Regression Discontinuity Design

Motivating example

- Many districts have summer school to help kids improve outcomes between grades
- Enrichment, or
- Assist those lagging
- Research question: does summer school improve outcomes
- Variables:
$-x=1$ is summer school after grade g
$-y=$ test score in grade $g+1$

LUSDINE

- To be promoted to the next grade, students need to demonstrate proficiency in math and reading
- Determined by test scores
- If the test scores are too low - mandatory summer school
- After summer school, re-take tests at the end of summer, if pass, then promoted

Situation

- Let Z be test score -Z is scaled such that
- $Z \geq 0$ not enrolled in summer school
- $\mathrm{Z}<0$ enrolled in summer school
- Consider two kids
- \#1: Z=
- \#2: Z=-
- Where ε is small

- There should be a noticeable jump in SS enrollment at $z<0$.
- If SS has an impact on test scores, we should see a jump in test scores at $z<0$ as well.

Intuitive understanding

- Participants in SS are very different
- However, at the margin, those just at $\mathrm{Z}=0$ are virtually identical
- One with $z=-\varepsilon$ is assigned to summer school, but $z=\varepsilon$ is not
- Therefore, we should see two things

Variable Definitions

- $y_{i}=$ outcome of interest
- $x_{i}=1$ if NOT in summer school, $=1$ if in
- $\mathrm{D}_{\mathrm{i}}=\mathrm{I}\left(\mathrm{z}_{\mathrm{i}} \geq 0\right) \quad-\mathrm{I}$ is indicator function that equals 1 when true, $=0$ otherwise
- $z_{i}=$ running variable that determines eligibility for summer school. z is re-scaled so that $z_{i}=0$ for the lowest value where $D_{i}=1$
- w_{i} are other covariates

Initial equation
$x_{i}=\theta_{0}+D_{i} \theta_{1}+h_{f}\left(z_{i}\right)+w_{i} \theta_{2}+u_{i}$
$h_{f}\left(z_{i}\right)=$ polynomial in z
$h_{f}\left(z_{i}\right)=0$ at $z=0$

\hat{x} just at $z_{i}=0$ with summer school option

$$
\hat{x}_{i}^{1}=\hat{\theta}_{0}+\hat{\theta}_{1}+w_{i} \hat{\theta}_{2}
$$

\hat{x} just at $z_{i}=0$ without summer school

$$
\hat{x}_{i}^{0}=\hat{\theta}_{0}+w_{i} \hat{\theta}_{2}
$$

therefore
$\hat{\theta}_{i}^{1}-\hat{\theta}_{i}^{0}=\hat{\Delta}_{1}$
If $\hat{\Delta}_{1}=1$ Sharp design
If $\hat{\Delta}_{1}<1$ fuzzy design

RDD System

Structural equation:

$$
y_{i}=\beta_{0}+x_{1} \beta_{1}+h\left(z_{i}\right)+w_{i} \beta_{2}+\varepsilon_{i}
$$

First stage:

$$
x_{i}=\theta_{0}+D_{i} \theta_{1}+h_{f}\left(z_{i}\right)+w_{i} \theta_{2}+u_{i}
$$

reduced - form

$$
y_{i}=\pi_{0}+D_{i} \pi_{1}+h_{r}\left(z_{i}\right)+w_{i} \pi_{2}+v_{i}
$$

Note that

$$
\beta_{1}=\pi_{1} / \theta_{1}
$$

RDD Equation

\hat{y} just at $z_{i}=0$ with treatment

$$
\hat{y}_{i}^{1}=\hat{\pi}_{0}+\hat{\pi}_{1}+w_{i} \hat{\pi}_{2}
$$

\hat{y} just at $z_{i}=0$ without treatment

$$
\hat{y}_{i}^{0}=\hat{\pi}_{0}+w_{i} \hat{\pi}_{2}
$$

therefore

$$
\hat{y}_{i}^{1}-\hat{y}_{i}^{0}=\hat{\pi}_{1}
$$

Order of polynomial

$h\left(z_{i}\right)=$ polynomial in z

First order: $h\left(z_{i}\right)=D_{i} z_{i} \gamma_{1}+\left(1-D_{i}\right) z_{i} \alpha_{1}$

Third order: $h\left(z_{i}\right)=D_{i} z_{i} \gamma_{1}+D_{i} z_{i}^{2} \gamma_{2}+D_{i} z_{i}^{3} \gamma_{3}$

$$
+\left(1-D_{i}\right) z_{i} \alpha_{1}+\left(1-D_{i}\right) z_{i}^{2} \alpha_{2}+\left(1-D_{i}\right) z_{i}^{3} \alpha_{3}
$$

Key assumption of RDD models

- People right above and below Z_{0} are functionally identical
- Random variation puts someone above Z_{0} and someone below
- However, this small different generates big differences in treatment (x)
- Therefore any difference in Y right at Z_{0} is due to x

Limitation

- Treatment is identified for people at the $z_{i}=0$
- Therefore, model identifies the effect for people at that point
- Does not say whether outcomes change when the critical value is moved

$\text { Table } 1$			
	Grade 3		
	Total	Attended SS	
		Yes	No
Outcomes			
2002 math score	$\begin{aligned} & 641.8 \\ & (.142) \\ & \hline \end{aligned}$	$\begin{aligned} & 620.4 \\ & (.241) \\ & \hline \end{aligned}$	$\begin{aligned} & 648.5 \\ & (.16) \\ & \hline \end{aligned}$
	[36.57]		
2002 reading score	649.7	621.6	658.6
	(.176)	(.241)	(.204)
	[46.40]		
Summer school attendance			
Attended summer school 2001	. 24	1	0
	(.002)	(0)	(0) 17
Days attended	4.373	18.208	0

Alcohol and Mortality

- Alcohol use
- Reduces inhibition, increases aggression, compromises motor skills, blurres vision
- Use is associated with increased
- Motor vehicle accidents, suicides, homicides, falls, burns, drowning
- Between 1975-95 Alcohol was involved in
- 40% traffic deaths, 47% homicides, 30% suicides

Alcohol Abuse among Young Adults

- 4 million adults reported driving impaired in 2010
- 112 million episodes
-81% due to men
- Men aged 21-34 1/3 of all episodes
- Drunk driving deaths in 2012
- 10,322 (1/3 of all traffic deaths)
- In fatal crashes, $1 / 3$ of drunk drivers are aged 21-24

Binge Drinking

- Definition
- Men: 5+ drinks in a row one sitting
- Women: 4+
- 30-day Prevalence by age
- 18-24: 28.2%
- All ages: 17.1\%
- Frequency (among binge drinkers)
- 18-24: $\quad 4.2$ times
- All ages: 4.4 times

State alcohol control policies

- MLDA
- Price/taxes
- Retail sales restrictions
- Date/time, Dram shop rules
- Drunk driving laws
- BAC thresholds
- Per se license revocation
- Checkpoints
- Mandatory minimum sentences

State alcohol control policies
- MLDA
- Price/taxes
- Retail sales restrictions
- Date/time, Dram shop rules
- Drunk driving laws
- BAC thresholds
- Per se license revocation
- Checkpoints
- Mandatory minimum sentences

MLDA

- Used to vary across states
- In 1983, 35 states had MLDA<21
- National Minimum Drinking Age Act 1984
- Passed July 17, 1984
- Reduced federal highway funds for states by 10% if they had MLDA <21
- All states now have MLDA 21
- US one of 4 countries with MLDA of 21

Previous research

- Difference in difference models
- 1983 law as the impetus
- MLDA < 21 increases
- Drinking, binge drinking, MV fatalities
- MLDA 18 real problematic because it gets beer into high schools

Nat. Health Interview Survey

- 1997-2005
- Random sample of US households
- Have date of birth and date of survey
- Measures drinking participation, heavy drinking over past week, month, year
- Why is past-year drinking problematic for this question?
-71% use last month or week as reference period

This paper

- How does aging into drinking age impact use?
- Estimated by RDD
- sharp increase in use right at 21
- Given the change in use - is there a corresponding change in mortality outcomes

Mortality detail files

- Annual data - authors use 1997-2005
- Contain census of deaths in the US (2.7 million/year)
- Variables: demographics, place, date, cause
- Restricted use data has date of birth
- Place people into months of age

Two groups of measures for alcohol

 use- Participation
- Any drinking in lifetime
- 12 or more drinking in a year
- Any heavy drinking past year
- Intensity
- Proportion of days drinking
- Proportion days heavy drinking
- Drinks/day

Summary - Table 5			
Cause of death	Coefficient (std. error) on		
Over 21 dummy variable			
Alcohol	$0.388(0.119)$		
Homicide	$0.009(0.045)$		
Suicide	$0.160(0.059)$		
MV accidents	$0.158(0.033)$		
Drugs	$0.070(0.081)$		
Other external causes	$0.087(0.060)$		

Estimating RDD models

- All states moved to MLDA 21 by 1988
- Use data on deaths among people with Social Security Numbers from 1989-2008
- Generate monthly counts of deaths by age $/$ months - from age $=19$, month $=0$ through age $=21$, month $=11$
- 48 observations


```
* generate ln death counts
gen deathsl=ln(deaths)
* rescale the running variable so that
* index = 0 in the month someone turns 21
gen rv=index-25
* treatment dummy
gen treatment=index>=25
* generate separate running variables before and
* after the discontinuity
gen rv_after1=treat*rv
gen rv_after2=rv_after1*rv_after1
gen rv_after3=rv_after2*rv_after1
gen rv_before1=(1-treat)*rv
gen rv_before2=rv_before1*rv_before1
gen rv_before3=rv_before2*rv_before1
```


Medicare

- Introduced in 1963
- Federal health insurance programs for
- the elderly
- Disabled
- Among elderly - become eligible at age 65
- Two things happen at age 65
- More become insured
- Insurance is more generous

Medicare		
- 2007	- 2040	
- 44.1 million recipients	- 87 million recipients	
- $\$ 432$ bill. exp.	- 7.6% of GDP	
- 3.2% of GDP	- 30% of fed. budget	
- 16% of fed. budget		

This paper

- Change in eligibility at age 65
- We should see
- Greater levels of insurance
- Greater use of medical services
- If health insurance improves health, we should also see a reduction in mortality

Sample

- CA hospital admissions 1992-2002
- Restrict sample to those admitted through emergency department
- e.g., Chronic bronchitis, heart attack, stroke - Why?

Table V Reoression Discontinutry Estimates of Changes in Mortality Rates						
	Death rate in					
	7 days	14 days	28 days	90 days	180 days	365 days
Estimated discontinuty af age 65 ($\times 100$)						
Fully interacted quadratic with no additional controls	$\begin{gathered} -1.1 \\ (0.2) \end{gathered}$	$\begin{gathered} -1.0 \\ (0.2) \end{gathered}$	$\begin{gathered} -1.1 \\ (0.3) \end{gathered}$	$\begin{array}{r} 1.1 \\ (0.3) \\ \hline \end{array}$	$\begin{gathered} -1.2 \\ (0.4) \end{gathered}$	$\begin{gathered} -1.0 \\ (0.4) \end{gathered}$
Fuly interacted quadrate plus	-1.0	-0.8)	-0.9	-0.9	${ }_{\text {(0) }}^{-0.8}$	(0.4)
additional controls	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)	(0.4)
Fully interacted cubic plus additional	-0.7	-0.7	-0.6	-0.9	-0.9	-0.4
controls	(0.3)	(0.2)	(0.4)	(0.4)	(0.5)	(0.5)
Local linear regression procedure fit	-0.8	-0.8	-0.8	-0.9	-1.1	-0.8
separately to left and right with rule-of-thumb bandwidths	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)	${ }^{(0.3)}$
Mean of dependent variable ($\%$)	5.1	7.1	9.8	14.7	18.4	23.0

The downside of being the youngest in your class

- Suggestive evidence that children "young" for their class perform worse in school
- Lower test scores/more repeated grades/more disciplinary problems/more ADHD diagnoses
- This has lead to two trends
- Academic "red shirting"
- States have moved the "age of entry" earlier
- 1980, 10\% of 5 years olds not in k-garten
- 2002, this number was 21%
- Suppose all schools start September 1
- Consider the youngest possible kid in the class
- Three state laws - to start k-garten, a kid must turn 5 by: December 1, September 1 or June 1
- In these three states, at school start, the ages of the youngest kids in class are
-4 years, 9 months at start (12/1)
-5 years (9/1)
- 5 years, 3 months ($6 / 1$)

sute	cuntros		suir	cutames	Lex cingen mace 1394
$\stackrel{ }{\wedge}$	1.5 sp	1304.130. 1001	no	30-8p	134-2000 1203
ax	1 sep	$\begin{aligned} & 190-131 \\ & 1954-195+112 \end{aligned}$			20311130
$\underset{\sim}{N}$	$\begin{aligned} & 11 \text { iner } \\ & \text { issep } \end{aligned}$				2006-31
		tece-190\%: tois 100: 91 1900: 913	$\underset{\text { von }}{\text { von }}$	$\begin{gathered} \text { un } \\ 1, \text { toce } \\ 1=0 \end{gathered}$	
a	20ac	1984-1)25: 12\%1 1087*: 122	*s	$\lim _{\substack{110}}$	1sec-1ses sar-
$\begin{aligned} & \infty \\ & o \\ & \text { ot } \end{aligned}$	$\min _{10}$	194-1902 1201			$1983-1506$ 6nco
		1903: 11/se \qquad	$\begin{aligned} & \substack{s i \\ m \\ m \\ m \\ m \\ \hline} \end{aligned}$	$\begin{aligned} & 10-5 \mathrm{ep} \\ & 15-0 \mathrm{ct} \\ & 30-5 \mathrm{ep} \\ & 15 \mathrm{~A} \end{aligned}$	
$\begin{aligned} & \text { ic } \\ & \text { R } \\ & \text { a } \\ & \text { na } \end{aligned}$		Eatablithed tyes 104-1995 ithic 1000: $9 / 16$ 1951-1052. 1903 :971			194-135: $11 / 15$
\%	1.sep	1966: 11/ 1987! 101 1983. 01 paes. of	$\begin{aligned} & \text { m } \\ & \text { n } \\ & \text { son } \end{aligned}$	$\begin{aligned} & u s \\ & \substack{1,10 \\ 1.50} \\ & 1.50 p \end{aligned}$	1984-3003 12/31 1984-1902:15/1
w	$\rightarrow 0$	1984-193: IEA 1989: 91 198!-7/1 10n2-2000-61 $2001-2006$	${ }_{\mathrm{n}}^{\mathrm{n}}$ ur vr	$\begin{aligned} & \text { losep } \\ & 1=\mathrm{sep} \\ & 1 \mathrm{sep} \\ & \text { un } \end{aligned}$	1984: 1075 1984-1904: 30y 1005- $4 / 4$ 1984-1987) wy 1984-1990: \qquad
${ }_{0}^{4}$	15569 3150	1444-1004: wn 1995- 831	$\stackrel{\mathrm{va}}{\mathrm{va}}$		-nvour
is	${ }_{3}^{1080}$		$\underset{w}{w} \underset{\substack{w \\ w}}{ }$	$\begin{aligned} & \text { H.Nur } \\ & \text { Hsesp } \\ & \text { issep } \end{aligned}$	68
mar	pa				

Evidence to date

- Most of the evidence on the problems of being the youngest in your class is regression-based
- Outcome is regressed on age of child
- Control for other covariates
- Consider a regression
- $\mathrm{y}_{\mathrm{i}}=$ some measure of outcomes (test score)
- $E A_{i}=$ entrance age (age you enter k-garten)
- $y_{i}=\beta_{0}+E A_{i} \beta_{1}+w_{i} \beta_{2}+\varepsilon_{i}$
- Is the estimate for β_{1} unbiased?
- Can be biased up for down

Research strategy

- Suppose a state has a September 1 cutoff
- Consider two kids
- One born August 31
- One born September $2^{\text {nd }}$
- One average - do we expect these kids to differ systematically?
- Yet - they will differ when they start school
- August $31^{\text {st }}$ birth will start at age 5
- September 2 ${ }^{\text {nd }}$ birth will start at age 6
- Look on either side of cutoff date
- Should see a large change in age at school entry
- If this impacts outcomes, should see change in test scores at the cutoff as well
- Is the assumption that kids born 3 days apart a good assumption?

Early Childhood Longitudinal Study

- 20 kids from each of 1,000 schools
- Kindergarten class of $1988 / 89$
- Students re-sampled in $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}$ grade
- Obtain detailed information about the kids/parents/schools/teachers
- Structural equation
$-y_{i}=\beta_{0}+E A_{i} \beta_{1}+w_{i} \beta_{2}+\varepsilon_{i}$
- EA is entry age
- First stage
$-\mathrm{EA}_{\mathrm{i}}=\theta_{0}+\mathrm{PEA}_{\mathrm{i}} \theta_{1}+\mathrm{w}_{\mathrm{i}} \theta_{2}+v_{\mathrm{i}}$
- PEA $=$ predicted entry age - age you would be at the start of kindergarten if you followed the state law to the letter

Table 1 Estimates of the Effect of Kindergarten Entrance Age on Reading Test Scores							
	Mean of IRT test score		Is of IRT estimatio	test scor netho		Test score percentile	
Test date	$\underset{\mathrm{N}}{\mathrm{~S} . \mathrm{D} .}$	$\begin{gathered} \text { OLS } \\ \text { (1) } \end{gathered}$	$\begin{gathered} \text { OLS } \\ \text { (2) } \end{gathered}$	$\begin{aligned} & \text { IV } \\ & \text { (3) } \end{aligned}$	IV (4)	$\begin{aligned} & \text { IV } \\ & \text { (5) } \end{aligned}$	
ECLS-K Fall 1998 (Kindergarten)	$\begin{array}{r} 27.5 \\ 10.0 \\ 11.592 \end{array}$	$\begin{gathered} 3.79 \\ (0.31) \\ 0.018 \end{gathered}$	$\begin{gathered} 3.69 \\ (0.29) \\ 0.212 \end{gathered}$	$\begin{gathered} 4.15 \\ (0.49) \\ 0.018 \end{gathered}$	$\begin{gathered} 5.28 \\ (0.47) \\ 0.209 \end{gathered}$	$\begin{gathered} 16.68 \\ (1.28) \\ 0.248 \end{gathered}$	
Spring 1999 (Kindergarten)	$\begin{array}{r} 38.9 \\ 13.4 \\ 11,975 \end{array}$	$\begin{gathered} \hline 5.07 \\ (0.40) \\ 0.018 \end{gathered}$	$\begin{gathered} 5.05 \\ 0.399 \\ 0.192 \end{gathered}$	$\begin{gathered} 6.20 \\ (0.64) \\ 0.017 \end{gathered}$	$\begin{gathered} 8.17 \\ (0.62) \\ 0.187 \end{gathered}$	$\begin{gathered} 19.33 \\ (1.33) \\ 0.211 \end{gathered}$	
Spring 2000 (First grade)	$\begin{array}{r} 68.0 \\ 20.7 \\ 12,046 \end{array}$	$\begin{gathered} 7.60 \\ (0.59) \\ 0.017 \end{gathered}$	$\begin{gathered} 7.17 \\ (0.55) \\ 0.219 \end{gathered}$	$\begin{gathered} 8.11 \\ (0.95) \\ 0.017 \end{gathered}$	$\begin{gathered} 10.67 \\ (0.89) \\ 0.216 \end{gathered}$	$\begin{gathered} 14.08 \\ (1.22) \\ 0.213 \end{gathered}$	
Spring 2002 (Third grade)	$\begin{array}{r} 107.5 \\ 20.2 \\ 10.336 \\ \hline \end{array}$	$\begin{gathered} 7.09 \\ (0.72) \\ 0.016 \\ \hline \end{gathered}$	$\begin{gathered} 5.26 \\ (0.60) \\ 0.285 \\ \hline \end{gathered}$	$\begin{gathered} 6.54 \\ (1.03) \\ 0.016 \\ \hline \end{gathered}$	$\begin{gathered} 7.41 \\ (0.88) \\ 0.284 \\ \hline \end{gathered}$	$\begin{gathered} 11.08 \\ (1.27) \\ 0.285 \\ \hline \end{gathered}$	
Spring 2004 (Fifth grade)	$\begin{array}{r} 139.4 \\ 23.2 \\ 8,210 \end{array}$	$\begin{gathered} 7.44 \\ (0.86) \\ 0.013 \end{gathered}$	$\begin{gathered} 5.64 \\ (0.73) \\ 0.286 \end{gathered}$	$\begin{gathered} 6.69 \\ (1.27) \\ 0.013 \end{gathered}$	$\begin{gathered} 8.38 \\ (1.09) \\ 0.284 \end{gathered}$	$\begin{gathered} 10.59 \\ (1.33) \\ 0.280 \end{gathered}$	80

Table 5 The Effect of Kindergarten Entrunce Age on Grade Retention and Leaming Disabilities in the Fill NELS:88 and ECLS:K Samples and by Family Background Quartile					
Dependent Variable	$\begin{gathered} \text { Mean } \\ \mathrm{N} \end{gathered}$				
		OLS (1)	OLS (2)	$\begin{aligned} & \text { IV } \\ & \text { (3) } \end{aligned}$	IV (4)
ECLS-K					
Diagnosis of learning disability/ADD/ADHD/etc.	$\begin{gathered} 0.088 \\ 12,860 \end{gathered}$	$\begin{gathered} 0.008 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.009) \end{gathered}$	$\begin{gathered} -0.026 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.025 \\ (0.012) \end{gathered}$
Diagnosis of ADD/ADHD	$\begin{gathered} 0.043 \\ 12,860 \end{gathered}$	$\begin{gathered} -0.004 \\ (0.006) \end{gathered}$	$\begin{gathered} -0.011 \\ (0.006) \end{gathered}$	$\begin{gathered} -0.021 \\ (0.007) \end{gathered}$	$\begin{gathered} -0.029 \\ (0.009) \end{gathered}$
Diagnosis of non-ADD/ADHD learning disability	$\begin{gathered} 0.045 \\ 12,860 \end{gathered}$	$\begin{gathered} 0.012 \\ (0.005) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.008) \end{gathered}$
In 1st or 2nd grade in Spring, 2002	$\begin{gathered} 0.088 \\ 10,431 \end{gathered}$	$\begin{gathered} -0.112 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.112 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.116 \\ (0.013) \end{gathered}$	$\begin{gathered} -0.131 \\ (0.015) \\ 81 \end{gathered}$

