Difference in Difference Models

Bill Evans Spring 2008

Difference in difference models

- Maybe the most popular identification strategy in applied work today
- Attempts to mimic random assignment with treatment and "comparison" sample
- Application of two-way fixed effects model

2

Problem set up

- Cross-sectional and time series data
- One group is 'treated' with intervention
- Have pre-post data for group receiving intervention
- Can examine time-series changes but, unsure how much of the change is due to secular changes

3

• True effect of law

 $-Y_a - Y_b$

- Only have data at t_1 and t_2 - If using time series, estimate Y_{t1} – Y_{t2}

5

7

• Solution?

Difference in difference models

- Basic two-way fixed effects model - Cross section and time fixed effects
- Use time series of untreated group to establish what would have occurred in the absence of the intervention
- Key concept: can control for the fact that the intervention is more likely in some types of states

6

Three different presentations

- Tabular
- Graphical
- Regression equation

Difference in Difference

	Before Change	After Change	Difference	
Group 1 (Treat)	Y _{t1}	Y _{t2}	$\Delta Y_t = Y_{t2} - Y_{t4}$	-
Group 2 (Control)	Y _{c1}	Y _{c2}	ΔY_c =Y _{c2} -Y _{c1}	
Difference			$\Delta \Delta Y$ $\Delta Y_t - \Delta Y_c$	_
	1			8

In contrast, what is key is that the time trends in the absence of the intervention are the same in both groups.
If the intervention occurs in an area with a different trend, will under/over state the treatment effect.
In this example, suppose intervention occurs in area with faster falling Y

	Before Change	After Change	Difference	
Group 1				-
(Treat)				
Group 2				
(Control)				_
Difference			1	-
				16

- u_i is a state effect
- v_t is a complete set of year (time) effects
- Analysis of covariance model
- $Y_{it} = \beta_0 + \beta_3 T_{it}A_{it} + u_i + \lambda_t + \varepsilon_{it}$

What is nice about the model

- Suppose interventions are not random but systematic
 - Occur in states with higher or lower average Y Occur in time periods with different Y's
- This is captured by the inclusion of the state/time effects – allows covariance between
 - $-u_i$ and $T_{it}A_{it}$
 - $-\,\lambda_t\,\text{and}\,\,T_{it}A_{it}$

- · Group effects
 - Capture differences across groups that are constant over time
- · Year effects

19

 Capture differences over time that are common to all groups 18