

- First day of class, listed five unique characteristics of the health care sector
- Uncertainty
- Large role for federal govt
- Agency problem
- Non-profit sector
- Medical care is however a product purchased in markets
- Given the unique characteristics of medical care, what adjustments to the standard economic models of demand do we need to make?


## Question for this section

- How can we model the demand for medical care/services given these unique characteristics?
- Does medical care/services follow traditional models (i.e., downward sloping demand)? How do we test this hypothesis?


## Quick review of demand curves

- Things you need to know
- What does the height of the demand curve represent
- What is consumer's surplus
- Differences between the movement along and movement in the demand curve



## Some tools of the trade

- Price elasticity of demand
$-\xi_{d}=\% \Delta Q / \% \Delta P$
- Examples:
$-\xi_{d}=-0.3,10 \% \uparrow$ price, $3 \% \downarrow$ in demand
$-\xi_{d}=-1.75,10 \% \uparrow$ price, $17.5 \% \downarrow$ in demand
- When looking at demand curves on the same scale, the steeper demand curve, the lower elasticity of demand (absolute value)

- Notice that for the same change in price, Market 1 has a more pronounced change in demand
- $\left|\xi_{1}\right|>\left|\xi_{2}\right|$


## Factors that determine elasticity of demand

- Services for more acute conditions should have lower elasticity of demand
- You need care at that moment, cannot wait for treatment
- Emergency room visits low elast. of demand
- Availability of substitutes
- When they are plentiful, greater elasticity of demand
- many type of mental health treatments, therefore, high elast. for each
- Few alternatives for AIDS drugs, so low elast.
- Generic vs name brand drugs
- Preventive services should have higher elast.
- Less time sensitive, can substitute over time
- Larger fraction of income, greater elast of demand
- Have to think twice about cost
- Long term care/assisted living is expensive, high elast of demand (and many substitutes, like informal care)


## Demand for medical services

- Like any other good, medical services are consumed on a per unit basis
- Doctor visits, Prescriptions, X-rays, etc.
- Some 'units' are easier to measure
- Each has a price attached to it
- What is different for medical care is that often, the price paid by the patient is not the price of the good (insurance)
- The demand for medical services slopes down just like any other product
- The position of the demand curve can however change radically based on external conditions
- Example: demand for a particular drug is highly dependent on your current state of health
- Some factors that may shift the demand curve
- Medical state
- Socioeconomic status (income and education)
- Price of other medical services
- Example: Compliments
- As price falls for good 1, people are willing to demand more of good 2 at any price



## Income elasticity of demand

- $\eta=\% \Delta Q / \% \Delta$ Income
- $\mathfrak{\eta}=0.25$
- 10\% increase in income, $2.5 \%$ increase in quantity demanded
- ท́ = 1.5
- 10\% increase in income, 15\% increase in quantity demanded
- Normal goods ń>0
- Inferior goods $\mathfrak{\eta}<0$


## Shifts in demand due to health state

- Demand for medical services is statedependent
- When health is poor, demand may be greater - At any price, you demand more
- Change in health status could have two effects
- Shift demand
- Make more price responsive

- Suppose you are diagnosed w/ high cholesterol
- Predictor of heart disease
- Increased risk of death
- Standard treatment after diagnosis - Change diet
- Increase exercise
- As cholesterol level rises, demand for pharmaceutical solution should rise
- The higher the cholesterol level, the more willing you are to pay for drugs


## Shifts due to price of other medical goods

- Strong inter-relationship between different medical services. Some are substitutes, some are compliments
- Price of one procedure can therefore impact the demand for another
- Compliments: Doctors visits and medical tests
- Substitutes: Psychotropic drugs and psychiatric visits




## Cost sharing in insurance

- Insurance is designed to reduce the welfare loss due to uncertainty
- Insurance can however generate 'moral hazard'
- Can reduce moral hazard by cost-sharing
- In most cost sharing plans, the costs of using medical care by policy holders is however reduced, encouraging use


## Cost sharing in insurance

- Copayment
- Usually fixed dollar amount per service
- Deductibles
- Dollar amount you have to pay out of pocket before insurance will start paying
- Coinsurance
- Fixed percent paid by the policy holder for every dollar spent
- Stop loss
- A point where if OOP expenditures exceed a particular value, coinsurance rates go to 0



## Medicare Part D

- \$328 Annual premium
- \$265 deductible
- Between \$265 and \$2400 in total costs, coinsurance of 25\%
- Between \$2400 and \$545, coinsurance of 100\%



$1 \%$ of people represent $1 / 4$ of all HC spending
Top $5 \%$ represent $1 / 2$ of all spending
Top 30 percent represent $90 \%$ of all spending


## Copayments

- How do copayments impact demand?
- Example: suppose you pay a $\$ 10$ copay for each prescription ( Rx )
- If the $R x$ is $\$ 50$, you pay $\$ 10$, insurance pays $\$ 40$
- Note that
- If $\mathbf{P}<\$ 10$, you pay the price
- if $\mathbf{P}>\$ 10$, you only pay $\$ 10$
- What does this do to your demand
- Suppose there is a copayment rate of \$C
- Without insurance, demand is line (ab)
- At a price of $\$ C$, people will demand $Q_{1}$
- With a copay of \$C, any price in excess of \$C generates out of pocket price of only \$C, so demand is vertical at $Q_{1}$
- Demand with a copay is therefore line (acd)

SC

## Coinsurance

- $P_{m}$ be price of medical care
- $C$ is the coinsurance rate
- For next unit consumed by patient
- consumer pays $P_{m} c$
- Insurance pays $P_{m}(1-c)$
- Provider receives $P_{m}$


## How coinsurance changes demand

- $Q_{d}=f(P)$ where $P$ is price paid by the consumer
- Coinsurance changes this. Now there is a wedge between what the MD gets and the patient pays
- Let
- $P_{s}$ the price received by suppliers (providers)
- $P_{d}$ the price paid by the demanders (patient)
- In our supply and demand graph world, the price axis will represent the price received by sellers ( $P_{s}$ )
- Without coinsurance
$-P_{d}=P_{s}$
- With coinsurance
$-P_{s}=c P_{s}$ so
- $P_{d} / c=P_{s}$
- Consider graph on the next slide
- Without coinsurance
- When $P_{s}=0, Q_{d}=Q_{m}$
- When $P_{s}=P_{m}, Q_{d}=0$
- With coinsurance
$-P_{d}=P_{s} c$
- When $P_{s}=0, P_{d}$ still $=0, Q_{d}=Q_{m}$
- (demand curve rotates at point a)
- $P_{s}$ would have to rise to $P_{m} / c$ to eliminate demand
- since if $P_{s}=P_{m} / c, P_{d}=P_{s} c=\left(P_{m} c\right) / c=P_{m}$

- Without insurance, at price $P_{1}$, patients would be willing to consume $Q_{1}$
- With insurance, in order for consumers to demand $Q_{1}$, the price received by sellers would have to rise to $P_{1} / c$
- Doctor charges $P_{1} / c$
- Consumer pays ( $\left.\mathrm{P}_{1} / \mathrm{c}\right) \mathrm{c}=\mathrm{P}_{1}$
- Consumer is only concerned with the price after coinsurance


## Example

- Demand curve without coinsurance
$-P_{d}=100-10 Q$
- Coinsurance rate of $c$
- With coinsurance, $P_{d}=P c$
- Demand curve with coinsurance
$-P_{d}=P c=100-10 Q$
$-P=100 / \mathrm{c}-10 \mathrm{Q} / \mathrm{c}$
- $P=100-10 Q$
- when $P_{s}=0, Q=10$ and
- when $P_{s}=100, Q=0$
- Let $\mathbf{c}=50 \%$
- $P=100 / c-10 Q / c=200-20 Q$
- when $P=0, Q=10$ and
- when $P=200$, consumers pay 100 and $Q=0$
- Note that if $\mathbf{c}=0$, when $\mathrm{P}=\$ 50, \mathrm{Q}=5$
- With c = 0.5, P=\$50, Q=7.5




## Deadweight loss of insurance

- With coinsurance
- Output $\uparrow$ from $Q_{1}$ to $Q_{2}$
- Price $\uparrow$ from $P_{1}$ to $P_{2}$
- Recall what height of the demand curve represents
- At $Q_{2}$ consumers value the last unit at $P_{3}$
- Doctors get $P_{2}$
- Patients only pay $\mathrm{P}_{2} \mathrm{C}$
- Now there is a wedge between what people value the last unit and what they pay



## Example

- $P_{d}=40-2 Q$
- $P_{s}=4+4 Q$
- $\mathrm{c}=0.25$
- Patients pick up 25\%
- Insurance picks up 75\%
- Market solution without insurance
$-P_{d}=P_{s}$
$-40-2 Q=4+4 Q ; 36=6 Q$
$-Q=6, P=28$
- Demand curve with insurance
- What do consumers value the last unit
$-P_{d}=P_{s} c=40-2 Q$
$-P=40 / c-2 Q / c=40 / .25=2 Q / .25$
$-P=160-8 Q$
- Market solution with insurance
- Supply = Demand
$-4+4 Q=160-8 Q$ consumed?
$-Q=13$
$-P_{d}=40-2 Q=40-2(13)=14$
- DWL= triangle abc
- Area $=(1 / 2)$ height $x$ base
$-=(1 / 2)(56-14)(13-6)$
$-=140$
$-156=12 Q$



## What is the welfare loss of excess <br> insurance?

- Recall from expected utility section
- Insurance increases welfare because it reduces uncertainty
- Consumers are willing to pay a premium to reduce uncertainty
- Because of the structure of insurance, consumers do not pay the full dollar price of service, encouraging them to over use
- What is the welfare loss (or gain) of insurance???
- Feldman and Dowd
- Use 1980s data
- $\$ 33$ billion to $\$ 109$ billion loss
- 9 to $29 \%$ of health care spending (mid 80 s levels)
- Optimal coinsurance rate?
- One estimate puts it at about 45\%
- Far above current values


## Estimating the elasticity demand for medical care

- Key parameter in the previous discussion is the elasticity of demand for medical care
- Empirical question. Need to utilize data to estimate the value
- Question is, how does one go about using data for this question?


## Typical study

- Suppose you have variation across people in the price they pay for medical care
- Can examine whether use is negatively related to price
- Price is determined by the generosity of insurance
- End up comparing people with more or less generous health insurance
- Insurance is not randomly assigned. People with particular characteristics may end up with more or less generous insurance
- Positive selection
- People with the greatest demand for medical care
- Those who are the sickest
- with low income, low education
- History of illness
- Negative selection
- Insurance is a normal good. People with high incomes and education have more income and better insurance



## How selection screws up the analysis

- Suppose there are two groups
- Group 1: Generous insurance (lower price)
- Group 2: Less generous insurance (higher price)
- Suppose we compare the use of medical services for people in these two groups - Call these variables $M_{1}$ and $M_{2}$
- Suppose there is negative selection
- Those with highest income/education have better insurance
- These groups also have the lowest use of medical services because they are healthier

Example: Doctor visits and self reported health status

| Status | \% of sample | Annual MD visits |
| :--- | :--- | :--- |
| Poor | $20.5 \%$ | 6.9 |
| Fair | $32.7 \%$ | 6.3 |
| Good | $38.8 \%$ | 4.8 |
| Excellent | $8.8 \%$ | 3.3 |

- The difference between $M_{1}$ and $\mathbf{M}_{2}$ will be artificially low because healthier people are over-represented in group 1
- As a result, you would understate the elasticity of demand for medical care


## Solution: Quasi-Experimental Variation

- Two groups. Very similar initial conditions (insurance quality and medical services)
- Suddenly, for a particular reason, the price of insurance is changed in one group (treatment)
- The treatment group may have had a change in use
- However, use in the group may have changed for a particular reason anyway
- The group that has not experienced a change forms a 'control' group - how would medical care usage change over time if policies are held constant

- Does not suffer from the same problems as the analysis where we compared outcomes in a crosssection across groups
- Have a comparison sample to ask the counterfactual - what would use be in the absence of the intervention?
- Concern? What if the 'natural' experiment was happening for a reason - e.g., higher expected costs in the future.
- We would expect some portion of $\Delta M_{t}>0$ because of rising health care costs


## Random assignment clinical trials

- Considered gold standard for determining causal relationships
- Population is recruited for a study
- Participants are randomly assigned treatment or control
- Compare the outcomes across the two groups
- Let $Y_{t}$ and $Y_{c}$ be the average outcomes across the treatment and control groups


## Example

- Introducing a new cholesterol reducing drug
- Recruit population of patients w/ high cholesterol levels
- get baseline cholesterol levels
- Assign half to treatment and half to control
- After fixed period of time, calculate
- $Y_{i}=$ change in cholesterol levels for groups $t$ and c
$-\Delta Y=Y_{t}-Y_{c}=$ estimated impact of the new drug
- Expect people with high cholesterol to have some baseline change in levels
- Subtract $Y_{c}$ from $Y_{t}$
- Why is random assignment not subject to the same criticism that studies using field data are?


## Experimental design: RAND

- 2000 families
- Four sites
- Dayton, Seattle, MA, SC
- Four coinsurance rates
- 0, 25, 50 and $95 \%$
- Also HMO comparison w/ 0\% coinsurance
- Various 'caps' on 'maximum dollar expenditures'
- Did not want families to go bankrupt in the experiment
- Covered most services except services like braces
- Enrolled for 3-5 years
- Non-Medicare (<63) eligible
- Participant given cash subsidy to enroll
- Maximum expected loss from participating
- Less likely to enroll if the already had insurance
- Goal: enrolling should make them no worse off
- Claims filed with experiment

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Annual Per Capita Medical Use |  |  |  |  |

## Translating results

- Elasticity of demand $\xi=\% \Delta Q / \% \Delta P$
- $\xi=\left[\left(Q_{2}-Q_{1}\right) / Q_{1}\right] /\left[\left(P_{2}-P_{1}\right) / P_{1}\right]$
- Not accurate if prices are far apart
- Arc elasticity of demand
- $\xi=\left[\left(Q_{2}-Q_{1}\right) /\left(Q_{1}+Q_{2}\right) / 2\right] /\left[\left(P_{2}-P_{1}\right) /\left(P_{1}+P_{2}\right) / 2\right]$
- The /2's cancel
- $\xi=\left[\left(Q_{2}-Q_{1}\right) /\left(Q_{1}+Q_{2}\right)\right] /\left[\left(P_{2}-P_{1}\right) /\left(P_{1}+P_{2}\right)\right]$
- Look at moving from $25 \%$ to $95 \%$ coinsurance rate. $P_{2}$ is 0.95 and $P_{1}$ is 0.25
- Visits fall from 3.33 to 2.73
- $\xi=[(2.73-3.33) /(2.73+3.33)]$
$/[(0.95-0.25) /(0.95+0.25)]=-0.17$

| Elasticities, Going from 25-95\% |  |  |  |
| :--- | :--- | :--- | :--- |
| Coinsurance |  |  |  |
| - Outpatient $\$$ |  | - Total Medical | -0.22 |
| - Acute | -0.32 |  |  |
| - Chronic | -0.23 | - Dental | -0.39 |
| - Preventive | -0.43 |  |  |

- Total outpatient $\mathbf{- 0 . 3 1}$
- Hospital -0.14

