Problem Set 2 ECON 30331 (Due by the start of class, Wednesday, January 31, 2018) (Problems marked with a * are former test questions)

Bill Evans Spring 2018

1. Suppose a researcher is interested in estimating the linear regression model $Y_i=\beta_0 + X_i\beta_1 + \varepsilon_i$ and in a sample of 101 observations, the following descriptive statistics are generated:

$$\overline{x} = 60, \ \overline{y} = 40, \ \sum_{i=1}^{n} (x_i - \overline{x})^2 = 2500, \ \sum_{i=1}^{n} (y_i - \overline{y})^2 = 3600$$
$$\sum_{i=1}^{n} (x_i - \overline{x})(y - \overline{y}) = 1500, \ R^2 = 0.2$$

- a) What is $\hat{\sigma}_x^2$?
- b) What is $\hat{\rho}(x, y)$?
- c) What is the OLS estimate of $\hat{\beta}_1$?
- d) What is the OLS estimates of $\hat{\beta}_0$?
- e) What is the SSE for this model?
- 2. *Using data from the 2004 baseball season, a researcher collects data on the number of wins a team had during the year and payroll in millions of dollars. The researcher wants to estimate a model to examine whether the size of the payroll alters wins, so they want to consider an OLS model of the form wins_i= β_0 + payroll_i β_1 + ϵ_i . The author gets as far as getting descriptive statistics and the correlation coefficient between wins and payroll (presented below), then their computer crashes. Using the data below:
 - a) Calculate the estimate for $\hat{\beta}_0$.
 - b) For $\hat{\beta}_1$.
 - c) Interpret the results for $\hat{\beta}_1$. According to the model estimates, by how much will wins increase if a team spends \$15 million more on salary?

. sum wins payroll

Variable	Obs	Mean	Std. Dev.	Min	Max
wins	30	80.96667	13.36615	43	101
payroll	30	70.13708	27.26755	19.63	149.711

. corr wins payroll (obs=30)

	wins	payroll
wins payroll	1.0000 0.4176	1.0000

. sum x y									
Variable	Obs	M	lean	Std. De	ev.	Min	Ma	ax	
x y	48 48		.5 D	.505291	12 25 7.6	0 574153	8.0378	1 67	
. corr x y (obs=48)									
	X	У							
х У	1.0000 0.9285 1	.0000							
. reg y x									
Source	SS	df		MS		Number	of obs	=	48
Model	A	1	.56	2059213		r(1, Prob >	40) F	=	0.0000
Residual	.08984759	46	.00	1953208		R-squar	red	=	B
Total	.651906803	47	.01	3870358		Adj R-s Root MS	squarea SE	=	0.8592 E
у	Coef.	Std.	Err.	t	P> t	[95१	G Conf.	In	terval]
x _cons	C 7.771764	.012	2758)213	16.96 861.49	0.000 0.000	.19	07409 53605		2421021 .789923

3. *Below are STATA results from a CORRelation, SUMmary, and REGression statement, but some of the results have been whited-out. Please provide estimates for A, B, C, D, and E

4. Given an OLS model of the form $Y_i = \beta_0 + X_i\beta_1 + \varepsilon_i$, suppose that $\hat{\beta}_1 = 0$.

- a) What is the estimate for $\hat{\beta}_0$?
- b) What does R^2 equal in this case?

5. Given an OLS model of the form $Y_i = \beta_0 + X_i \beta_1 + \varepsilon_i$, show that $\overline{Y} = \overline{\hat{Y}}$.

6. Download the STATA data set pop_1950_2000.dta which has the US population (measured in millions of people) from 1950 through 2000. Construct a variable called timetrend which equals year-1949

gen timetrend=year-1949

Next, run a regression with population as the outcome of interest and the timetrend as the covariate.

reg population timetrend

- a) What is the coefficient on the timetrend variable? Interpret what the coefficient means.
- b) What is the R^2 from this model?
- c) What does this value for the R^2 say about changing population values in the US?
- d) Google the US population total for 2017. What is it?
- e) What does the model predict population in the US will be in 2017?
- 7. On the assignments page for the class is a STATA data set called meps_senior.dta that has information on total medical care expenditures for a sample of elderly respondents (aged 65 and over) from the Medical Expenditure Panel Survey (MEPS). There are many variables in the data set but for now, run a regression using totalexp (total annual medical expenditures) as the dependent variable, and as the independent covariate, use age (age in years), so the regression is totalexp_i=β₀ + age_iβ₁ +ε_i.

reg totalexp age

A) What are the estimates for $\hat{\beta}_0$ and $\hat{\beta}_1$?

B) Interpret the coefficient for
$$\hat{\beta}_1$$
, what is $\frac{\partial total \exp}{\partial age}$?

- C) Using the estimates for $\hat{\beta}_0$ and $\hat{\beta}_1$ what is predicted spending for someone 70 years of age?
- D) Using the estimates for $\hat{\beta}_0$ and $\hat{\beta}_1$ what is predicted spending for someone 71 years of age?
- E) Generate the difference between the answers in part D) and C) does this make sense?
- 8. (Challenging problem). Continue with problem 7.
 - a. What is the R^2 in the previous problem?
 - b. Run a regression of the form $age_i = \gamma_0 + totalexp_i\gamma_1 + v_i$. What is the R² from this regression?
 - c. Show that in general, the R² from a regression of Y on X is the same as a regression of the R² from a regression of X on Y.

[Hint:
$$R^2 = \frac{\sum_i (\hat{y}_i - \overline{\hat{y}})^2}{\sum_i (y_i - \overline{y})^2}$$
, substitute the definition of $\hat{y}_i - \overline{\hat{y}}$. In the second model $age_i = \gamma_0 + totalexp_i\gamma_1 + v_i$ and

which we can write as $x=\gamma_0 + y_i\gamma_1 + v_i$ we know that $\hat{\gamma}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (y_i - \overline{y})^2}$ and the R² in this case equals

$$R^{2} = \frac{\sum_{i} (\hat{x}_{i} - \hat{x})^{2}}{\sum_{i} (x_{i} - \overline{x})^{2}}$$

9. (Challenging problem). Suppose a researcher is interested in estimating the impact of gasoline taxes (X_i) on per capital gallons of gasoline consumed per year (Y_i) Assume tax is measured in cents per gallon. The researcher has data from 51 states for a 10 year period for a total of 510 observations. The researcher estimates the linear OLS model

 $Y_i = \beta_0 + X_i \beta_1 + \varepsilon_i$ and calculates $\hat{\beta}_1 = -0.90$.

- a) Suppose instead of measuring taxes in cents per gallon, the researcher measures taxes in dollars per gallon where the new model is $Y_i = \gamma_0 + X_i^* \gamma_1 + \varepsilon_i$ and $X^* = X/100$. What will be the estimate on the coefficient on γ_1 ?
- b) Suppose taxes are measured in cents as in the first case, but consumption is measured as gallons consumed per month, where $Y^*_i = Y_i/12$. The model now is of the form $Y_i^* = \alpha_0 + X_i\alpha_1 + \varepsilon_i$. What will be the estimate on α_1 ?

[You have a data set with Q and taxes but for a different product. Check your answer with the data set we have used in class.]