Some notes on RACTs

Bill Evans Spring 2008

Random assignment clinical trial

- New drugs that lower cholesterol
- Recruit N people with high cholesterol

 ½ in treatment (receive active ingredient)
 ½ in control (placebo)
- Measure cholesterol levels before the start of treatment

2

• Then again after a specified time

- Let Y_i be change in cholesterol levels for person i
- Z_i=1 if the person is assigned to a treatment group
- n people in the survey and n_i be person i
- $n_1 = \Sigma_i n_i$ (# in treatment)
- $n_o = \Sigma i(1-n_i)$ (# in control)

- $\overline{Y}_1 = \overline{Y} | z_i = 1$
- $\overline{Y}_0 = \overline{Y} | z_i = 0$
- Impact of experiment is
- $\Delta = \overline{Y}_1 \overline{Y}_0$

- If drug is effective, we would expect $\Delta < 0$
- Δ is called the 'Intention to treat'

•
$$y_i = \gamma_o + z_i \gamma_1 + v_i$$

- Predicted value of Y when in treatment
- $\overline{Y}_1 = \gamma_0 + \gamma_1$
- Pedicted value of Y when not in treatment
- $\overline{Y}_0 = \gamma_o$

Notice that

5

7

• $\overline{Y}_1 - \overline{Y}_0 = \gamma_0 + \gamma_1 - \gamma_0 = \gamma_1 = \Delta$

Some questions to consider?

- What does the parameter Δ identify?
- Why are we confident that ∆ is an unbiased estimate when it is generated from a random assignment clinical trial?

Imperfect Compliance

- The assignment to a treatment group is random
- The hope is that the people in the trial will take their pills
- However, not everyone complies with the experiment – some will not take their pills
- What is the maker of the drugs ultimately interested in?

- Let x_i be mg's of active ingredient ingested daily
- What is of interest is

•
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

• Suppose we can measure compliance or x

- Assignment into treatment will increase x
- $x_i = \alpha_0 + z_i \alpha_1 + \mu$
- What is α₁?

9

11

Equation of interest?

- $y_i = \beta_0 + x_i\beta_1 + \varepsilon_i$
- The parameter of interest is β_1
- The units of measure are $\beta_1 = dy/dx$
- (what happens to outcomes when we change mg's of active ingredients)

Measure of compliance?

- $x_i = \alpha_0 + z_i \alpha_1 + \mu$
- The parameter of interest from this model is $\boldsymbol{\alpha}_1$
- Its units of measure are dx/dz
- "first stage relationship"

12

- From RACT,
- $y_i = \gamma_o + z_i \gamma_1 + v_i$
- "Intention to treat" or sometimes called reduced-form
- What does this mean?

13

15

- mg's of usage are a function of assignment into treatment
- x=g(z)
- Outcomes (Y) are a function of compliance
- y=g(x)
- But since x is a function of z
- y=g(x(z))

- Therefore, in the equation
- $y_i = \gamma_o + z_i \gamma_1 + v_i$
- The units of measure on γ_1 are
- dY/dz but, implicitly this is a function of two things
- dy/dz = (dy/dx)(dx/dx)

Put this all together

- · Intention to treat
- $y_i = \gamma_o + z_i \gamma_1 + v_i$
- $\gamma_1 = dy/dz = (dy/dx)(dx/dz)$
- First stage
- $x_i = \alpha_0 + z_i \alpha_1 + \mu_i$
- $\alpha_1 = (dx/dz)$

- $\gamma_1/\alpha_1 = (dy/dx)(dx/dz)/(dx/dz) = dy/dx$
- Recall the equation of interest
- $y_i = \beta_0 + x_i\beta_1 + \varepsilon_i$
- The units of measure are β_1 = dy/dx
- So the ratio γ_1/α_1 is an estimate of β_1

What is β_1 ?

- This measures the impact of x on y
- But, it is derived from those who 'comply' with the treatment
- Think of the world as having 2 groups - Compliers
 - Non-compliers
- The impact of z on x and z on y is determined by the compliers

18

- Therefore β_1 measures the impact of 'treatment' on the 'treated'
- · In this case
- Y=birth weight in grams
- X=cigarettes per day
- Z=1 of treated, =0 otherwise
- What did treatment do to smoking?
- $x_i = \alpha_0 + z_i \alpha_1 + \mu_i$

19

17

Table 4 Measurement of Status of Newborn*					
	Control Group (N=438)		Treatment Group (N=429)		
	N	Mean 1 SD	N	Mean ± 8D	t
Primary factor		4		+	
Birth weight, g	438	3,186 ± 556	429	3,278±627	2.28†
<2.500, %	438	6.9	429	6.8	
< 1,500, %	435	1.1 '	429	1.9	
Other isctors				50000000000000000000000000000000000000	
Birth length, cm	410	48.70±4.16	406	60.30±3.67	2.18†
Head circumference, cm	421	34.06 ± 2.44	413	34.14±1.79	0.54
Apgar score (1 min)	430	8.01 ± 1.55	425	7.96 ± 1.65	0.49
~_ <7. %	430	10.6	,425	10.6	
Apgar acore (5 min)	431	9.00±0.92	425	8.97±1,09	0.45
<7, %	431	1.0 .	425	2.8	
Gestational age, wk	435	39 89 ± 2.77	429 -	39.65±2.77	0.22

- $y_i = \beta_0 + x_i\beta_1 + \varepsilon_i$
- $\beta_1 = \gamma_1 / \alpha_1 = -92 / -6.4 = -14.4$
- Smoking an additional cigarette/day decreases the average birth weight by 14.4 grams
- Average baby is about 3500 grams 28.35 grams in an ounce 3500 grams is 123.4 ounces or 7.7 lbs
- The difference between in weights for babies with non-smoking moms and pack a day smoking mon is

(20)(-14.4) = -288 grams or -10.1 ounces

26

For the next group of papers

- What is the reduced-form
- What is the intention to treat?
- What is the treatment on the treated?

27