

## Scatter plot

- Sample of $\mathbf{N}$ observations
- Students, workers, doctors, etc.
- For each observation, 2 pieces of data (X,Y)
- Plot each point for all observations in sample
- Graphical presentation of the statistical relationship between the two variables

- The shape of the cloud will tell whether the variables are negatively or positively related
- The horizontal and vertical lines are the means for $Y$ and $X$
- When the variables are + related - If $X>$ average, we expect $Y>$ average
- If $X$ < average, we expect $Y$ < average
- When the variables are - related
- If $X$ < average, we expect $Y$ > average
- If $X>$ average, we expect $Y<$ average






## Correlation coefficient

- The degree to which two variables is measured by the correlation coefficient
- Measures how much 'co-movement' there is between the variables
- $\rho=$ correlation coefficient
- $-1<\rho<1$
- If $\rho=1$, perfectly + correlated -- if you know X you know exactly what $Y$ will be and vice verse
- If $\rho=0$, no correlation between variables at all, $Y$ does not tell you anything about the likely vaue of $X$ (and vice versa)
- If $\rho=-1$, perfectly + correlated -- if you know $X$ you know exactly what $Y$ will be and vice verse







## Cross-Sectional data

- Height and weight, men
- Husband/wife age
- Husband/wife educ
- Father/son income
- Father/son educ.


## Cross-Sectional Data

- IQ's of Identical twins
- IQ's of fraternal twins
- IQ's of identical twins raised apart
- IQ's of siblings
- IQ's of unrelated children reared together


## Among undergrads

- Math/verbal SAT
- HS/college GPA
- Math SAT/Coll GPA
- Verbal SAT/Coll GPA


## Limitation

- Correlation coefficient is a convenient way to measure a statistical relationship between two variables
- It does not however signify anything more than statistical observation
- It also does no get us any closer to saying whether something is causally related
- Finally, does not provide for us measure of what we want (dy/dx)


## Recall

- Define two types of variables
- Exogenous factors: external conditions
- Endogenous variables: outcomes" of a system
- Specifics:
- Y, endogenous, dependent variable
- X, exogenous, independent variables
- $Y=f(x)$, as we change $x$, we change $y$
- $d y / d x$ is the variable we are 'looking' for


## Example: Theory of Demand

- Consumers derive utility by consuming two types
- Holding $Y_{2}$ constant, person always values more of $Y_{1}$, but, the $1^{\text {st }}$ unit generates more satisfaction than the $2^{\text {nd }}$
- Their 'happiness' follows a number of rules and we can model this with a particular functional form
- The key assumption is declining marginal utility
- $\mathbf{U}=\mathbf{U}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$
- $d U / d Y_{1}>0$
- $d^{2} U / d Y_{1}{ }^{2}<0$
- $\mathbf{U}\left(\mathrm{Y}_{1}+\mathbf{1}, \mathrm{Y}_{2}\right)>\mathbf{U}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$
- $d U\left(Y_{1}+1, Y_{2}\right) / d Y_{1}<d U\left(Y_{1}, Y_{2}\right) / d Y_{1}$
- What are the constraints?
- Prices and income
- $P_{1}$ and $P_{2}$ are the prices
- $l$ is income
- $\mathrm{I}=\mathrm{P}_{1} \mathrm{Y}_{1}+\mathrm{P}_{\mathbf{2}} \mathrm{Y}_{\mathbf{2}}$
- Key empirical question:
- Maximize utility $U\left(Y_{1}, Y_{2}\right)$ subject to the fact that you must pay prevailing prices and cannot spend more than income
- What are the 'comparative statics'
- $d Y_{1} / d P_{1}, d Y_{1} / d P_{2}, d Y_{1} / d I$
- Result: demand curves
- $\mathrm{Y}_{1}=\mathrm{f}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{l}\right)$
- $Y_{2}=g\left(P_{1} P_{2}, I\right)$
- To build a statistical model that will allow us to predict the changes in outcomes, we need to assume a direction of causation
- Prices alter how much you will purchase
- Hours of study impact grades
- Years of education alter earnings ability
- Our model will only accurately measure the impact of " $x$ on $y$ " if this assumption is correct
- Hypothesize that "x and $y$ are related"
- Changes in external values of $x$ will alter value of $y$
- "comparative statics"
- Place some structure on the relationship between x and y
- Linear model

$$
\cdot y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}
$$

## Linear model

- Sample of $\mathbf{n}$ observations, labeled as I
- $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
- $\alpha$ and $\beta$ are "population" values - represent the true relationship between $x$ and $y$
- Unfortunately - these values are unknown
- The job of the researcher is to estimate these values
- Notice that if we differentiate y with respect to x , we obtain
- $d y / d x=\beta$
- $\beta$ represents how much y will change for a fixed change in $x$
- Increase in income for more education
- Change in crime or bankruptcy when casinos are opened
- Increase in test score if you study more


## Put some concreteness on problem

- Suppose a state is experiencing a significant budget shortfall
- Short-term solution - raise tax on cigarettes by 35 cents/pack
- Problem - a tax hike will reduce consumption (theory of demand)
- Question for state - as taxes are raised, how much will cigarette consumption fall
- Suppose y is a state's per capita consumption of cigarettes
- x represents taxes on cigarettes
- Question - how much will y fall if x is increased by 35 cents/pack?
- Note - there are many reasons why people smoke - cost is but one of them -


## Benefits and Costs of Model

- Placed more structure on the model, therefore we can obtain precise statements about the relationship between $x$ and $y$
- These statement will be true so long as the hypothesized relationship is true
- As you place more structure on any model, the chance that the assumptions of the model are correct declines.


## Data

- (Y) State per capita cigarette consumption for the years 1980-1997
- (X) tax (State + Federal) in real cents per pack
- "Scatter plot" of the data
- Negative covariance between variables
- When $x>X$, more likely that $y<\bar{Y}$
- When $x<\bar{X}$, more likely that $y>\bar{Y}$
- Goal: pick values of $\alpha$ and $\beta$ that "best fit" the data
- Define best fit in a moment



## What is $\varepsilon_{i}$ ?

- There are many factors that determine a state's level of cigarette consumption
- Some of these factors we can measure, but for
- We can predict an level of consumption given parameter values what ever reason, we do not have data
- $y^{p}{ }_{i}=\alpha+\beta x_{i}$
- Education, age, income, etc.
- Some of these factors we cannot measure
- Dislike of cigarettes, anti-smoking sentiment of your friends/neighbors/relatives
- $\varepsilon_{1}$ identified what we cannot measure in our model
- The predicted value will not always be accurate sometimes we will over or under predict the true value
- Because of the linear relationship between $x$ and $y$, predictions will lie along a line



## What is $\varepsilon_{i}$ ?

- The difference between the actual and predicted value is the error $\varepsilon_{i}$
- $y_{i}-y^{p}{ }_{i}=y_{i}-\alpha+\beta x_{i}=\varepsilon_{i}$
- We never actually observe $\varepsilon_{\text {i }}$ This is the "true error" based on the population values of $\alpha$ and $\beta$. Because we do not know $\alpha$ and $\beta$, we never know $\varepsilon_{i}$.
- We can however estimate values of $\varepsilon_{1}$ by estimating values of $\alpha$ and $\beta$.
- Our goal, is to choose values for $\alpha$ and $\beta$ subject to some criteria


## Notation

- True model
- $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
- We observe data points $\left(y_{i}, x_{i}\right)$
- The parameters $\alpha$ and $\beta$ are unknown
- The actual error $\left(\varepsilon_{i}\right)$ is unknown
- Estimated model
- $(a, b)$ are estimates for the parameters $(\alpha, \beta)$


## Objective: Minimize sum of squared

 errors- $\operatorname{Min} \Sigma_{i} e_{i}^{2}=\Sigma_{i}\left(y_{i}-a-b x_{i}\right)^{2}$
- Minimize the sum of squared errors (SSE)
- Treat positive and negative errors equally
- Over or under predict by " 5 " is the same magnitude of error
- "Quadratic form"
- $e_{i}$ is an estimate of $\varepsilon_{i}$ where
- The optimal value for $a$ and $b$ are those that make the $1^{\text {st }}$ derivative equal zero
- $e_{i}=y_{i}-a-b x_{i}$
- Functions reach min or max values when derivatives are zero
- How do you estimate $a$ and $b$ ?


- Rewrite all terms
- $(1 / n) \Sigma_{i}\left(y_{i}\right)-(1 / n) \Sigma_{i}(a)-(1 / n) \Sigma_{i}\left(b x_{i}\right)=0$
- Note that

$$
\begin{aligned}
& >(1 / n) \Sigma_{i}\left(y_{i}\right)=\bar{Y} \\
& >(1 / n) \Sigma_{i}(a)=(1 / n)(n a)=a \\
& >(1 / n) \Sigma_{i}\left(b x_{i}\right)=(b / n) \Sigma_{i}\left(x_{i}\right)=b \overline{ }
\end{aligned}
$$

- Therefore
- $\bar{Y}-\mathbf{a}-\mathrm{b} X=0$
- And
- $a=\bar{Y}-b \mathbf{X}$
- What is derivative of SSE with respect to $b$ ?
- $\operatorname{SSE}=\Sigma_{i}\left(y_{i}-a-b x_{i}\right)^{2}$
- $\mathrm{d}(\mathrm{SSE}) / \mathrm{db}=-2 \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{a}-\mathrm{b} \mathrm{x}_{\mathrm{i}}\right)=0$
- From previous slide, we know that
- $a=\bar{Y}-b \quad X$
- Substitute this into $d(S S E) / d b$
- $-2 \Sigma_{i} x_{i}\left[y_{i}-a-b x_{i}\right]=-2 \Sigma_{i} x_{i}\left[y_{i}-(\bar{Y}-b X)-b x_{i}\right]=0$
- Collect like terms
- $-2 \Sigma_{i} x_{i}\left[\left(y_{i}-\bar{Y}\right)-b\left(x_{i}-X\right)\right]=0$



## Descriptive Statistics

- $x=$ taxes and $y=$ consumption
- $X=49.60816$ (real cents/pack)
- $\bar{Y}=111.21481$ (packs per person per year)
- $b=-1.139$
- $a=\bar{Y}-b \mathbb{Z}=111.21481-(-1.139)(49.60816)=167.72$


## Using the results

- $b=d y / d x=-1.139$
- For every penny increase in taxes, per capita consumption falls by 1.139 packs per year
- A 35 cent increase in taxes will reduce consumption by $(35)(1.139)=39.8$ packs per person per year



## Example 2: Education and Earnings

- Stylized fact: log wages or earnings is linear in education (above a certain range)
- Notice that $\beta$ has a different interpretation
- $\beta=d Y / d X$
- In this case, $y=\ln$ (Wages)
- Theoretical models why this would be the case
- dln(Wages)/dX = (1/wages)dWages/dX
- Linear model:
- $y=\ln$ (weekly wages) - endogenous variable
- $x=y e a r s$ of education - exogenous factor
- $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
- dWages/wages = \% change in changes
- (change in wages over base wages)
- when the endogenous variable is a natural log, $\beta=d Y / d X$ is interpreted as $\%$ change in $y$ for a unit change in $X$ '




