4

Motivating example

- Many districts have summer school to help kids improve outcomes between grades
 - Enrichment, or
 - Assist those lagging
- Research question: does summer school improve outcomes
- Variables:
 - -x=1 is summer school after grade g
 - -y = test score in grade g+1

- Equation of interest
- $y_i = \beta_0 + x_i\beta_1 + \epsilon_i$
- Problem: what do you anticipate is cov(x_i, ε_i)?

LUSDINE

- To be promoted to the next grade, students need to demonstrate proficiency in math and reading
 - Determined by test scores
- If the test scores are too low mandatory summer school
- After summer school, re-take tests at the end of summer, if pass, then promoted

Situation

• Let Z be test score – Z is scaled such that

- Z \geq 0 not enrolled in summer school
- \bullet Z<0 enrolled in summer school
- Consider two kids
 - •#1: Z=ε
 - •#2: Z=-e
 - Where ε is small

Intuitive understanding

- Participants in SS are very different
- However, at the margin, those just at Z=0 are virtually identical
- One with z=-ε is assigned to summer school, but z= ε is not
- Therefore, we should see two things

- There should be a noticeable jump in SS enrollment at z<0.
- If SS has an impact on test scores, we should see a jump in test scores at z<0 as well.

Variable Definitions

- y_i = outcome of interest
- $x_i = 1$ if NOT in summer school, =1 if in
- $D_i = I(z_i \ge 0)$ -- I is indicator function that equals 1 when true, =0 otherwise
- z_i = running variable that determines eligibility for summer school. z is re-scaled so that z_i=0 for the lowest value where D_i=1
- w_i are other covariates

8

Initial equation

$$x_{i} = \theta_{0} + D_{i}\theta_{1} + h_{f}(z_{i}) + w_{i}\theta_{2} + u_{i}$$

$$h_{f}(z_{i}) = polynomial in z$$

$$h_{f}(z_{i}) = 0 \text{ at } z = 0$$

 $\hat{x} \text{ just at } z_i = 0 \text{ with summer school option}$ $\hat{x}_i^1 = \hat{\theta}_0 + \hat{\theta}_1 + w_i \hat{\theta}_2$ $\hat{x} \text{ just at } z_i = 0 \text{ without summer school}$ $\hat{x}_i^0 = \hat{\theta}_0 + w_i \hat{\theta}_2$ therefore $\hat{\theta}_i^1 - \hat{\theta}_i^0 = \hat{\Delta}_1$ If $\hat{\Delta}_1 = 1$ Sharp design
If $\hat{\Delta}_1 < 1$ fuzzy design

11

RDD System Structural equation: $y_i = \beta_0 + x_1\beta_1 + h(z_i) + w_i\beta_2 + \varepsilon_i$ First stage: $x_i = \theta_0 + D_i\theta_1 + h_f(z_i) + w_i\theta_2 + u_i$ reduced - form $y_i = \pi_0 + D_i\pi_1 + h_r(z_i) + w_i\pi_2 + v_i$ Note that $\beta_1 = \pi_1 / \theta_1$ ¹²

RDD Equation $\hat{y} \text{ just at } z_i = 0 \text{ with treatment}$ $\hat{y}_i^1 = \hat{\pi}_0 + \hat{\pi}_1 + w_i \hat{\pi}_2$ $\hat{y} \text{ just at } z_i = 0 \text{ without treatment}$ $\hat{y}_i^0 = \hat{\pi}_0 + w_i \hat{\pi}_2$ therefore $\hat{y}_i^1 - \hat{y}_i^0 = \hat{\pi}_1$

Order of polynomial

 $h(z_i) = polynomial in z$

First order: $h(z_i) = D_i z_i \gamma_1 + (1 - D_i) z_i \alpha_1$

Third order: $h(z_i) = D_i z_i \gamma_1 + D_i z_i^2 \gamma_2 + D_i z_i^3 \gamma_3$ + $(1 - D_i) z_i \alpha_1 + (1 - D_i) z_i^2 \alpha_2 + (1 - D_i) z_i^3 \alpha_3$

14

Key assumption of RDD models

- People right above and below Z₀ are functionally identical
- Random variation puts someone above Z_0 and someone below
- However, this small different generates big differences in treatment (x)
- Therefore any difference in Y right at Z_0 is due to \boldsymbol{x}

15

13

Limitation

- Treatment is identified for people at the $z_i=0$
- Therefore, model identifies the effect for people at that point
- Does not say whether outcomes change when the critical value is moved

	Table 1		
	Grade 3		
		Attended S	s
	Total	Yes	No
Outcomes			
2002 math score	641.8 (.142)	620.4 (.241)	648.5 (.16)
2002 reading score	[36.57] 649.7 (.176) [46.40]	621.6 (.241)	658.6 (.204)
Summer school attendance			
Attended summer school 2001	.24 (.002)	1 (0)	0 (0) 17
Days attended	4.373	18.208	0

Effect of being mandated Effect of SS attendance							
	Attendance (1st Stage)	Math (Reduced form)	Math (TSLS)	Reading (TSLS			
Strong 1st s	tage discontinuity						
Grade 3	.383	.049	.128	.087			
	(.016)	(.02)	(.055)	(.065)			
Grade 5	.385	.093	.241	.083			
	(.006)	(.015)	(.039)	(.055)			
Grade 6	.320	.061	.19	n.a.			
	(.011)	(.014)	(.047)	(-)			
Ма	th:						

Alcohol Abuse among Young Adults

- 4 million adults reported driving impaired in 2010
 - 112 million episodes
 - 81% due to men
 - Men aged 21-34 1/3 of all episodes
- Drunk driving deaths in 2012
 - 10,322 (1/3 of all traffic deaths)
 - In fatal crashes, 1/3 of drunk drivers are aged 21-24

27

Binge Drinking

- Definition
 - Men: 5+ drinks in a row one sitting
 - Women: 4+
- 30-day Prevalence by age
 - 18-24: 28.2%
 - All ages: 17.1%
- Frequency (among binge drinkers)
 - 18-24: 4.2 times
 - All ages: 4.4 times

- 18-24:
- All ages: 7.9

· Easy to establish - Pr(Drinking | MV death) >Pr(~ Drinking | MV Death) • Much harder to establish ∂ (MV Death)/ ∂ (Alcohol use) • What is required to identify this derivative? - A change in alcohol use • Best option: variation in use generated by state policies 30

29

31

State alcohol control policies

- MLDA
- Price/taxes
- Retail sales restrictions - Date/time, Dram shop rules
- Drunk driving laws
 - BAC thresholds
 - Per se license revocation
 - Checkpoints
 - Mandatory minimum sentences

MLDA

- Used to vary across states
- In 1983, 35 states had MLDA<21
- National Minimum Drinking Age Act 1984
 - Passed July 17, 1984
 - Reduced federal highway funds for states by 10% if they had MLDA < 21
 - All states now have MLDA 21
 - US one of 4 countries with MLDA of 21

Previous research

- Difference in difference models
- 1983 law as the impetus
- MLDA <21 increases
 - Drinking, binge drinking, MV fatalities
 - MLDA 18 real problematic because it gets beer into high schools

33

Nat. Health Interview Survey

- 1997-2005
- Random sample of US households
- Have date of birth and date of survey
- Measures drinking participation, heavy drinking over past week, month, year
 - Why is past-year drinking problematic for this question?
 - 71% use last month or week as reference period

35

Mortality detail files

This paper

· How does aging into drinking age impact use?

corresponding change in mortality outcomes

- Estimated by RDD

- sharp increase in use right at 21

• Given the change in use – is there a

- Annual data authors use 1997-2005
- Contain census of deaths in the US (2.7 million/year)
- Variables: demographics, place, date, cause
- Restricted use data has date of birth
- Place people into months of age

- Proportion of days drinking
- Drinks/day

Table 1: Parti	cipation	Table 2: Inte	ensity	
	(1)		(1)	
12 or more drinks in lij Over 21	0.0418 (0.0242	Proportion of days dr Over 21	cinking 0.0245 (0.0086)	
Observations R^2 Prob > Chi-Squared	16,107 0.02	Observations R^2	16,107 0.02	
12 or more drinks in or Over 21	0.0796 (0.0254	Proportion of days he Over 21	eavy drinking 0.0120 (0.0061)	
Observations R^2 Prob > Chi-Squared	16,107 0.02	Observations R^2	15,825 0.00	
Any heavy drinking in Over 21	last year 0.0761 (0.0248)	Prob > Chi-Squared Drinks per day on day Over 21	ys drinking 0.2387 (0.2810)	
Observations R^2	16,107 0.01	Observations R^2	9,906 0.00	
Prob > Chi-Squared Covariates Weights Quadratic terms Cubic terms LLR	N N Y N	Prob > Chi-Squared Covariates Weights Quadratic terms Cubic terms LLR	N N N N	40

	(1)	(2)	(3)	(4)
Deaths due to all causes				
Over 21	0.096	0.087	0.091	0.074
	(0.018)	(0.017)	(0.023)	(0.016)
Observations	1,460	1,460	1,460	1,458
R ²	0.04	0.05	0.05	
Prob > Chi-Squared		0.000	0.735	
Deaths due to external causes				
Over 21	0.110	0.100	0.096	0.082
	(0.022)	(0.021)	(0.028)	(0.021)
Observations	1.460	1.460	1.460	1.458
R ²	0.06	0.08	0.08	
Prob > Chi-Squared		0.000	0.788	
Deaths due to internal causes				
Over 21	0.063	0.054	0.094	0.066
	(0.040)	(0.040)	(0.053)	(0.031)
Observations	1.460	1.460	1.460	1.458
R ²	0.10	0.10	0.10	
Prob > Chi-Squared		0.000	0.525	
Covariates	N	Y	Y	N
Quadratic terms	Y	Y	Y	N
Cubic terms	N	N	Y	N
LLR	N	N	N	Y

Cause of death	Coefficient (std. error) on
Alcohol	0.388 (0.119)
Homicide	0.009 (0.045)
Suicide	0.160 (0.059)
MV accidents	0.158 (0.033)
Drugs	0.070 (0.081)
Other external causes	0.087 (0.060)

Estimating RDD models

- All states moved to MLDA 21 by 1988
- Use data on deaths among people with Social Security Numbers from 1989-2008
- Generate monthly counts of deaths by age/months from age=19, month=0 through age=21, month=11

47

• 48 observations

Contains data	from mon	thly_deaths	.dta	
vars:	48			4 Aug 2015 09:35
size:	240			-
index	byte	%8.0g		1-48, =1 for deaths at age 19, 0 months, =1 for deaths at 19, 1,48 for 22, 11
year	byte	\$8.0g		year of death
month	byte	\$8.0g		month of death
deaths	int	\$8.0g		annual deaths for monthly cohort

Number of obs = 48 F(3, 44) = 461.28 Prob > F = 0.0000 R-squared = 0.9692 Adj R-squared = 0.9671 Root MSE = .02137

[95% Conf. Interval]

.0041979 .0084869 .1174302 7.880122

50

.0016582 .0059472 .0676403 7.843833

* generate ln death counts gen deathsl=ln(deaths)				
<pre>* rescale the running variable so that * index = 0 in the month someone turns 21 gen rv=index-25</pre>	* basic RD - reg deaths]	linear runn rv_after1 rv_	ing vari beforel	ables treat
* treatment dummy	Source	SS	df	MS
gen treatment=index>=25	Model Residual	.631817937 .020088866	3. 44.	210605979 000456565
* generate separate running variables before and * after the discontinuity	Total	.651906803	47 .	013870358
gen rv_afterl=treat*rv	deathsl	Coef.	Std. Er	r. t
<pre>gen rv_after2=rv_after1*rv_after1 gen rv_after3=rv_after2*rv_after1</pre>	rv_after1 rv_before1 treatment	.0029281 .0072171 .0925353	.000630 .000630 .012352	1 4.65 1 11.45 5 7.49
<pre>gen rv_before1=(1-treat)*rv</pre>	_cons	7.861978	.009003	2 873.25
gen rv_before2=rv_before1*rv_before1				
gen rv_belores=rv_belore2^rv_belore1				
43				

Model	.632972863	7	.0904	124695		F(7, 40)	= 191.03
Residual Total	.651906803	40	.0004	370358	•	R-squared Ad j R squared Root MSE	= 0.9710 = 0.9655 = .02176
deaths1	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
rv_after1 rv_after2 rv_after3 v_before1 v_before2 v_before3 treatment Cons	.0055154 0004198 .0000146 .0057035 <u>3.35e-06</u> 2.88e-06 .1007563 7.853171	.0058 .0000 .0007 .0006 .0000 .0000 .0259	8914 6027 0172 1083 5536 0172 9471 1946	0.94 -0.70 0.85 0.80 0.01 0.17 3.88 374.92	0.355 0.490 0.400 0.427 0.996 0.868 0.000 0.000	0063915 001638 0000201 008663 0013177 0000319 .0483153 7.810837	.0174223 .000798 .0000494 .02007 .0013244 .0000377 .1531974 7.895504

Medicare

P>|t| 0.000 0.000 0.000 0.000

- Introduced in 1963
- Federal health insurance programs for
 - the elderly
 - Disabled
- Among elderly become eligible at age 65
- Two things happen at age 65
 - More become insured
 - Insurance is more generous

This paper

- Change in eligibility at age 65
- We should see
 - Greater levels of insurance
 - Greater use of medical services
- If health insurance improves health, we should also see a reduction in mortality

54

+64.5% (0.7)

69

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Death	rate in		
Estimated discontinuity of age 65 (× 100) rully interacted quadratic with no -1.1 -1.2 -1.0 additional controls (0.2) (0.2) (0.3) (0.4) (0.4) upper discrete puis -1.0 -0.8 -0.9 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.8 -0.0 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 -0.4 -0.6 -0.9 <		7 days	14 days	28 days	90 days	180 days	365 days
"ully interacted quadratic with no -1.1 -1.0 -1.1 -1.1 -1.2 -1.0 "ully interacted quadratic plus -1.0 -0.8 -0.9 -0.8 -0.9 "ully interacted quadratic plus -1.0 -0.8 -0.9 -0.8 -0.9 "ully interacted quadratic plus -0.0 -0.2 -0.9 -0.8 -0.9 "ully interacted quadratic plus -0.0 -0.2 -0.4 -0.3 0.4 "ully interacted quadratic plus -0.0 -0.2 -0.9 -0.3 0.4 "ully interacted quadratic plus -0.0 -0.2 -0.9 -0.3 0.4 "ully interacted quadratic plus -0.0 -0.2 -0.9 -0.3 0.4 "ully interacted quadratic plus -0.0 -0.2 -0.9 -1.1 -0.6 separately to left and right with (0.2) (0.2) (0.2) (0.3) (0.3 "ull-of-thungbachridtha -0.1 -0.8 -0.9 -1.1 -0.8 Mean of dependent variable (%) 5.1 7.1 9.8 14.7 18.4 23.0			Estir	nated discontinu	uity at age 65 (×	100)	
additional controls (0.2) (0.2) (0.3) (0.4) (0.4) additional controls -1.0 -0.9 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.1 -0.8 -0.9 -0.9 -0.4 -0.8 -0.6 -0.9 -0.9 -0.4 -0.8 -0.6 -0.8 -0.6 -0.8 $-0.$	Fully interacted quadratic with no	-1.1	-1.0	-1.1	-1.1	-1.2	-1.0
unip metaseled quadratic plus -1.0 -0.8 -0.9 -0.8 -0.1 additional controls 60.20 (0.2) (0.2) (0.3) (0.3) (0.4) 'lally interacted cubic plus additional -0.7 -0.7 -0.6 -0.9 -0.9 -0.4 'lally interacted cubic plus additional -0.7 -0.7 -0.6 -0.9 -1.1 -0.0 and linear regression procodure fit -0.8 -0.9 -1.1 -0.0 explanted trapped with (0.2) (0.2) (0.2) (0.3) (0.3) (0.3) (0.3) separately to left and right with (0.2) (0.2) (0.2) (0.2) (0.3) (0.3) (0.3) Wean of dependent variable (%) 5.1 7.1 9.8 14.7 18.4 23.0	additional controls	(0.2)	(0.2)	(0.3)	(0.3)	(0.4)	(0.4)
additional controls $(0, 2)$ $(0, 2)$ $(0, 3)$ $(0, 3)$ $(0, 3)$ $(0, 4)$ (12) interacted cubic plus additional $-0, 7$ $-0, 7$ $-0, 6$ $-0, 9$ $-0, 9$ $-0, 4$ controls $(0, 3)$ $(0, 2)$ $(0, 4)$ $(0, 4)$ $(0, 5)$ $(0, 5)$ coal linear ergression procedure fit -0.8 -0.8 -0.8 -0.9 -1.1 -0.6 separately to laft and right with $(0, 2)$ $(0, 2)$ $(0, 2)$ $(0, 2)$ $(0, 3)$ $(0, 3)$ fields much separately to laft and right with $(0, 2)$ $(0, 2)$ $(0, 2)$ $(0, 2)$ $(0, 3)$ $(0, 3)$ fields much separately (6) 5.1 7.1 9.8 14.7 18.4 23.0 and the separately (6) 5.1 7.1 9.8 14.7 18.4 23.0	ully interacted quadratic plus	-1.0	-0.8	-0.9	-0.9	-0.8	-0.7
''ully informative plus additional -0.7 -0.6 -0.9 -0.9 -0.4 controls controls (0.3) (0.2) (0.2) -0.4 -0.6 -0.9 -0.5	additional controls	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)	(0.4)
controls (0.3) (0.2) (0.4) (0.4) (0.5) (0.5) coal linear regression procedure fit -0.8 -0.8 -0.9 -1.1 -0.8 separately to loft and right with (0.2) (0.2) (0.2) (0.2) (0.3) (0.3) relies of humb bandwidths Hean of dependent variable (%) 5.1 7.1 9.8 14.7 18.4 23.0	fully interacted cubic plus additional	-0.7	-0.7	-0.6	-0.9	-0.9	-0.4
acal linear regression proceedure fit —0.8 —0.8 —0.8 —0.9 —0.11 —0.8 separately to left and right with (0.2) (0.2) (0.2) (0.3) (0.3) (0.3) (0.3) (0.3) (0.4)	controls	(0.3)	(0.2)	(0.4)	(0.4)	(0.5)	(0.5)
asparatoj to isti and rigin with (0.22) (0.22) (0.22) (0.22) (0.3) (0.3) Inde-of-thumb bandwidtha Nean of dependent variable (%) 5.1 7.1 9.8 14.7 18.4 23.0	ocal linear regression procedure fit	-0.8	-0.8	-0.8	-0.9	-1.1	-0.8
rue-el-utumo satorivituta Bean of dependent variable (%) 5.1 7.1 9.8 14.7 18.4 23.0	separately to left and right with	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)	(0.3)
arean of dependent vanade (%) 5.1 r.1 9.6 14.7 15.4 23.0	rule-of-thumb bandwidths			0.0	14.7	10.4	00.0
	Mean of dependent variable (%)	5.1	7.1	9.8	14.7	10.4	23.0

The downside of being the youngest in your class

- Suggestive evidence that children "young" for their class perform worse in school
 - Lower test scores/more repeated grades/more disciplinary problems/more ADHD diagnoses
- This has lead to two trends
 - Academic "red shirting"
 - States have moved the "age of entry" earlier
 - 1980, 10% of 5 years olds not in k-garten
 - 2002, this number was 21%

65

- Suppose all schools start September 1
- · Consider the youngest possible kid in the class
- Three state laws to start k-garten, a kid must turn 5 by: December 1, September 1 or June 1
- In these three states, at school start, the ages of the youngest kids in class are
 - 4 years, 9 months at start (12/1)
 - 5 years (9/1)
 - 5 years, 3 months (6/1)

State	Cutoff 2005	Law changes since 1984	State	Cutoff 2005	Law changes since 1984
AL.	1-Sep	1964-1989: 10/1 1990-: 9/1	MD	30-Sep	1964-2002: 12/31 2003: 11/30
AK.	1-Sep	1964-1967: 11/2 1968-2003: 8/15			2004: 10/31 2005: 5/30
VZ.	31-Aug*				2006+:9/1
W.	15-5ep	1964-1997: 10/1	MA	LEA	
		1998: 9/1	M0	1-Dec	
		1999+: 9/15	MN	1-Sep	
A	2-Dec	1984-1986: 12/1	MS	1-5ep	
		1987+: 12/2	MO	31-jul*	1964-1966: 8/31*
0	LEA				1987: 7/31*
r	1-Jan				1988-1996: 6/30"
£	31-Aug	1984-1992: 12/31			1997+:7/33*
		1993: 11/30	MT	10-Sep	
		1994: 10/31	NE	15-0ct	
		1995: 9(30	NV	30-5ep	
		1996*18/31	2424	LEA	
c	31-Dec		NI	LEA	
6	1-Sep		NM	31-Aug*	
A	1-Sep	Established 1985	NY	LEA	
П.	31-Dec		NC	16-Oct	
D	1-5ep	1984-1989: 10/16	ND	31-Aug*	
		1990: 9/16	OH	30-Sep	
		1991-1992: 8/16	OK	1-Sep	
		1993*: 9/1	OR	1-Sep	1984-1985: 11/15
2	1-Sep	1984-1985: 12/1	PA	LEA	
		1986: 11/1	81	1-Sep	1984-2003 12/31
		1987:10/1	SC	1-Sep	1984-1992: 11/1
		1988+: 9/1	SD	1-Sep	
e l	1.64	1984-1988-LEA	TN	30-Sen	1954 10/31
	1-300	1989-9/1	TX	1.5ep	1984-1994 say
		1990-8/1			1995+: 9/1
		1991:7/1	UT	1-Sep*	1984-1987: 339
		1992-2000: 6/1			1988+: 9/1*
		2001-2005: 7/1	VT.	LEA	1984-1990: 1/1
N	15-5ep				1991+: LEA
2	31-Aug	1984-1994: 9/3	VA.	30-5ep	
		1995+: 8/31	WA.	31-Aug	
Y.	1.01		WV	31-Aur	
A.	30-5ep	1954-1995: 12/31	WI	1-5ep	60
		1996+: 9/30	WY	15-Sep	68
12	40.00				
N.	13-047				

- Most of the evidence on the problems of being the youngest in your class is regression-based
- Outcome is regressed on age of child
- Control for other covariates

- Consider a regression
- y_i = some measure of outcomes (test score)
- EA_i =entrance age (age you enter k-garten)
- $y_i = \beta_0 + EA_i\beta_1 + w_i\beta_2 + \varepsilon_i$
- Is the estimate for β₁ unbiased?
 Can be biased up for down

70

Research strategy

- Suppose a state has a September 1 cutoff
- Consider two kids
 - One born August 31
 - One born September 2nd
- One average do we expect these kids to differ systematically?
- Yet they will differ when they start school
 August 31st birth will start at age 5
 - September 2nd birth will start at age 6

- Look on either side of cutoff date
- Should see a large change in age at school entry
- If this impacts outcomes, should see change in test scores at the cutoff as well
- Is the assumption that kids born 3 days apart a good assumption?

Early Childhood Longitudinal Study

- 20 kids from each of 1,000 schools
- Kindergarten class of 1988/89
- Students re-sampled in 1st, 3rd, 5th grade
- Obtain detailed information about the kids/parents/schools/teachers

- Structural equation

 y_i=β₀ + EA_iβ₁ + w_iβ₂ + ε_i
 EA is entry age

 First stage
 - $EA_i = \theta_0 + PEA_i\theta_1 + w_i\theta_2 + \upsilon_i$
 - PEA = predicted entry age age you would be at the start of kindergarten if you followed the state law to the letter

	Mean of IRT test score	Models of IRT test scores by estimation method				Test score percentile
Test date	S.D. N	OLS (1)	OLS (2)	IV (3)	IV (4)	IV (5)
ECLS-K						
Fall 1998	27.5	3.79	3.69	4.15	5.28	16.68
(Kindergarten)	10.0	(0.31)	(0.29)	(0.49)	(0.47)	(1.28)
	11,592	0.018	0.212	0.018	0.209	0.248
Spring 1999	38.9	5.07	5.05	6.20	8.17	19.33
(Kindergarten)	13.4	(0.40)	(0.39)	(0.64)	(0.62)	(1.33)
	11,975	0.018	0.192	0.017	0.187	0.211
Spring 2000	68.0	7.60	7.17	8.11	10.67	14.08
(First grade)	20.7	(0.59)	(0.55)	(0.95)	(0.89)	(1.22)
	12,046	0.017	0.219	0.017	0.216	0.213
Spring 2002	107.5	7.09	5.26	6.54	7.41	11.08
(Third grade)	20.2	(0.72)	(0.60)	(1.03)	(0.88)	(1.27)
	10.336	0.016	0.285	0.016	0.284	0.285
Spring 2004	139.4	7.44	5.64	6.69	8.38	10.59
(Fifth grade)	23.2	(0.86)	(0.73)	(1.27)	(1.09)	(1.33)
	8,210	0.013	0.286	0.013	0.284	0.280

			unumes in the Fu	ll NELS:88 and E	CLS-K Sample
Dependent Variable	Mean N				
		OLS	OLS	IV	IV
		(1)	(2)	(3)	(4)
ici s.k					
Diagnosis of learning	0.088	0.008	0.005	-0.026	-0.025
disability/ADD/ADHD/etc.	12,860	(0.008)	(0.009)	(0.011)	(0.012)
Diagnosis of ADD/ADHD	0.043	-0.004	-0.011	-0.021	-0.029
	12,860	(0.006)	(0.006)	(0.007)	(0.009)
Diagnosis of non-ADD/ADHD	0.045	0.012	0.014	-0.004	0.001
learning disability	12,860	(0.005)	(0.005)	(0.007)	(0.008)
In 1st or 2nd grade	0.088	-0.112	-0.112	-0.116	-0.131
in Spring 2002	10.431	(0.010)	(0.011)	(0.012)	(0.015)

