Moral Hazard

ECON 40565 Fall 2007

• First day of class, listed five unique characteristics of the health care sector

- Uncertainty
- Large role for federal govt
- Agency problem
- Non-profit sector
- Medical care is however a product purchased in markets
- Given the unique characteristics of medical care, what adjustments to the standard economic models of demand do we need to make?

2

Question for this section

- How can we model the demand for medical care/services given these unique characteristics?
- Does medical care/services follow traditional models (i.e., downward sloping demand)? How do we test this hypothesis?

3

Quick review of demand curves

- Things you need to know
 - What does the height of the demand curve represent
 - What is consumer's surplus
 - Differences between the movement along and movement in the demand curve

Notice that for the same change in price, Market 1 has a more pronounced change in demand
|ξ₁|>|ξ₂|

Factors that determine elasticity of demand

- Services for more acute conditions should have lower elasticity of demand
 - You need care at that moment, cannot wait for treatment
 - Emergency room visits low elast. of demand
 Availability of substitutes
- Availability of substitutes
 - When they are plentiful, greater elasticity of demand
 - many type of mental health treatments, therefore, high elast. for each
 - Few alternatives for AIDS drugs, so low elast.
 - Generic vs name brand drugs

- Preventive services should have higher elast.
 - Less time sensitive, can substitute over time
- Larger fraction of income, greater elast of demand
 - Have to think twice about cost
 - Long term care/assisted living is expensive, high elast of demand (and many substitutes, like informal care)

10

Demand for medical services

- Like any other good, medical services are consumed on a per unit basis
 - Doctor visits, Prescriptions, X-rays, etc.
 - Some 'units' are easier to measure
- Each has a price attached to it
- What is different for medical care is that often, the price paid by the patient is not the price of the good (insurance)

11

9

- The demand for medical services slopes down just like any other product
- The position of the demand curve can however change radically based on external conditions
- Example: demand for a particular drug is highly dependent on your current state of health

Income elasticity of demand

- ή = % ΔQ/%ΔIncome
- ή = 0.25
 - 10% increase in income, 2.5% increase in quantity demanded
- ή = 1.5
 - 10% increase in income, 15% increase in quantity demanded
- Normal goods ή>0
- Inferior goods ή<0

15

Shifts in demand due to health state

- Demand for medical services is statedependent
- When health is poor, demand may be greater – At any price, you demand more
- Change in health status could have two effects
 - Shift demand
 - Make more price responsive

Shifts due to price of other medical goods

- Strong inter-relationship between different medical services. Some are substitutes, some are compliments
- Price of one procedure can therefore impact the demand for another

- Compliments: Doctors visits and medical tests
- Substitutes: Psychotropic drugs and psychiatric visits

Cost sharing in insurance

- Insurance is designed to reduce the welfare loss due to uncertainty
- Insurance can however generate 'moral hazard'
- · Can reduce moral hazard by cost-sharing
- In most cost sharing plans, the costs of using medical care by policy holders is however reduced, encouraging use

Cost sharing in insurance

Copayment

٠

- Usually fixed dollar amount per service
- Deductibles
 - Dollar amount you have to pay out of pocket before insurance will start paying
- Coinsurance
 - Fixed percent paid by the policy holder for every dollar spent
- Stop loss
 - A point where if OOP expenditures exceed a particular value, coinsurance rates go to 0

	ution of Co f Cost Sha					
	Deductible or Copay Only	Coinsurance Only	Copay and Coinsurance	Charge Per Day	Annuai Deductible	Non
HOSPITAL ADMISSIONS						
Conventional Plans	25%	14%	1%	0%	6%	54%
HMO Plans	55	3	1	4	0	37
PPO Plans	26	13	3	1	1	55
POS Plans	46	6	4	4	0	40
ALL PLANS	36%	10%	3%	2%	1%	48%

Among Covered Workers with Separate Hospital Cost Sharing, Average Cost Sharing, 2005*						
1	Average Hospital	Average Hospital	Average Hospital			
	Deductible/Copay	Coinsurance	Per Diem			
All Small Firms (3-199 Workers)	\$284	17%	NSD			
All Large Firms (200 or More Workers)	224	16	140			
ALL FIRM SIZES	\$241	16%	\$163			

Percent of U.S. population ranked by expenditures	1928	1963	1970	1977	1980	1987 charges	1987 payments	1996 payments
Top 1 percent	-	17%	26%	27%	29%	30%	28%	27%
Top 2 percent Top 5 percent	- 52%	43	35 50	38 55	39 55	41 58	39 56	38 55
Top 10 percent	-	59	66	70	70	72	70	69
Top 30 percent	93	-	88	90	90	91	90	90
fop 50 percent	-	95	96	97	96	97	97	97
Top 30 percent Top 50 percent 1 % of pec Top 5% re	ple rep	95 present	96 1⁄4 of a	97 II HC s	96	97	90 97	90 97

Suppose there is a copayment rate of \$C
Without insurance, demand is line (ab)
At a price of \$C, people will demand Q₁
With a copay of \$C, any price in excess of \$C generates out of pocket price of only \$C, so demand is vertical at Q₁
Demand with a copay is therefore line (acd)

7.5

Q

Example

- P_d = 40 2Q
- $P_s = 4 + 4Q$
- c =0.25
 - Patients pick up 25%
 - Insurance picks up 75%
- · Market solution without insurance
 - P_d=P_s
 - 40-2Q=4+4Q; 36=6Q
 - Q=6, P=28

50

- · Demand curve with insurance $-P_{d}=P_{s}c=40-2Q$ -P = 40/c - 2Q/c = 40/.25 = 2Q/.25- P = 160 - 8Q Market solution with insurance - Supply = Demand -4 + 4Q = 160 - 8Q- 156 =12Q
 - Q = 13
 - P = 56

51

· What do consumers value the last unit consumed?

– Q = 13

- $-P_d = 40 2Q = 40 2(13) = 14$
- DWL= triangle abc
- Area = (1/2)height x base - = (1/2)(56-14)(13 - 6) - = 140

What is the welfare loss of excess insurance?

- · Recall from expected utility section
 - Insurance increases welfare because it reduces uncertainty
 - Consumers are willing to pay a premium to reduce uncertainty
- · Because of the structure of insurance, consumers do not pay the full dollar price of service, encouraging them to over use
- What is the welfare loss (or gain) of insurance???

54

		Table 7					
Health I	nsurance (Coverage	of Worke	rs, 2003			
				tribution by C			
	Workers		vate	Put		Uninsured	
	(millions)	Employer	Individual	Medicald	<u>Other</u> ^a		
Total - Workers ^k	141.8	70.7%	5.6%	3.8%	1.1%	18.7%	
Age							
18-34	52.7	60.2%	6.4%	6.1%	0.9%	26.4%	
35-54 55-64	70.3	76.4%	4.8% 6.4%	2.8%	1.0%	15.0%	
Worker's Annual Income ¹							
<\$20,000	45.2	47.6%	7.8%	8.7%	1.8%	34.2%	
\$20,000 - \$39,999	46.5	74.8%	4.6%	2.4%	0.9%	17.2%	
\$40,000 +	50.1	87.7%	4.5%	0.8%	0.8%	6.2%	
Family Poverty Level ⁶							
<100%	12.0	21.6%	9.5%	17.9%	1.5%	49.5%	
100-199% 200-299%	22.0	42.7% 67.6%	6.9% 6.0%	8.2%	1.5%	40.6%	
300-359%	20.6	79.3%	4.8%	1.4%	1.2%	13.3%	
400%+	64.1	87.8%	4.5%	0.7%	0.9%	6.0%	
Work Status							
Full-time/Full-year	97.4	77.7%	4.2%	1.9%	0.8%	15.4%	
Ful-time/Part-year Part-time/Ful-year	19.4	55.7% 58.2%	5.9% 10.5%	8.0%	1.5%	28.8%	
Part-time/Part-year	11.9	51.5%	11.1%	10.5%	2.3%	24.7%	
Business Size (# Workers)							
Self-employed ^m	12.8	48.6%	19.6%	2.7%	1.8%	27.4%	
<25 25-99	29.7	\$3.3% 69.8%	7.3%	5.4% 4.5%	1.4%	32.6%	
100-499	16.3	77.0%	2.5%	3.7%	0.9%	15.6%	
500-999	6.1	78.0%	3.7%	3.3%	1.1%	13.9%	
1000+ Public Sector	39.3	79.4% 86.4%	3.2%	3.7%	0.9%	12.8%	

Example: Doctor visits and self reported health status

		Annual MD visits
Status	% of sample	
Poor	20.5%	6.9
Fair	32.7%	6.3
Good	38.8%	4.8
Excellent	8.8%	3.3
		62

- The difference between M₁ and M₂ will be artificially low because healthier people are over-represented in group 1
- As a result, you would understate the elasticity of demand for medical care

Solution: Quasi-Experimental Variation

- Two groups. Very similar initial conditions (insurance quality and medical services)
- Suddenly, for a particular reason, the price of insurance is changed in one group (treatment)
- The treatment group may have had a change in use
 However, use in the group may have changed for a particular reason anyway
- The group that has not experienced a change forms a 'control' group – how would medical care usage change over time if policies are held constant

63

	Before Change	After Change	Difference
Group 1 (Treatment)	M _{t1}	M _{t2}	$\Delta M_t = M_{t2} - M_{t1}$
Group 2 (Control)	M _{c1}	M _{c2}	$\Delta M_c = M_{c2} - M_{c1}$
Difference			$\Delta \Delta M$ $\Delta M_t - \Delta M_t$

- Does not suffer from the same problems as the analysis where we compared outcomes in a cross-section across groups
 Have a comparison sample to ask the counterfactual what would use be in the absence of the intervention?
 Concern? What if the 'natural' experiment was
- happening for a reason e.g., higher expected costs in the future.
- We would expect some portion of ΔM_t >0 because of rising health care costs

Random assignment clinical trials

- Considered gold standard for determining causal relationships
- Population is recruited for a study
- Participants are randomly assigned treatment or control
- Compare the outcomes across the two groups
- Let Y_t and Y_c be the average outcomes across the treatment and control groups

67

Example

- Introducing a new cholesterol reducing drug
- Recruit population of patients w/ high cholesterol levels
- get baseline cholesterol levels
- · Assign half to treatment and half to control
- After fixed period of time, calculate

 Y_i = change in cholesterol levels for groups t and c
 - $-\Delta Y = Y_t Y_c$ = estimated impact of the new drug

- Subtract Y_c from Y_t
- Why is random assignment not subject to the same criticism that studies using field data are?

Experimental design: RAND

- · 2000 families
- Four sites – Dayton, Seattle, MA, SC
- Four coinsurance rates
 - 0, 25, 50 and 95%
- Also HMO comparison w/ 0% coinsurance
- Various 'caps' on 'maximum dollar expenditures'
 - Did not want families to go bankrupt in the experiment

70

- Goal: enrolling should make them no worse off
- · Claims filed with experiment

71

Plan	Visits	Out-pat. \$	Hosp Admits	Hosp \$	Total \$
Free	4.55	\$630	0.128	\$769	\$1410
25%	3.33	\$489	0.105	\$701	\$1160
50%	3.03	\$421	0.092	\$846	\$1078
95%	2.73	\$382	0.099	\$592	\$1016

Look at moving from 25% to 95% coinsurance rate. P₂ is 0.95 and P₁ is 0.25
Visits fall from 3.33 to 2.73
ξ = [(2.73 - 3.33)/(2.73+3.33)] /[(0.95-0.25)/(0.95+0.25)] = -0.17

Elasticities, Going from 25-95% Coinsurance						
Outpatient \$		Total Medical	-0.22			
- Acute	-0.32					
– Chronic	-0.23	Dental	-0.39			
 Preventive 	-0.43	Dental	-0.55			
Total outpaties	nt -0.31					
 Hospital 	-0.14					
			76			