1i used in the construction of 1̂ is only that variation that is not predictable by 

the other covariates in the regression.  Therefore, the estimate for 1̂ is produce by holding “all else 

constant” – that is, the variation in the other variables in the model. 
 
 

Summary of the Results for “Partialling out” Properties of Regressions 
 
 

Consider a regression with two covariates:  0 1 1 2 2i i i iy x x        

 
We know that the estimate for β1 and β2 will be a function of the covariance between x1 and x2 
 
This can be seen most easily in the following example.  Consider a synthetic regression of x1 on x2 
 

 1 0 2 1 1i i ix x r     

 

Obtain the OLS estimates for 0 1
ˆ ˆand   then construct the estimated residual 

 

 1 1 0 2 1
ˆ ˆˆ

i i ir x x     

  
This residual is the portion of x1i that is NOT explained by x2i.  Therefore, consider a regression of yi 

on 1̂ir  The “beta” in that regression would be of the form 

 

 

1

1
1

2

1

1

ˆ( )
ˆ

ˆ

n

i i

i

n

i

i

r y

r

 







 

 
This is true because by construction residuals from OLS regressions always have zero mean so 

1̂ 0r   
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A Note about Variances in Multivariate Regression Models 
 
 
 
Consider a basic multivariate model of the form 
 

0 1 1 2 2 3 3 ....i i i i ki k iy x x x x            

 

One can demonstrate that the variance of the estimate for ˆ
k  is of the form 

 
2

2 2

1

ˆ( )

(1 ) ( )
k n

k ki k

i

V

R x x







 
 

 

Where 
2

kR is the R2 from a regression of xk on all other exogenous variables.   

 
 

0 1 1 2 2 3 3 ( 1) 1....ki i i i k i k ix x x x x v            

 
This result has a number of important implications.  Suppose that the information contained in xk is 
reflected in what is also in the model, that is, the other x’s explain most of the variation in xk.  In that 

case, 
2

kR approaches 1, 1-
2

kR approaches zero and ˆ( )kV  explodes.  The precision of an estimate is a 

function of how much independent variation there is in each x.  If there is little ‘new’ information 
contained in the variable k, then we will have a difficult time learning anything new from having that 
variable in the model as the equation above illustrates.   


