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Some important properties of summations 

ECON 30331/Evans 

 

Definition:  The summation sign (Σ) adds up a series of numbers 

 

 

Suppose there is a sample with n observations and two variables (xi and yi).  Then  

 





n

i

ni xxxxx
1

321   

 

 

We can represent sample means with summations: 
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Throughout the semester when I write at the board, I will shorten the notation some and write 

1

n

i

i

x


 as simply ii
x   

 

Three important properties of summations: 
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Proof:    
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Because x̄ is a constant, it can be moved outside the summation sign in the 

final term above 
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Given the results from above (summation of deviation from means equal 

zero), 
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Following the same logic, we can easily establish that  

 

i

n

i

ii

n

i

i yxxyyxx )())((
11

 


 

 

 

Result (3):  
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Proof:  This is the same proof as above.  Expand the terms on the right hand side of the 

equality 
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In the final term on the right, note that because x̄ is a constant, you can 

take it outside the summation, and  
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And given result 1 above, 
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Deriving the OLS estimates for the Bivariate Regression Model 

 

 

Model:  0 1i i iy x      

 

The residuals (εi) are unobserved, but for candidate values of β0 and β1, we can obtain an 

estimate of the residual.   

 

 

Estimated residual:  0 1
ˆ ˆ

î i iy x      

 

 

Objective is to minimize sum of squared residuals: 
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First order conditions (FOCs): 
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Use FOCs to obtain estimate for β̂0 and  β̂1    

 

 The estimate for β̂0 

 

  Working with condition (1), multiply both sides by -1/2 
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  Then divide by n and expand all terms 
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The first term is ȳ, the second is 0 0
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The estimate for β̂1 

 

 Working with condition (2), multiple both sides by -1/2 
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Substitute  ȳ - x̄ β̂1 for β̂0 (from condition 1b) 
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Collect like terms 
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Expand the terms in the summation and complete the square, and because  β̂1 is a 

constant, you can bring it outside the summation 
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Recognize two facts: 





n

i

ii

n

i

ii xxyyxyy
11

))(()(  

 
 


n

i

n

i

iii

n

i

ii xxxxxxxxx
1 1

2

1

)())(()(  

 

Substitute these values into (2d) 
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Bringing the second term to the right hand side 
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Then solve for  β̂1 














n

i

i

n

i

ii

xx

xxyy

g

1

2

1

1

)(

))((
ˆ)2(   



 5 

Some useful properties of OLS estimates: 

 

1. From (1c) above, note that 1 1
ˆ ˆy x   .  The OLS models fits means of X 

through the means of y.  OLS is sometimes referred to as a mean regression. 
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3. From (2a) above, recall that 0 1
ˆ ˆ

î i iy x      so (2a) can be written as 
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4. Looking at the OLS estimate in (2g), divide the numerator and denominator by (n-

1) 
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Notice that the numerator in (2h) is σ̂xy and then denominator is  

σ̂x
2. Recognize also that ρ̂xy= σ̂xy/(σ̂xσ̂y), so  
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 If one knows the variances and correlations coefficients, one can easily estimate 

the OLS value for  β̂1 
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Deriving the R2 

 

Given the basic regression model: 0 1i i iy x      

 

Predicted outcome:  ii xy 10
ˆˆˆ    

 

Estimated residual:  0 1
ˆ ˆ

î i iy x      

 

By construction: ˆˆ(1) i i iy y    

 

Take the average of equation (1) over all observations, then 
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Remember that the sample average of ̂  is zero, so ȳ= ŷ  (the sample mean of y equals the 

sample mean of predicted y). 

 

 

The total variation in y, or the Sum of Squared Total (SST) is defined as  
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This is nothing more than a statement about how much movement there is in y in your sample.  

Noting that ˆˆ
i i iy y   and ȳ= ŷ , substitute these values into SST and complete the square 
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Focus on the third term in the equality.  Note a few things.  First, since ii xy 10
ˆˆˆ    

and yy ˆ and xy 10
ˆˆ   , then it is easy to show that )(ˆ)ˆˆ( 1 xxyy ii   .  Substitute 

this value into the third term 
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In equation (5), we can take 1̂ outside the summation because it is the same value over 

all i.  Look at the notes for “Deriving the OLS Estimates for the Bivariate Regression 

Model”.  On the final page, we note some useful properties of the OLS estimates.  
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Condition 3 states that by construction, 
1
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 which means that equation (5) above is 

by construction, equal to zero.   Therefore, equation (4) reduces to 
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The SST or the total variation in y has two separate parts.  The first is  
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Where SSM is defined as the sum of squared model.  This is a measure of the 

variation in the predicted value in Y.   

 

The final term in equation (6) should look very familiar; it is none other than the 

objective function or, the sum of squared residuals (SSR). 
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Therefore, what we have demonstrates is that 

 

 

(9) SST = SSM + SSR 

 

 

…or the actual variation in y (SST) is a function of two components.  The first is 

the variation predicted by the model (SSM), while the second is the variation that 

we cannot predict (SSR). 

 

Dividing both sides of (9) by SST, note that 

 

1
SSM SSR

SST SST
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Or alternatively 

 

(10) 2 1
SSM SSR

R
SST SST
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The R2 measures what fraction of the variation in y is explained by the regression 

model.  Since SST = SSM + SSR, by construction 0 ≤ R2 ≤ 1. 
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Just a note about the textbook.  The author calls the term 2

1

ˆ ˆ( )
n

i

i

y y


 the SSE or sum of squared 

explained.   PLEASE NOTE:  The textbook definition of R2 is 2 1
SSE SSR

R
SST SST

    where the 

author defines SSE as sum of squared estimated.   I do not like this abbreviation for 2

1

ˆ ˆ( )
n

i

i

y y


 .  

Our definition SSM matches much better with the STATA prints out – SST is sum of squared 

total, SSM is sum of squared model and SSR is sum of squared residuals – so we will use these 

abbreviations.   
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Proof that  β̂1 is an Unbiased Estimate 

 

 

Recall the definition for  β̂1 
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Recalling the properties of summations, note that numerator can be written as  
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Note further that the true relationship between y and y is given by the population regression line 

 

  (3) 0 1i i iy x      

 

Using (2) and substituting the true value for y into the model,  
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Break apart the terms in the numerator  
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We can simplify the terms in (5) using the properties of summations: 

 

In the first term in the numerator, note that β0 is a constant and can be pulled 

outside the summation.  As a result, we have the summation of a deviation from a 

mean, which equals zero 
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In the second term in the numerator, β1 is a constant and it can pulled outside the 

summation.  Recall also that 
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  
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The first term in the numerator drops out, the second term reduces to β1 and therefore, we 

can write the OLS estimate for  β̂1 as 

 

1
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WE WILL BE USING THIS CHARACTERIZATION OF THE OLS ESTIMATE FOR 

 β̂1 A LOT THIS SEMESTER.  PLEASE UNDERSTAND HOW WE GOT TO THIS 

POINT.  

 

Equation (6) points out two important things.  First, the estimate for β̂1 is a function of the 

‘truth’ that is the true value of β1.  Likewise, the estimated value for  β̂1 is a function of 

the n people who were selected for this sample.  The true source of randomness in the 

model is therefore the unknown residual εi.  As a result, the properties of  β̂1 will be a 

function of the properties we assume about εi.  We typically make four assumptions about 

εi 

 

Three assumptions about the residual εi 

 

1) E(εi) = E(εi|xi) = 0 

2) V(εi) = V(εi|xi) = σ2
ε 

3) Cov(εi, εj) = 0 for all i≠j 

 

The first assumption says that on average, the expected error is zero and that this 

expectation does not depend on the value of x.  The second assumption says that the 

errors are “homoskedastic” or they have the same variance.  Assumption (3) states that 

errors are not correlated across observations.  The second and third assumptions will be 

relaxed throughout the semester.   

 

Assumption (1) is the killer.  If (1) is true, the model has very nice properties, if it false, 

the model is useless.   

 

Assumption (1) states that ε and x are independent.  This says that the realization of x 

conveys no information about the likely value of ε and therefore, the conditional 

expectation E(εi|xi) provides the same information as the unconditional expectation E(εi).    

 

Recall that cov( , ) ( ) ( ) ( )i i i i i ix E x E x E    .  Because E(εi) = E(εi|xi) = 0 then the second 

term drops out and cov( , ) ( )i i i ix E x  .  Let’s work with the right hand side of this term.  

( ) ( | ) ( ) 0i i i i i i iE x E x x E x     and hence cov( , ) 0.i ix     In essence by conditioning 

on x, we “fix” this value and ( )i iE x  becomes ( )i iE x  which equals zero by assumption 

(1).   



 11 

 

A key result we will use time and time again throughout the semester is that if we 

maintain assumption (1) and we see ( ),i iE x  this reduces to ( )i iE x  which will equal 

zero.   

 

As we will see, if the value of x conveys information about ε then the model is sunk.  We 

will go over this in detail about two dozen times throughout the semester. 

 

Let’s also work with condition (2) a little.  This states that the variance of εi is the same 

whether we know x or not.  Recall the definition of variance 2( ) [( ( )) ].i i iVar E E     

Because ( ) 0,iE    the definition of the variance reduces 2 2( ) [ ] .i iVar E       

Therefore, any time we see a 2[ ]iE   this means 2.  

 

In the derivations below, we will also see a lot of terms that are 2 2[ ].i iE x  Given 

assumption (2),  2 2 2 2 2 2 2 2[ ] [ | ] [ ]i i i i i i i iE x E x E x x       

 

Therefore, a key result we will use time and time again throughout the semester -- if 

we maintain assumption (2) and we see 
2 2[ ]i iE x  this reduces to 

2 2[ ] ]i iE x  which 

equal 
2 2.i ix   

 

For now let’s concentrate on the case if (1) is true and see what that buys us. 

 

We have established that  β̂1 is a random variable.  Any time you have a random variable, 

the first two questions you need to ask are a) what is the expected value and b) what is 

the variance.  In this section, we will produce E[ β̂1] 

 

First start with the definition of  β̂1 from in equation (6) and take the expectation 
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E E E E

x x x x x x

 

     

  

    
      

         
     
      

 

  
  

 

There is a lot going on in equation (7).  First note that E[a+b]=E[a]+E[b] so we can break 

apart the two big terms in the expectation.  Second, note that the true value β1 is a fixed 

constant there E[β1]= β1. Note also that because we assume x is “fixed” 

then 2

1

( )
n

i

i

x x


 is not random and it too can be brought outside the expectation.  

Therefore, the properties of E[ β̂1] will be driven by the expectation 2

1

( )
n

i i

i

E x x


 
 

 
 .  

Let’s work with this term.  First, write out the terms in the summation under the 

expectation 
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       2

1 1 2 2 3 3

1

(8) ( ) ( ) ( ) ( ) ( )
n

i i n n

i

E x x E x x E x x E x x E x x    


 
         

 
  

 

Consider one of these expectations  ( )i iE x x   for any i.  Break this term apart to 

read [ ] [ ]i i iE x E x  .  Note assumption (1) above states that E(εi|xi) = 0.  Looking at the 

first term of [ ] [ ]i i iE x E x  , we can easily write it as 

 

[ ] [ | ] 0i i i iE x E x    

 

Therefore, if assumption (1) is correct, this term should be zero.  The second term in 

[ ] [ ]i i iE x E x   requires the definition of x which is  

 1 2

1
..... nx x x x

n
    

 

And substituting this in generates  

 

1 2 1 2[ ] .. .. ...i i i i i n i i i n
i

x x x x x x x
E x E E E E

n n n n n n n

      


       
             

       
 

 

Note that each term 
i jx

E
n

 
 
 

 for j≠i is 0 and the term i ix
E

n

 
 
 

must be equal to zero for 

the same arguments above.  As a result, the far right hand term in equation (7) is zero and 

therefore,  

 

(9) E[ β̂1] = β1 

 

 

The estimate  β̂1 is an unbiased estimate of β1, that is, if one were to draw a large number 

of samples at random, estimate  β̂1 each time, the average of all these estimates would be 

the true value β1 

 

Please note --- an unbiased estimate does not mean you have the correct estimate – it 

simply means that you used a procedure that on average will give you the correct answer. 

 

Here is another way to think about how the correlation between x and ε would get you 

into trouble 

 

From equation (6), divide the numerator and denominator of the right hand term by (n-1) 

1 1
1 1 1

2 2

1 1

1 1
( ) ( )( )

1 1ˆ(10)
1 1

( ) ( )
1 1

n n

i i i i

i i

n n

i i

i i

x x x x
n n

x x x x
n n

  

   

 

  
 

   

 
 

 

 
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Notice also in the final term in (10), we use the fact that the numerator can be 

written as  

 

1 1

( ) ( )( )
n n

i i i i

i i

x x x x  
 

      

 

The numerator is the nothing more than the sample correlation between xi and the 

ACTUAL error term εi.  The denominator is the sample variance in x. 

1

2 2

1

1
ˆ ( )( )

1

1
ˆ ( )

1

n

x i i

i

n

x i

i

x x
n

x x
n

  







  


 






 

 

And therefore, the estimate  β̂1 can be written as 

 

1 1 2

ˆˆ(11)
ˆ

x

x


 


   

 

Notice that if in a sample ˆ 0x  , then 1 1̂  .  However, if ˆ 0x  then by construction 

1 1̂   whereas if ˆ 0x   then 1 1̂   
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The Variance of  β̂1 

 

 

Demonstrating the 1
ˆvar( ) is the most detailed and complicated derivation we will do all 

semester.  In the end, it is a lot of algebra but it simply exploits the properties of definitions and 

expectations we have already used.   

 

To start, recall the following facts: 

 

(a)  The equation for the estimate of  β̂1 

 

1
1

2

1

( )( )
ˆ(1)

( )

n

i i

i

n

i

i

y y x x

x x

 



 








 

 

 

(b)  Recall also that the true underlying relationship between x and y is given by the 

equation  

 

(2)  0 1i i iy x      

 

 

(c)  To analyze some of the properties of  β̂1, we substituted the true value for yi, as 

defined by equation (2) into the estimate (1).  This substitution leads to the following 

result: 

 

1
1 1

2

1

( )
ˆ(3)

( )

n

i i

i

n

i

i

x x

x x



  





 






 

 

By definition,  

 

(4)  2

1 1 1
ˆ ˆ ˆ( ) [( ( )) ]Var E E      

 

Previously, we demonstrated that  β̂1 is an unbiased estimate or E[ β̂1]=β1 and therefore, 

substituting β1 for E[ β̂1] in equation (4), the Var( β̂1) is then 

 

(5) 2

1 1 1
ˆ ˆ( ) [( ) ]Var E     

 

Looking at equation (3), note that the difference 1 1̂   is simply 
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21 1
1 1

2 1

1

( ) ( )
ˆ(6) ( )

( )

n n

i i i i n
i i

x in
ix

i

i

x x x x

where SST x x
SST

x x

 

   





 

    



 



 

The variable SSTx is the sum of squared total for x and similar to the SST for y used in the 

construction of the R2 

 

 

Using the definition of the variance and equation (6) 

  
2 2

2 1 1
1 1 1

( )
ˆ ˆ(7) ( ) [( ) ]

n n

i i i i

i i

x x

x x x

Var E E E
SST SST

 

    

      
      

         
      
      
         

 
 

 

Where .i ix x x     Because SSTx is a constant (x is considered fixed) we can bring it 

outside the summation.  Therefore 

 
2

1 2
1

1ˆ(8) ( )
n

i i

ix

Var E x
SST

 


  
   

   
  

Let’s work with the numerator in the far right hand term in equation (8).  Complete the square on 

this term. 

 

 
2

2 2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 3 3 1 1

1

.... [ ... 2 2 ...2 ]
n

i i n n n n n n n n

i

x x x x x x x x x x x x x             



 
         

 


 

Next, we take the expectation of this term 

 
2

2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 3 3 1 1

1

(10) [ ... 2 2 ...2 ]
n

i i n n n n n n

i

E x E x x x x x x x x x          



 
      

 
  

 
2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 3 3 1 1[ ] [ ] ... [ ] [2 ] [2 ] ... [2 ]n n n n n nE x E x E x E x x E x x E x x                

 

Let’s look at the terms in equation (10).  Consider 2 2[ ]j jE x  for any j=1, 2…n.  Recall above from 

assumption (2) that anytime we see 2 2[ ]j jE x  this reduces to 2 2 2 2[ ]j j jE x x   because 

2 2[ | ] [ ]i i iE x E  .  Note also that we established above that any time we see 2[ ]iE  this equals 
2 2[ ]iE    .  Therefore, the first n terms in the second line of equation (10),  2 2[ ],j jE x  

equal 2 2

jx  for j=1,2,…n.  

 

Next, consider the expectation of the cross terms [2 ]i j i jE x x  .  The 2 is a constant so it can be 

brought outside the expectation.  By assumption, i jx x  are also constants so they can be brought 
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outside the expectations as well.  Therefore, [2 ] 2 [ ]i j i j i j i jE x x x x E    .  Recall above that we 

assumed that cov( , ) 0i j   and the definition of cov( , )i j  is cov( , ) [ ] [ ] [ ]i j i j i jE E E        

and since E[εi]=E[εj]=0, cov( , ) [ ] 0i j i jE     .   Therefore, all the expectation of cross-terms 

in (10) are zero.  Combining these results 

 
2

2 2 2 2 2 2 2 2

1 1 2 32 2
1

1 1ˆ(11) ( ) [ .... ]
n

i i n

ix x

Var E x x x x x
SST SST

        


  
      

   
  

 

We can reduce the numerator of 11,  

 

2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3

1 1

(12) [ .... ] ( )
N N

n i i x

i i

x x x x x x x SST            
 

         

 

And therefore: 

 
2 2

2

1 2
2

1

1ˆ(13) ( )

( )
x n

x x
i

i

Var SST
SST SST

x x

 


 
 



  


 

 

 

Notice that the definition of (13) includes a 2

  which is the Var(εi).  Unfortunately, we do not 

know 2

 so it must be estimated 

 

An unbiased estimate for 2

  is as follows 

 

2

2 1

ˆ

ˆ(14)
1 1

n

i

i SSR

n k n k




  
   


 

 

Where k is the number of x’s included in the model.  Thus in the simple bivariate model, k=1 

and the degrees of freedom in the denominator is n-2.   

 

The estimated variance of  β̂1 is then 

 
2

1
2

1

ˆˆ(15) . ( )

( )
n

i

i

Est Var

x x








 

 

As with all variances, the units of measure on (15) are in  β̂1 squared units so we need to take the 

square root.  The square root of this variance is typically called the “Standard error” 

1 1/2

2

1

ˆˆ(16) ( )

( )
n

i

i

se

x x






 

 
 


 


