

This section

- Examine in detail general topic of externalities
- Define them
- Why they are 'bad' from an economic sense
- How can we measure the size of welfare loss
- Show how taxes can be used to limit the social costs of an externality
- Heart disease 652K
- Cancer 553K
- Stroke 150K
- Chronic resp. diease 122K
- Accidents 112K
- Diabetes 73K
- Alzhimers 66K
- Influenza/pneumonia 60K
- Nephritis 42K

This section

- Extended example: Do smokers and drinkers pay their way?
- Alcohol and cigarette consumption generates externalities
- They are also taxed at the local, state and federal level
- Sum up the external costs of smoking/drinking
- Compare to the revenues raised by taxes
- Surprising results
- Excellent example of how economists look at problems

Actual Causes of Death

	$\#(\%$ of deaths)	
Cause of death	1990	\# (\% of deaths) 2000
Tobacco	$400,000(19 \%)$	$435,000(18 \%)$
Diet/inactivity	$300,000(15 \%)$	$400,000(17 \%)$
Alcohol	$100,000(5 \%)$	$85,000(5 \%)$
Micorbial agents	$90,000(4 \%)$	$75,000(4 \%)$
Toxic agents	$60,000(3 \%)$	$66,000(3 \%)$
Motor Vehicles	$25,000(1 \%)$	$43,000(2 \%)$
Firearms	$35,000(2 \%)$	$29,000(1 \%)$
Sexual Behavior	$30,000(1 \%)$	$20,000(<1 \%)$
Illegal drugs	$20,000(<1 \%)$	$17,000(<1 \%)$
Total	$1,060,000(50 \%)$	$1,060,000(48 \%) 6$

Negative Externalities

- Pollution from a production process
- Noise from a nightclub near a residential neighborhood
- The person next to you during an exam has a cold
- Second hand smoke

Positive Externalities

- You get a flu shot. This reduces the probability others will get the flu. They benefit, you paid the costs
- Your beautiful garden raises the value of your neighbor's house
- Lojak:
- Transmitted on car that can be used to locate a stolen vehicle
- Reduced auto thefts in areas where it was introduced
- Only a small fraction had Lojak. As a result, non-Lojak users benefited

Excess production and negative externalities

- Suppose production of the good generates externalities that are not reflected in costs of inputs (e.g., pollution)
- The true cost of producing the good is above the costs firms pay to produce

Before we start

- Basic review of the dead weight loss from externalities
- How taxes can internalize the costs of externalities
- Since firms are not paying all the costs of production, the 'wedge' between private costs and social costs encourages overproduction

Demand curve
- $Q_{d}=f(P)$
- Slopes down due to declining marginal utility
- Height of demand represents the value
placed on the last product consumed
- We will always use inverse demand curves -
easier to graph
- $P=f^{-1}(\mathbf{Q})$

Consumer's Surplus

- Consumers continue to purchase so long as the value of the next unit is greater than price
- But all units priced the same
- Consumer's value the last unit at P_{1}
- For all units consumed up to Q_{1}, the value to the consumer exceeded price
- Area A represents consumer's surplus

Producer's Surplus

- In competitive market, market supply curve is the horizontal summation of firm's marginal cost curve
- Height represents the amount firms must receive to sell the last unit
- Since this is the marginal cost curve, it also represents what it costs society to produce the last unit
- Difference between price received and the marginal cost of production is Producer's Surplus

Production externalities

- Perfectly competitive market. Supply Curve = marginal cost curve (MC)
- Not all costs of production are borne by the firm, e.g., pollution
- PMC = private marginal cost, the firm's costs, therefore, the industry supply
- SMC = social marginal cost
- SMC > PMC for all Q

Social Costs of Overproduction

- Notice that as one moves from Q_{2} to Q_{1}
- Society is spending an extra $d+b+c$ on additional resources
- Consumers are however enjoying $\mathbf{b}+\mathbf{c}$ in additional welfare
- The difference is area d, the deadweight loss of overproduction
- If there ever is a 'wedge' between what it costs to produce a good and what people are paying for it, there will be a deadweight loss

What about consumption externalities?

- Standard downward sloping demand for a good
- Consumption of the good however has health/financial costs to others (e.g., second hand smoke or drunk driving)
- Private Marginal Benefit > Social Marginal Benefit

- At Q_{1}, people value the last unit at P_{1}
- However, not all costs of the good are paid by the consumers
- The SMB is SMB $_{1}$ which is lower than price
- If people had to pay all the costs of the good (forget how they will do it for now), they would consume a lot less
- Therefore, there is over-consumption of the good

Internalize the Externality

- Per unit tax on output - Pigouvian taxes
- "Excise tax"
- For every unit sold, charge consumers $\$$ t in a tax
- The excise tax will shift down the demand curve by an amount equal to the tax
- Remember, the Y (price) axis is the price transacted between buyers and sellers, does not reflect true cost

- Vertical axis, amount transacted between buyers and sellers
- Without excise tax, at price P_{1}, people willing to consume Q_{1}
- With a tax of $\$ \mathrm{t} / \mathrm{unit}$, price paid to sellers would have to fall to P-t in order to demand Q_{1}
- Pay $\mathrm{P}_{1}-\mathrm{t}$ to firm
- Pay to government
- Pay $P_{1}-t+t=P_{1}$ in total

Can show a per unit tax on suppliers can also solve externality problem

- Per unit tax will shift up supply curve by an amount t
- Verticle axis is amount transacted between buyers/sellers
- Without tax, at price P_{1} producers willing to supply Q_{1}.
- When tax is imposed, suppliers receive a price, then pay t back to the government
- In order fir supply to stay at Q_{1} with a tax, their price must rise to $P_{1}+t$

- At P_{1}, firms were willing to supply Q_{1}
- With an excise tax, in order for firms to supply Q_{1}, the price must increase to $P_{1}+t$
- Firm receives $\mathrm{P}_{\mathbf{1}}+\mathrm{t}$
- Pay the government t in taxes
- Net P_{1}
- Therefore, an excise tax will shift the supply curve up by the amount of the tax

Excises taxes on poor health

- Alcohol and cigarettes are taxed at the federal, state and local level
- Some states sell liquor rather than tax it (VA, PA, etc.)
- Most of these taxes are excise taxes -- the tax is per unit
- Rates differ by type of alcohol, alcohol content
- Nearly all cigarettes taxed the same

Current excise tax rates

- http://www.taxfoundation.org/publications/sh ow/245.html
- Cigarettes
- Low: KY (\$0.30/pack), VA (\$0.30), SC(\$0.07)
- High: RI (\$2.46), NJ (\$2.58)
- Average of \$1.07 across states
- Beer
- Low (WY, \$0.02/gallon)
- High (SC, \$0.77/gallon)

Federal taxes

- Cigarettes, \$0.39/pack
- Wine
- \$0.21/750ml bottle for 14% alcohol or less
- \$0.31/750ml bottle for $14-21 \%$ alcohol
- Beer, \$0.02 a can
- Liquor, \$13.50 per 100 proof gallon (50\% alcohol), or, $\$ 2.14 / 750 \mathrm{ml}$ bottle of 80 proof liquor
- Total taxes on cigarettes are such that in NYC, you spend more in taxes buying one case of cigarettes than if you buy 33 cases of wine.

Do taxes reduce consumption?

- Law of demand
- Fundamental result of micro economic theory
- Consumption should fall as prices rise
- Generated from a theoretical model of consumer choice
- Thought by economists to be fairly universal in application
- Medical/psychological view - certain goods not subject to these laws
- Starting in 1970s, several authors began to examine link between cigarette prices and consumption
- Simple research design
- Prices typically changed due to state/federal tax hikes
- States with changes are 'treatment'
- States without changes are control
- Near universal agreement in results
- 10\% increase in price reduces demand by 4%
- Change in smoking evenly split between
- Reductions in number of smokers
- Reductions in cigs/day among remaining smokers
- Results have been replicated
- in other countries/time periods, variety of statistical models, subgroups
- For other addictive goods: alcohol, cocaine, marijuana, heroin, gambling

Taxes now an integral part of antismoking campaigns

- Key component of 'Master Settlement'
- Surgeon General's report
- "raising tobacco excise taxes is widely regarded as one of the most effective tobacco prevention and control strategies."
- Tax hikes are now designed to reduce smoking
smoking are now designed to reduce

- By the end of 1996 - 9 states with cigarette excise taxes of $\$ 0.50$ - only 3 states with taxes in excess of $\$ 0.75 /$ pack. - By the end of 2002 - 24 states had taxes of $\$ 0.50$ or more - 13 states having a tax of a dollar per pack or more. - Today - 8 states with taxes >= $\$ 2 /$ pack - 25 states with taxes >= \$1/pack - 40 states with taxes $>=\$ 0.5 /$ pack	
	53

External costs of poor health

- Manning et al. paper
- Accounting exericise

What are the external costs of alcohol, tobacco, sedentary lifestyle

- Will focus on the $1^{\text {st }}$ two in class
- Consider three sets of costs
- Direct costs
- Lives lost, fires, criminal justice
- Collectively financed programs
- Sick/medical leave, all types of insurance, retirement, federal transfer programs
- Taxes on earnings

Direct costs

- Lives lost due to poor health
- Drunk driving deaths
- Fires from smoking
- Does not include
- Death of the person
- Any other family member (why is this? Is this a good assumption?)
- Criminal justice costs

Collectively financed programs

- Health/life insurance

- Costs of a smoker are paid collectively by those enrolled in an insurance program
- Externalities can be reduced if premiums are correlated with smoking
- Gov't transfer programs tricky
- Smoking/drinking increases current costs in Medicare/Medicaid
- May decrease costs in the future

Taxes on Earnings

- Smokers and heavy drinkers
- Are less productive during working years (do not know whether this is causal)
- If die prematurely, pay less in state/local income taxes

What is NOT an external cost

- The smoker/drinkers diminished health or the health of their family members
- The lost earnings of these activities
- Why?

Special case of Federal Programs

- Expenditures are correlated with longevity
- Social security, Medicare/Medicaid costs increase for older people
- Because smoking kills people early
- Prevents people from getting to the age when medical costs are very high
- Reduces payment of Social Security benefits
- From the perspective of the other taxpayers, these are positive externalities
- Smokers pay \$ to Federal and states
- They do not take as much out (SS, Medicare/caid) because they die early

External costs of smoking/drinking			
Cigarettes (per pack)	Heavy drinking (per ounce)		
Collectively financed Direct costs	$\$ 0.05$		
Taxes on earnings Total	$\$ 0.02$		$\$ 0.23$
:---			

External costs of smoking/drinking

	Cigarettes (per pack)	Heavy drinking (per ounce)
External costs	$\$ 0.16$	$\$ 1.19$
Total taxes	$\$ 0.37$	$\$ 0.20$

- Dollars values are in real 1986 dollars
- Between 1986 and now, prices have increased by about 75\%
- If assume all deaths due to fires and passive smoke are external costs
- Smoking cost rises to about $\$ 0.38 /$ pack
- Results
- Smokers pay their way
- Drinkers do not

Value of a statistical life

- People trade off \$ for job characteristics
- Jobs with nice characteristics paid less
- Jobs with unattractive characteristics paid more
- Hold ALL ELSE CONSTANT
- One characteristic is job risk
- Workers in higher risk jobs get paid more
- Can use the willingness to accept risk to calculate a 'statistical value of life'
- Among blue collar workers, there is a 1 in 10,000 chance of dying on the job during the year.
- People in jobs with twice the average risk are estimated to make $\$ 500$ more than identical people in average risk jobs.
- For every additional 10,000 workers in highrisk jobs, they will receive and extra $\$ 500 \mathrm{x}$ $10,000=\$ 5$ million in income
- But among these additional workers, on average, 1 will die.
- VSL=value of a statistical life
- VSL = additional income people are willing to take for additional risk/expected additional deaths
- Example: Suppose that a group of workers requires an additional $\$ 350$ to accept an additional risk of death of 0.000152
- Just divide \$350/0.000152 = \$2.3 million
- Suppose there are an addition 50000 workers
- Take home an additional $50000^{*} 350=\$ 17.5$ million
- But an additional $50000 * 0.000152=7.6$ will die
- 17.5/7.6=\$2.3 million

Drunk Driving Facts

- 17,000 MV deaths due to drunk drivers in 2003
- down from 26K in 1981
- 40\% of all MV deaths in 2003
- The drunk drivers themselves are $2 / 3$ rds of the alcohol-related MV fatalities, so you only count the $1 / 3$ left over
- External costs of alcohol are now much lower -- probably too high by 34\%

Tax facts for 2006

- 18.6 billion packs
- At federal/state/local level, taxes generate $\mathbf{\$ 2 2}$ billion in revenue
- Average tax per pack is $\$ 1.18 /$ pack
- Can argue this vastly understate actual taxes on cigarettes
- In settlement of state Medicaid, tobacco companies agreed to
- Pay \$206billion over 25 years
- Paid for by raising price of cigarettes by 45 cents/pack

What is not included in these numbers?

What are some other justifications for higher cigarette taxes

- Recall the market graph. The problem w/ external costs is that people consume above a socially optimal level
- Can be other reasons why people 'over consumer' smoking
- Maybe people do not understand the health risks. If they did, they would not smoke

Viscusi

- Survey, "of 100 smokers, how many will get lung cancer because they smoke?"
- Survey responses
- Smokers
- Non smokers \square
- The true risk level is
$-\square$
- People over state the risk of smoking

Do smokers underestimate the addictiveness of smoking?

- 82% of smokers say the would like to quit
- About 50% of ever smokers eventually quit
- What does this measure?
- Survey of HS smokers
- 56% say they will NOT be smoking in 5 years
- Only 31% actually quit
- Among pack a day smokers
- 72\% who say they will quit in 5 yrs are still smoking
- 74% who say they will not quit in 5 yrs are still smoking

