

Introduction

- Most of this class we will examine markets for medical care
- How they operate
- What are economic issues
- Medical care is however only interesting in that it is an intermediate product - used to produce what people care about - health
- This section - discuss what inputs can be transformed into health outputs
- How is health measured?
- Some predictors of outcomes?
- Extended discussion about the role of socioeconomic status and health

Aggregate measures of health

- Mortality rates
- death per period among a define population
- Infant mortality rate
- deaths $1^{\text {st }}$ year of life/births
- Neonatal mortality: deaths $1^{\text {st }} 28$ days
- Life expectancy
- At birth
- Conditional on a particular age

Self-reported health status

- Benefits
- Easy/low cost variable to collect
- Predicts other measures of health that are difficult to collect
- Shortcomings
- No way to compare people
- No way to compare aggregate data across countries
- May be difficult to compare groups over time
- Rise in disability
- "Harvesting"

\% Reporting Health Status, Males			
Health	Age 30-44	Age 45-64	Age 65-74
Excellent	43.7\%	30.6\%	18.1\%
Very good	30.3%	26.9%	22.5\%
Good	19.8\%	26.1\%	31.6\%
Fair	4.7\%	10.6\%	18.5\%
Poor	1.5\%	5.8\%	9.3\%
			6

5-Year Mortality Rate, Males		
Health	Age 30-44	Age 45-64
Excellent	0.7%	Age 65-74
Very good	0.9%	2.4%
Good	1.6%	2.9%
Fair	2.9%	5.2%
Poor	10.4%	11.7%

5-Year Mortality Rate, Females		
Health Age 45-64	Age 65-74	
Excellent	Age $30-44$	Age
Very good	0.3%	1.7%
Good	0.4%	5.6%
Fair	1.8%	2.9%
Poor	7.1%	6.2%

Biomarkers

- Mortality limited for some populations
- SRHS difficult to compare across people
- Objective way to measure health status across people?
- Biomarkers
- Clinical markers of physiology
- Predictive of future health outcomes
- Measurable across people
- Easily collect

Examples

- Blood pressure
- High BP can lead to stroke, AMI, heart failure, kidney failure
- Cholesterol
- HDL, LDL and total
- High chol. can lead to heart attack
- Resting heart rate
- Glycated hemoglobin
- Predictor of diabetes,
- Body mass index (kg's/cm²)
- Increased risk of diabetes
- High BMI correlated w/ increased mortality

10
-

Mortality rates in the $20^{\text {th }}$ century
Figure 3
Mortality From Infectious Disease and Cardiovascular Disease, United States, 1900-2000

- Tremendous changes in aggregate statistics
- Two halves
- Decline in infant deaths ($1 / 2$ half) and infections
- Conquering cardiac disease

Sourre: Data are from the Centers for Disease Control and Prevention, National Center for Health Statistics, and are age adjusted.

What causes big changes in life expectancy?

- Most deaths are to the elderly
- But, when an infant dies, you add a small number to the numerator in a life expectancy calculation
- Big changes will be generated by
- Changes in the infant mortality rate
- Changes in mortality for the elderly which are a large fraction of deaths

Distribution of Deaths by Age

- Age of	Fraction deaths	• Age	Fraction deaths
<1	1.0%	$55-64$	12.9%
$1-14$	0.3%	$65-74$	16.5%
$15-24$	1.1%	$75-84$	24.9%
$25-34$	1.7%	$85+$	31.3%
$35-44$	2.8%		72.7% of deaths are to people $45-54$
	7.3%		

Numeric Example

- Population with 100 people
- 10% die at age 1
- ~ the 1900 infant mortality rate)
- If they survive, they live to age 75
- Life expectancy $=(.1)(1)+(.9)(75)=67.6$
- Suppose infant mortality rates drops to 1% - ~ the 1980 Infant mortality rate
- Life expectancy $=(0.01)(1)+(.99)(75)=74.3$

Vital Statistics, 2016

- 323 million people
- ~3.9 millions births
- ~ 2.7 million deaths

Leading Causes of Death, 2016		
- Heart disease	633,842	
- Cancer	595,930	
- Accidents	146,571	
- Chronic lower resp. disease	155,041	
- Stroke	140,323	
- Alzheimer's	110,561	
- Diabetes	79,535	
- Influenza/Pneumonia	57,062	
- Nephritis	49,959	
- Suicide	44,193	
		19

Actual Causes of Death			
	\# (\% of deaths)	\# (\% of deaths)	
Cause of death	1990	2000	
Tobacco	400,000 (19\%)	435,000 (18\%)	
Diet/inactivity	300,000 (15\%)	400,000 (17\%)	
Alcohol	100,000 (5\%)	85,000 (5\%)	
Micorbial agents	90,000 (4\%)	75,000 (4\%)	
Toxic agents	60,000 (3\%)	66,000 (3\%)	
Motor Vehicles	25,000 (1\%)	43,000 (2\%)	
Firearms	35,000 (2\%)	29,000 (1\%)	
Sexual Behavior	30,000 (1\%)	20,000 ($<1 \%$)	
Illegal drugs	20,000 ($<1 \%$)	17,000 (<1\%)	
Total	1,060,000 (50\%)	1,060,000 (48\%)	21

Gompertz Equation

- 1825 British actuary Benjamin Gompertz
- "the number of living corresponding to ages increasing in arithmetical progression, decreased in geometrical progression."
- geometrical decrease in survival with age existed because of a geometric increase in the "force of mortality"
- $\mathrm{M}_{\mathrm{a}}=c e^{\mathrm{ba}}$
- $\mathrm{M}_{\mathrm{a}}=$ mortality rate at age a
- $\mathrm{a}=$ age
- $\mathrm{c}=$ initial mortality rate
- $\mathrm{b}=$ Gompertz parameter - exponential rate of change in mortality with age
- Note that if $y=e^{b t}$
- Then $\ln (\mathrm{y})=\mathrm{bt}$
- And then $\ln \left(\mathrm{M}_{\mathrm{a}}\right)=\ln (\mathrm{c})+\mathrm{ba}$
- Log mortality rates are linear in age

- $\mathrm{dln}(\mathrm{M}) / \mathrm{da}=\mathrm{b}$
- $\operatorname{dln}(M)=d M / M=$ percentage change in M
- $d \ln (\mathrm{M}) / \mathrm{da}=\%$ change in M for a one year increase in age
- In the model above
$-\ln (\mathrm{c})=-7.75$
- b=0.0816
- Mortality increases by 8.2% per year of age

- $\mathrm{b}=(\mathrm{dM} / \mathrm{M}) / \mathrm{da}$, - $\mathrm{b}(\mathrm{da})=\mathrm{dM} / \mathrm{M}$ - If a=10 years, mortality is predicted to increase 82% over 10 year period (same regardless of the starting age) $-\mathrm{M}=\mathrm{ce}^{\mathrm{ba}}$ $-\mathrm{C}=\exp (-7.75)=0.000495$ - $\mathrm{M}=0.00043 \mathrm{e}^{0.081 a}$ - Given a, one can predict the mortality rate for this group
${ }^{31}$

SES/Health Relationship

- Health (H) improves with Socioeconomic status (I)
- But at a decreasing rate
$-\mathrm{dH} / \mathrm{dI}>0$
$-\mathrm{d}^{2} \mathrm{H} / \mathrm{dI}^{2}<0$
- Relationship is true for
- Nearly all measures of health
- Nearly all measures of SES (income, wealth, education, status)
- For all subgroups (by sex, race, age, etc)
- For nearly all populations
- For nearly all time period
- For nearly all countries
- Focus on one measure of SES -- Income

Chetty et al., JAMA 2014

- Match taxpayers (income) aged 40-76 from 1999-2014 to SS death records (mortality)
- 1.4 billion person records
- Income - pre-tax household earnings
- If file taxes, get from 1040
- If don't file taxes, get from W2/1099-G (Unemp. comp.)
- If neither - assume income is zero

Matching income to mortality

- Most people start to collect SS at age 63
- Earnings after this age not a good reflection of their SES status
- If under 63 , earnings are the 2 years prior
- If 63 or over, earnings are at age 61
- Data starts at age 40, years 1999-2014
- Can follow a 61 year old for an additional 15 years - follow until people are 76

Life expectancy

- Mortality is hard to think about as an outcome
- Expected life expectancy
- If die before age 76 - have actual outcome
- Use Gompertz curves to estimate expected mortality after age 76
- Translate expected mortality into expected lifespan

\% Died in 6 Years, NLMS 6c

\% Died in 6 Years, NLMS Gc			
Income	Age groups		
	30-49	50-64	65-79
< High school	1.78	6.77	19.37
HS graduate	1.46	4.96	15.48
Some college	1.18	3.95	14.65
College	0.66	2.46	12.47

Percent Died within 5 years of Survey, Females NLMS			
Education Group	$35-54$ years of age	55-64 years of age	65-74 years of age
Less than high school	2.0	6.0	11.7
High school graduate	1.3	4.3	9.7
College graduate	0.9	4.0	8.0
45			

18-64 year olds, BRFSS 2005-2009 (\% answering yes)					
Educ Level	Fair or poor health	No exer. in past 30 days	Current smoker	Obese	Any bad mental hlth past 30 days
<12 Years	40.9	45.8	37.8	43.6	43.7
12-15 years	17.8	27.3	26.5	34.7	38.4
16+ Years	7.2	13.5	10.8	24.8	34.2
					46

Questions for class

- What are the possible mechanisms through which income (or education) can improve health?
- What data supports or refutes each of these hypotheses?
- List possible explanations
- Give some evidence for and against
- Decide whether the pathway is a causal mechanism

What do we mean by causal pathway?

- If causal, we assume that health is determined by income
- For example, $\mathrm{H}=\mathrm{f}$ (Income)
- Therefore, $\mathrm{dH} / \mathrm{dI}>0$
- An exogenous change in income will alter health
- Example: Suppose we change social security benefits if income is causal, this should alter mortality of the elderly

Why is it hard to determine whether the income/health relationship is causal

- Many factors that determine high income
- Drive/ambition/intelligence/risk taking/luck/background
- Many of these same factors can also impact health
- Therefore, we do not know whether income is causing better health, or some third factor that is unmeasured

Died $_{i}=\alpha+x_{i} \delta+$ income $_{i} \beta+\varepsilon_{i}$

Died $_{i}=1$ if died within 5 years, $=0$ otherwise $x_{i}=$ controls
income $_{i}=$ annual family income
$\hat{\beta}$ unbiased is $\left[\varepsilon_{i} \mid x_{i}\right.$, income $\left._{i}\right]=0$

Problem:

- Realization of ε_{i} conveys information about income
- If $\varepsilon_{\mathrm{i}}>0$, more likely to die early
- Could mean you had lower income because you were sick and could not work as much (reverse causality)
- Could mean you have a hiogh discount rate - don't invest in human capital for the job market (which means lower income) and it means you maybe did not invest in health (which means higher ε_{i})

Clark and Royer

- Examines education/health link using shock to education in England
- 1944 law
- Raised age of comp. schooling from 14-15
- Went into effect April 1, 1947
- Raised comp years of schooling to 9
- Gave Minister of Ed power to increase to 16 under certain conditions
- Did so in Sept 1, 1972
- Raised comp. years of schooling to 10
- Produce large changes in education across birth cohorts
- Changes in education and health are "smooth" over birth cohorts
- If education alters health, should see a structural change in outcomes across cohorts as well
- What assumptions have to be true for this to generate an unbiased estimate of the impact of schooling on health?

Sullivan and von Wachter

- Consider the opposite of Gardner and Oswald - what happens when someone loses income
- Lost income due to job loss
- Focus on displacement?
- What is displacement?
- Why displacement and not job loss?

Data

- 5\% random sample of unemployment records in PA 1974-1991
- Have quarterly earnings
- Select sample of workers with the same employer 19741979 (firms > 50 workers)
- Identify people who have been "displaced"
- Lose job 1980-1986
- And when firm size falls by 30% or more

Impact of displacement on earnings
$y_{i t}=\alpha_{i}+\lambda_{t}+x_{i t} \beta+\sum_{k=-20}^{36} D_{i t}^{k} \delta_{k}+\varepsilon_{i t}$
$i=$ person, $\quad t=$ quarter
$y_{i t}=\ln ($ quarterly earnings $)$
$\alpha_{i}=$ person effect
$\lambda_{t}=$ quarter (time) effect
$x_{i t}=$ time - var ying characteristics
$D_{i t}^{k}=1$ if person i was displaced k quarters ago(after)
$\delta_{k}=$ effect of displacement

Estimate of the Decline in Annual Earnings due to Job Displacement (Sample Men in Stable Employment 1974-1979, Firm 1979 Employment ≥ 50 Born 1930-1959, Work in PA Labor Force Every Year 1980-1986)
,
Solid line represents coefficient estimates of the interaction of year effects and
displacement dummies in a regression model of log quarterly earnings including
displacement dummies in a regression model of log quarterly earnings including
vear fixed effects, person fixed effects, and a quartic for age. Two standard error year fixed effects, person fixed effects, and a quartic for age. Two standard error
bands are drawn around main effects.

Impact of displacement on mortality
$y_{i t}=\alpha_{i}+\lambda_{t}+x_{i t} \beta+D_{i t} \delta+\varepsilon_{i t}$
$i=$ person, $t=y$ year
Sample: people alive 1/1/1980
$y_{i t}=1$ if person dies in period $t,=0$ otherwise
$D_{i t}=1$ if person i was displaced in the year
$\delta_{k}=$ effect of displacement

Work restriction in Pennsylvania labor market during 1980-1986	$\underset{\text { (continued) }}{\text { TABLE I }}$			Work every year		
	No work restriction					
	$\underset{\substack{\text { workers } \\ \text { (1) }}}{\text { All }}$	Displaced workers (2)	Nondisplaced workers (3)	$\begin{gathered} \text { workers } \\ \text { (4) } \end{gathered}$	Displaced workers (5)	Nondisplaced workers (6)
Log(average quarterly earnings in 1987-1991)	$\begin{gathered} 8.606 \\ (1.069) \\ \hline \end{gathered}$	$\begin{aligned} & 8.184 \\ & (1.310) \\ & (\end{aligned}$	$\begin{gathered} 8.791 \\ (0.883) \end{gathered}$	$\begin{gathered} 8.728 \\ (0.891) \end{gathered}$	$\begin{gathered} 8.421 \\ (1.064) \\ (1) \end{gathered}$	$\begin{gathered} 8.838 \\ (0.792) \end{gathered}$
Log(std. dev. of log quarterly earnings in 1987-1991)	$\begin{gathered} -1.144 \\ (0.764) \end{gathered}$	$\begin{gathered} -1.119 \\ (0.793) \end{gathered}$	$\begin{gathered} -1.440 \\ (0.730) \end{gathered}$	$\begin{gathered} -1.393 \\ (0.736) \end{gathered}$	$\begin{gathered} -1.197 \\ (0.757) \\ \hline \end{gathered}$	$\begin{gathered} -1.142 \\ (0.716) \end{gathered}$
Number of quarters in nonemployment in 1987-1991	$\begin{aligned} & 4.31 \\ & (7.070) \end{aligned}$	${ }^{2} .66$ (8.207)	3.11 (6.079)	$\begin{aligned} & 2.20 \\ & (4.736) \end{aligned}$	$\begin{aligned} & 3.32 \\ & (5.900) \end{aligned}$	$\begin{aligned} & 1.79 \\ & (4.145) \end{aligned}$
Deaths per 1,000 per year 1987-2006	$\begin{aligned} & 6.764 \\ & (0.143) \end{aligned}$	$\begin{aligned} & 7.639 \\ & (0.263) \end{aligned}$	$\begin{aligned} & 6.325 \\ & (0.170) \end{aligned}$	$\begin{gathered} (4.156) \\ 6.343 \\ (0.152) \end{gathered}$	$\begin{gathered} 6.913 \\ (0.306) \end{gathered}$	$\begin{gathered} 6.132 \\ (0.175) \end{gathered}$
Deaths per 1,000 per year 1987-1993	$\begin{aligned} & 4.167 \\ & (0.181) \end{aligned}$	$\begin{gathered} 5.151 \\ (0.347) \\ \hline \end{gathered}$	$\begin{aligned} & 3.670 \\ & (0.208) \end{aligned}$	$\begin{aligned} & 3.745 \\ & (0.189) \end{aligned}$	$\begin{gathered} 4.400 \\ (0.393) \end{gathered}$	$\begin{gathered} 3.502 \\ (0.214) \end{gathered}$
Deaths per 1,000 per year 1994-1999	$\begin{gathered} 7.407 \\ (0.227) \\ \hline \end{gathered}$	$\begin{gathered} 8.114 \\ (0.411) \end{gathered}$	$\left(\begin{array}{c} 0.2007 \\ 7.053 \\ 0.272 \end{array}\right)$	$\begin{gathered} 6.994 \\ (0.242) \end{gathered}$	$\begin{gathered} 7.451 \\ (0.481) \end{gathered}$	$\begin{gathered} 6.826 \\ 0.280) \end{gathered}$
Deaths per 1,000 per year 2000-2006	$\begin{aligned} & 1.815 \\ & (0.427) \end{aligned}$	$\begin{aligned} & 11.909 \\ & (0.777) \end{aligned}$	$\begin{aligned} & 10.270 \\ & (0.510) \end{aligned}$	$\begin{aligned} & \begin{array}{l} 10.347 \\ (0.458) \end{array} \end{aligned}$	$\begin{aligned} & 11.033 \\ & (0.911) \end{aligned}$	$\begin{aligned} & 10.094 \\ & (0.529) \end{aligned}$

TABLE II Effect of Job Displacement on Log-Odns of Death for Various Samples, Follow-Up Periods, and Specifications (Workers in Stable Employment 1974-1979, Firm 1979 Employment ≥ 50, Born 1930-1959)						
	th follow-up period	No work restriction 1980-2006	$\begin{gathered} \begin{array}{c} \text { No work } \\ \text { restriction } \\ \text { (2) } \end{array} \\ 1987-2006 \end{gathered}$	Work at least three years 1987-2006	$\begin{gathered} \text { Work every } \\ \text { year } \\ \text { (4) } \\ 1987-2006 \end{gathered}$	Work every year, exclude non-MLF separators JLS sample) (5) 1987-2006
(1)	Baseline model with average and std. dev. of earnings in 1974-1979	$\begin{gathered} 0.170 \\ 0.136 \end{gathered}$	$\begin{gathered} 0.147 \\ (0.137) \end{gathered}$	$\begin{gathered} 0.148 \\ (0.038) \end{gathered}$	0.088 (0.044)	$\begin{gathered} 0.104 \\ (0.046) \end{gathered}$
(2)	Model in row (1) with one-digit industry fixed effects	$\begin{gathered} 0.170 \\ 0 \end{gathered}$	0.137	$\begin{gathered} 0.0139 \\ (0.039) \\ (0) \end{gathered}$	0.077 (0.045)	0.098 (0.047)
(3)	Model in row (1) with one-digit industry effects and	0.163	0.129	0.128	0.069	0.088
	added career variables	(0.038)	(0.039)	(0.040)	(0.047)	(0.048)
	Model in row (1) with industry effects and career variables*age interactions	$\begin{aligned} & 0.169 \\ & -0.058 \\ & \hline \end{aligned}$	$\begin{gathered} 0.136 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.138 \\ (0.039) \end{gathered}$	$\begin{aligned} & 0.077 \\ & (0.045) \end{aligned}$	$\begin{gathered} 0.098 \\ (0.047) \end{gathered}$
	Linear probability model (specification row (2))	0.0012	0.0011	0.0.012 (000031) (0)	0.0006	0.0008
(6)	Linear probability model (specification row (1)) with firm effects	$\underbrace{(0.00026)}_{(0.00038)}$	(0.00032) 0.0008 (0.00050)	(0.00031 (0.00048)	0.0006 (0.00054)	0.0009 (0.00051)
$0.0012 / 0.007=0.17=17 \%$ increase in mortality risk						
						70

Stress as an explanation for the SES/Health Gradient

- Usual suspects don't explain gradient
- Leading candidate is Stress
- Low SES face more persistent stress
- Body reacts to stress in a good way in the short run
- Persistent stress can cause more permanent damage

HPA Axis

- Hypothalamic-pituitary-adrenal axis
- Put into work when the body faces stress
- Regulates many body functions including digestion, immune, mood, emotions, energy storage
- Concern: activation of system is "good" under stress, but it does come at a cost. Therefore, persistent stress generates more permanent damage to the body's systems

Cortisol

- Circadian rhythm. Rises when awake, in late afternoon
- Regulates many activites
- Under stress, more cortisol is produced
- Increases availability of glucose
- Suppresses energy available to other systems like immune
- Cortisol reduces after the stress subsides
- Problems
- constant stress leads to dysregulation of HPA
- Stress in early life can generate dysfunction of HPA

Cortisol

- Stress increases cortisol
- Higher among residents
- Higher among accountants near April 15 ${ }^{\text {th }}$
- Poor have elevated cortisol at all times
- They are more exposed to stress
- Elevated cortisol thought to
_ "burn out" major organs - they just work harder
- Increases susceptibility of immune system

Primate research

- Observational studies show worse health among subordinate male baboons
-Elevated stress hormone (glucocorticoid) levels, worse cholesterol profile
- Experimental manipulation of status provides more compelling evidence
- Causal effects of subordination and harmful effects of "status competition"

Baseball Hall of Fame

- Baseball Writers Association of America
- Annual voting held since 1936
- Eligibility: >10 seasons in MLB, retired 5+ years, max of 15 ballot appearances
- Voting: ~ 450 voters, mail-in ballot, can name up to 10 players
- Induction: Must be named on 75% of total ballots cast
- Compete voting results are reported to public (newspapers)
- Committee on Baseball Veterans (Veterans)
- Select former MLB players not chosen by BBWAA
- Historically voting was held annually
- Much smaller committee (~ 15), but similar 75% required for induction
- Voting results not publicly disclosed and accusations of cronyism
- Major reforms in 2001 (expanded voting pool, public disclosure)

Sample

- All players alive while appearing on at least one ballot between 1945-2006
- Restrict analysis to pre-1946 births to reduce censoring ($\mathrm{N}=597$)
- Key derived variables:
- Indicators of induction status (BBWAA and veterans)
- Maximum vote share ever received (categorical: $<1,1-2, \ldots$, 51-74, 75-78...)
- Number of "close losses" (defined as vote share ≥ 50 but <75)

Adjusted life duration by maximum vote

Cause of death by maximum vote share

