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A brief introduction to regression 
models 

Freshman Honors Seminar
Bill Evans

Spring 2008
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Scatter plot

• Sample of N observations
– Students, workers, doctors, etc.

• For each observation, 2 pieces of data (X,Y)

• Plot each point for all observations in sample

• Graphical presentation of the statistical 
relationship between the two variables
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• The shape of the cloud will tell whether the 
variables are negatively or positively related

• The horizontal and vertical lines are the means 
for Y and X

• When the variables are + related
– If X > average, we expect Y > average
– If X < average, we expect Y < average

• When the variables are – related
– If X < average, we expect Y > average
– If X > average, we expect Y < average
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Cigarette Consumption and Taxes
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Plot of Education and Ln(Weekly Earnings)
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Plot:  Win and Home Attendance in Baseball
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IQs of Twins Raised Apart
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Correlation coefficient

• The degree to which two variables is measured 
by the correlation coefficient

• Measures how much ‘co-movement’ there is 
between the variables

• ρ = correlation coefficient
• -1 < ρ < 1

11

• If ρ=1, perfectly + correlated -- if you know X you 
know exactly what Y will be and vice verse

• If ρ=0, no correlation between variables at all, Y 
does not tell you anything about the likely vaue of 
X (and vice versa)

• If ρ=-1, perfectly + correlated -- if you know X you 
know exactly what Y will be and vice verse
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Plot of X and Y:  rho=0.00
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Plot of X and Y:  rho=0.25
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Plot of X and Y:  rho=0.50
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Plot of X and Y: rho=0.75
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Plot of X and Y:  rho=0.99
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Plot of X and Y:  rho=1.00
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How to calculate

• N observations
• nnnn= (x1+x2+…xn)/n = (1/n)Σix i

• NNNN= (y1+y2+…yn)/n = (1/n)Σiyi

• s2
x = [1/(n-1)] Σi(x i - nnnn)2

• s2
y = [1/(n-1)] Σi(yi - NNNN)2

• ρ =[Σi(x i - nnnn)(yi - NNNN)/(n-1)]/[s xsy]
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Cross-Sectional data

• Height and weight, men
• 0.53

• Height/weight, women
• 0.48

• Log(wages)/educ (m)
• 0.33

• Log(wage)/age (m) 
• 0.42
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Cross-Sectional Data

• Husband/wife age
• 0.69

• Husband/wife educ
• 0.65

• Father/son income
• 0.21 – 0.35

• Father/son educ.
• 0.25 – 0.39
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Cross-Sectional Data

• IQ’s of Identical twins
• 0.8 - 0.9

• IQ’s of fraternal twins
• 0.5 – 0.6

• IQ’s of identical twins raised apart
• 0.7 – 0.8

• IQ’s of siblings
• 0.4 – 0.5

• IQ’s of unrelated children reared together
• 0.15 – 0.25

22

Among  undergrads

• Math/verbal SAT
• 0.52

• HS/college GPA
• 0.47

• Math SAT/Coll GPA
• 0.26

• Verbal SAT/Coll GPA
• 0.36
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Limitation

• Correlation coefficient is a convenient way to 
measure a statistical relationship between two 
variables

• It does not however signify anything more than 
statistical observation

• It also does no get us any closer to saying 
whether something is causally related

• Finally, does not provide for us measure of what 
we want (dy/dx) 
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Recall

• Define two types of variables
– Exogenous factors:  external conditions
– Endogenous variables: outcomes” of a system

• Specifics:  
– Y, endogenous, dependent variable
– X, exogenous, independent variables

• Y=f(x), as we change x, we change y
• dy/dx is the variable we are ‘looking’ for
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Example:  Theory of Demand

• Consumers derive utility by consuming two types 
of good:  Y 1 and Y2

• Their ‘happiness’ follows a number of rules and 
we can model this with a particular functional 
form

• The key assumption is declining marginal utility
• U = U(Y1,Y2)
• dU/dY1 >0
• d2U/dY1

2<0
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• Holding Y 2 constant, person always values more 
of Y1, but, the 1 st unit generates more satisfaction 
than the 2 nd

• U(Y1+1,Y2) > U(Y1,Y2)
• dU(Y1+1,Y2)/dY1 < dU(Y1,Y2)/dY1

• What are the constraints?
• Prices and income
• P1 and P2 are the prices
• I is income
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• I = P1Y1 + P2Y2

• Maximize utility U(Y 1,Y2) subject to the fact that 
you must pay prevailing prices and cannot spend 
more than income

• Result:  demand curves

• Y1=f(P1,P2,I)
• Y2=g(P1P2,I)
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• Key empirical question:  

• What are the ‘comparative statics’

• dY1/dP1, dY1/dP2, dY1/dI
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• To build a statistical model that will allow us to 
predict the changes in outcomes, we need to 
assume a direction of causation
– Prices alter how much you will purchase
– Hours of study impact grades
– Years of education alter earnings ability

• Our model will only accurately measure the 
impact of “x on y” if this assumption is correct
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• Hypothesize that “x and y are related”
– Changes in external values of x will alter value 

of y
– “comparative statics”
– Place some structure on the relationship 

between x and y
• Linear model

• yi = αααα + ββββx i + εεεεi
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Linear model

• Sample of n observations, labeled as I

• yi = αααα + ββββx i + εεεεi

• αααα and ββββ are “population” values – represent the 
true relationship between x and y

• Unfortunately – these values are unknown
• The job of the researcher is to estimate these 

values
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• Notice that if we differentiate y with respect to x , 
we obtain

• dy/dx = ββββ
• ββββ represents how much y will change for a fixed 

change in x
– Increase in income for more education
– Change in crime or bankruptcy when casinos 

are opened
– Increase in test score if you study more
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Put some concreteness on problem

• Suppose a state is experiencing a significant 
budget shortfall

• Short-term solution – raise tax on cigarettes by 
35 cents/pack

• Problem – a tax hike will reduce consumption 
(theory of demand)

• Question for state – as taxes are raised, how 
much will cigarette consumption fall
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• Suppose y is a state’s per capita consumption of 
cigarettes

• x represents taxes on cigarettes
• Question – how much will y fall if x is increased 

by 35 cents/pack?
• Note – there are many reasons why people smoke 

– cost is but one of them –

35

Benefits and Costs of Model

• Placed more structure on the model, therefore we 
can obtain precise statements about the 
relationship between x and y

• These statement will be true so long as the 
hypothesized relationship is true

• As you place more structure on any model, the 
chance that the assumptions of the model are 
correct declines.
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Data

• (Y) State per capita cigarette consumption for the 
years 1980-1997

• (X) tax (State + Federal) in real cents per pack
• “Scatter plot” of the data
• Negative covariance between variables

• When x>nnnn, more likely that y< NNNN

• When x<nnnn, more likely that y> NNNN

• Goal: pick values of αααα and ββββ that “best fit” the 
data
– Define best fit in a moment
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Cigarette Consumption and Taxes
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Cigarette Consumption and Taxes
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What is εεεεi?

• There are many factors that determine a state’s 
level of cigarette consumption

• Some of these factors we can measure, but for 
what ever reason, we do not have data
– Education, age, income, etc.

• Some of these factors we cannot measure
– Dislike of cigarettes, anti-smoking sentiment of 

your friends/neighbors/relatives
• εεεεI identified what we cannot measure in our model 
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What is εεεεi?

• Given linear model y i = αααα + ββββx i + εεεεi

• We can predict an level of consumption given 
parameter values

• yp
i= αααα + ββββx i

• The predicted value will not always be accurate –
sometimes we will over or under predict the true 
value

• Because of the linear relationship between x and 
y, predictions will lie along a line
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What is εεεεi?

• The difference between the actual and predicted 
value is the error εεεεi

• yi - yp
i= yi - αααα + ββββx i = εεεεi

• We never actually observe εεεεi. This is the “true 
error” based on the population values of αααα and ββββ.  
Because we do not know αααα and ββββ, we never know 
εεεεi.

• We can however estimate values of εεεεI by 
estimating values of αααα and ββββ.

• Our goal, is to choose values for αααα and ββββ subject 
to some criteria
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Notation

• True model
• yi = αααα + ββββx i + εεεεi

• We observe data points (y i,x i)
• The parameters αααα and ββββ are unknown
• The actual error ( εεεεi) is unknown

• Estimated model
• (a,b) are estimates for the parameters ( αααα,ββββ)
• ei is an estimate of εεεεi where
• ei=yi-a-bx i

• How do you estimate a and b?
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Objective: Minimize sum of squared 
errors

• Min ΣΣΣΣiei
2 = ΣΣΣΣi(yi – a – bx i)2

• Minimize the sum of squared errors (SSE)
• Treat positive and negative errors equally

– Over or under predict by “5” is the same 
magnitude of error

– “Quadratic form”
– The optimal value for a and b are those that 

make the 1 st derivative equal zero
– Functions reach min or max values when 

derivatives are zero
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• SSE = ΣΣΣΣi(yi – a – bx i)2

• To minimize a function, choose values of a and b 
that force the 1 st derivatives to zero

• d(SSE)/da = - 2 ΣΣΣΣi(yi – a – bx i) = 0
• - 2 ΣΣΣΣi(yi – a – bx i) = 0

– Multiply by –1/2
• ΣΣΣΣi(yi – a – bx i) = 0

– Divide by n
• (1/n) ΣΣΣΣi(yi – a – bx i) = 0
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– Rewrite all terms
• (1/n)ΣΣΣΣi(yi) – (1/n)ΣΣΣΣi(a) – (1/n)ΣΣΣΣi(bx i) = 0
• Note that

» (1/n)ΣΣΣΣi(yi) = NNNN
» (1/n)ΣΣΣΣi(a) = (1/n)(na) = a
» (1/n)ΣΣΣΣi(bx i) = (b/n) ΣΣΣΣi(x i) = b nnnn

• Therefore
• NNNN - a - b nnnn = 0
• And
• a= NNNN - b nnnn
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• What is derivative of SSE with respect to b?
• SSE = ΣΣΣΣi(yi – a – bx i)2

• d(SSE)/db = -2 ΣΣΣΣix i(yi – a – bx i) = 0
• From previous slide, we know that

• a= NNNN - b nnnn
• Substitute this into d(SSE)/db
• -2 ΣΣΣΣix i[y i – a – bx i] = -2 ΣΣΣΣix i[y i – (NNNN - b nnnn) – bx i] = 0
• Collect like terms
• -2 ΣΣΣΣix i[(y i – NNNN) – b(x i- nnnn)] = 0
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• Multiply both side by –(1/2)
• ΣΣΣΣix i[(y i – NNNN) – b(x i- nnnn)] = 0
• Expand expression
• ΣΣΣΣix i[(y i – NNNN)] – b ΣΣΣΣix i[(x i- nnnn)] = 0
• Solve for b
• b ΣΣΣΣix i[(x i- nnnn)] = ΣΣΣΣix i[(y i – NNNN)] 
• b=ΣΣΣΣix i[(y i – NNNN)] / ΣΣΣΣix i[(x i- nnnn)] 
• and
• a= NNNN - b nnnn
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Descriptive Statistics

• x=taxes and y=consumption
• nnnn =49.60816   (real cents/pack)
• NNNN=111.21481  (packs per person per year)

• b= -1.139
• a= NNNN-bnnnn = 111.21481 – (-1.139)(49.60816) = 167.72
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Using the results

• b=dy/dx = -1.139
• For every penny increase in taxes, per capita 

consumption falls by 1.139 packs per year
• A 35 cent increase in taxes will reduce 

consumption by (35)(1.139) = 39.8 packs per 
person per year
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Cigarette Consumption and Taxes
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Example 2:  Education and Earnings

• Stylized fact:  log wages or earnings is linear in 
education (above a certain range)

• Interpreted as a “return to education”
• Theoretical models why this would be the case
• Linear model:

• y=ln(weekly wages) – endogenous variable
• x=years of education – exogenous factor
• yi = αααα + ββββx i + εεεεi

54

• Notice that ββββ has a different interpretation
• ββββ=dY/dX
• In this case, y=ln(Wages)
• dln(Wages)/dX = (1/wages)dWages/dX
• dWages/wages = % change in changes

• (change in wages over base wages)
• when the endogenous variable is a natural log, 

ββββ=dY/dX is interpreted as ‘% change in y for a unit 
change in x’
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Average ln(Weekly Wages) vs Educ
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ln(Weekly Wages) vs. Education
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Descriptive Statistics

• x=education and y=ln(weekly wages)

• nnnn =12.96 

• NNNN=6.03
• b = 0.075
• a= NNNN-bnnnn = 6.03 – (0.075)(12.96) = 5.05
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ln(Weekly Wages) vs. Education
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