Modern correlates of health

ECON 40565 Health Economics Fall 2020

Introduction

- Most of this class we will examine markets for medical care
 - How they operate
 - What are economic issues
- Medical care is however only interesting in that it is an intermediate product used to produce what people care about health
- This section discuss what inputs can be transformed into health outputs

2

Three main issues

- How is health measured?
- Some predictors of outcomes?
- Extended discussion about the role of socioeconomic status and health

Aggregate measures of health

- · Mortality rates
 - death per period among a define population
- Infant mortality rate
 - deaths 1st year of life/births
 - Neonatal mortality: deaths 1st 28 days
- Life expectancy
 - At birth

3

- Conditional on a particular age

Self-reported health status

5

- Benefits
 - Easy/low cost variable to collect
 - Predicts other measures of health that are difficult to collect
- Shortcomings
 - No way to compare people
 - No way to compare aggregate data across countries
 - May be difficult to compare groups over time
 - Rise in disability
 - "Harvesting"

% Reporting Health Status, Males

Health	Age 30-44	Age 45-64	Age 65-74
Excellent	43.7%	30.6%	18.1%
Very good	30.3%	26.9%	22.5%
Good	19.8%	26.1%	31.6%
Fair	4.7%	10.6%	18.5%
Poor	1.5%	5.8%	9.3%

Health	Age 30-44	Age 45-64	Age 65-74
Excellent	0.7%	2.4%	8.6%
Very good	0.9%	2.9%	10.9%
Good	1.6%	5.2%	16.7%
Fair	2.9%	11.7%	25.2%
Poor	10.4%	22.8%	42.9%

Health	Age 30-44	Age 45-64	Age 65-74
Excellent	0.3%	1.7%	5.6%
Very good	0.4%	1.9%	6.3%
Good	0.9%	2.9%	8.8%
Fair	1.8%	6.2%	14.1%
Poor	7.1%	15.6%	32.2%

Biomarkers

- Mortality limited for some populations
- SRHS difficult to compare across people
- Objective way to measure health status across people?
- Biomarkers
 - Clinical markers of physiology
 - Predictive of future health outcomes
 - Measurable across people
 - Easily collect

Examples

- Blood pressure
 - High BP can lead to stroke, AMI, heart failure, kidney failure

10

Cholesterol

q

11

- HDL, LDL and total
- High chol. can lead to heart attack
- Resting heart rate
- Glycated hemoglobin
 Predictor of diabetes,
- Body mass index (kg's/cm²)
 - Increased risk of diabetes
 - High BMI correlated w/ increased mortality

Mortality rates in the 20th century

- Tremendous changes in aggregate statistics
- Two halves
 - Decline in infant deaths (1/2 half) and infections
 - Conquering cardiac disease

Figure 3 Mortality From Infectious Disease and Cardiovascular Disease, United States, 1900-2000 300 900 Infectious diseas (000 800 000 250 8 700 Ser per 600 200 500 dea 150 400 Cardie 300 100 200 nfect 50100 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Source: Data are from the Centers for Disease Control and Prevention, National Center for Health Statistics, and are age adjusted.

What causes big changes in life expectancy?

- Most deaths are to the elderly
- But, when an infant dies, you add a small number to the numerator in a life expectancy calculation
- Big changes will be generated by
 - Changes in the infant mortality rate
 - Changes in mortality for the elderly which are a large fraction of deaths

14

Distribution of Deaths by Age

• Age of	Fraction deaths	• Age	Fraction deaths
<1	1.0%	55-64	12.9%
1-14	0.3%	65-74	16.5%
15-24	1.1%	75-84	24.9%
25-34	1.7%	85+	31.3%
35-44	2.8%		
45-54	7.3%	72.7% of de aged 65+	aths are to people
			15

Numeric Example

- Population with 100 people
- 10% die at age 1
 - \sim the 1900 infant mortality rate)
- If they survive, they live to age 75
- Life expectancy = (.1)(1) + (.9)(75) = 67.6
- Suppose infant mortality rates drops to 1%

 ~ the 1980 Infant mortality rate
- Life expectancy = (0.01)(1) + (.99)(75) = 74.3

Describing determinants of mortality in a cross section

Vital Statistics, 2016

- 323 million people
- ~3.9 millions births
- ~2.7 million deaths

17

18

Leading Causes of Death, 2016

Heart disease	633,842
• Cancer	595,930
Accidents	146,571
Chronic lower resp. disease	155,041
• Stroke	140,323
Alzheimer's	110,561
• Diabetes	79,535
Influenza/Pneumonia	57,062
Nephritis	49,959
Suicide	44,193
	19

	# (% of deaths)	# (% of deaths)
Cause of death	1990	2000
Tobacco	400,000 (19%)	435,000 (18%)
Diet/inactivity	300,000 (15%)	400,000 (17%)
Alcohol	100,000 (5%)	85,000 (5%)
Micorbial agents	90,000 (4%)	75,000 (4%)
Toxic agents	60,000 (3%)	66,000 (3%)
Motor Vehicles	25,000 (1%)	43,000 (2%)
Firearms	35,000 (2%)	29,000 (1%)
Sexual Behavior	30,000 (1%)	20,000 (<1%)
Illegal drugs	20,000 (<1%)	17,000 (<1%)
Total	1,060,000 (50%)	1,060,000 (48%) 21

Gompertz Equation

- 1825 British actuary Benjamin Gompertz
- "the number of living corresponding to ages increasing in arithmetical progression, decreased in geometrical progression."
- geometrical decrease in survival with age existed because of a geometric increase in the "force of mortality"

- M_a = ce^{ba}
- M_a = mortality rate at age a
- a = age
- c = initial mortality rate
- b = Gompertz parameter exponential rate of change in mortality with age
- Note that if y=e^{bt}
- Then $\ln(y) = bt$
- And then $\ln(M_a) = \ln(c) + ba$
- Log mortality rates are linear in age

24

Source	55	df	MS	Number of (F(1, 44)				
Mode1	49,613138	1	49.613138	P(1, 44) Prob > F				
Residual				R-squared				
				Adj R-squa				
Total	50.3330731	45	1.11851274	Root MSE	-	.12791		
ln_diedin3	Coef.	Std. Err.	t E	> t [95	& Conf.	Interval]		
age				.000 .07				
_ ^{cons}	-8.273677	.07693	-107.55 0	.000 -8.4	28719	-8.118634		
	. reg ln_diedi	n6 age						
	Source	SS	d	f MS	Nun	ber of obs	=	4
					- F(1	, 44)	=	7572.8
		54.034347	6	1 54.034347	6 Pro	b > F	=	0.000
-	Model	54.034347	•					0 994
_	Model Residual			4 .00713525	5 R-s	guared	=	0.001
-	Residual	.31395122	5 4	4 .00713525	- Adj	R-squared	-	0.994
-		.31395122	5 4		- Adj	R-squared	-	0.994
-	Residual	.31395122	5 4 8 4	4 .00713525	- Adj 7 Roc	R-squared at MSE	-	0.994
-	Residual Total	.31395122 54.348298 Coef.	5 4 8 4 Std. Er	4 .00713525 5 1.2077399	- Adj 7 Roc P> t	R-squared ot MSE [95% Co	= = onf.	0.994 .0844 Interval

- b(da) = dM/M
 - If a=10 years, mortality is predicted to increase 82% over 10 year period (same regardless of the starting age)
 M = ce^{ba}
 - C = exp(-7.75) = 0.000495
- $M = 0.00043e^{0.081a}$
- Given a, one can predict the mortality rate for this group

31

SES/Health Relationship

- Health (H) improves with Socioeconomic status (I)
- But at a decreasing rate
 - $dH/dI \ge 0$
 - $\ d^2H/dI^2 \le 0$
- Relationship is true for
 - Nearly all measures of health
 - Nearly all measures of SES (income, wealth, education, status)
 - For all subgroups (by sex, race, age, etc)
 - For nearly all populations
 - For nearly all time period
 - For nearly all countries
- Focus on one measure of SES -- Income

Chetty et al., JAMA 2014

- Match taxpayers (income) aged 40-76 from 1999-2014 to SS death records (mortality)
- 1.4 billion person records
- Income pre-tax household earnings
 - If file taxes, get from 1040
 - If don't file taxes, get from W2/1099-G (Unemp. comp.)
 - If neither assume income is zero

Matching income to mortality

- Most people start to collect SS at age 63
- Earnings after this age not a good reflection of their SES status
- If under 63, earnings are the 2 years prior
- If 63 or over, earnings are at age 61
 - Data starts at age 40, years 1999-2014
 - Can follow a 61 year old for an additional 15 years follow until people are 76

- · Mortality is hard to think about as an outcome
- Expected life expectancy
- If die before age 76 have actual outcome
- Use Gompertz curves to estimate expected mortality after age 76
- Translate expected mortality into expected lifespan

0						50-6	64			
0	6								65-79	
HS graduate 1.46 4.96 15.48						6.7	77		19.37	
	4					4.9	96		15.48	
Some college 1.18 3.95 14.65	3					3.9	95		14.65	
College 0.66 2.46 12.47	2					2.4				

	Females	s NLMS	
Education Group	35-54 years of age	55-64 years of age	65-74 years of age
Less than high school	2.0	6.0	11.7
High school graduate	1.3	4.3	9.7
College graduate	0.9	4.0	8.0

		(% ansv	vering yes)		
Educ Level	Fair or poor health	No exer. in past 30 days	Current smoker	Obese	Any bad mental hlth past 30 days
<12 Years	40.9	45.8	37.8	43.6	43.7
12-15 years	17.8	27.3	26.5	34.7	38.4
	7.2	13.5	10.8	24.8	34.2

- Decide whether the pathway is a causal mechanism

49

51

What do we mean by causal pathway?

- If causal, we assume that health is determined by income
 - For example, H=f(Income)
- Therefore, dH/dI>0

 An exogenous change in income will alter health
- Example: Suppose we change social security benefits if income is causal, this should alter mortality of the elderly

Why is it hard to determine whether the income/health relationship is causal

- Many factors that determine high income

 Drive/ambition/intelligence/risk taking/luck/background
- Many of these same factors can also impact health
- Therefore, we do not know whether income is causing better health, or some third factor that is unmeasured

 $Died_i = \alpha + x_i \delta + income_i \beta + \varepsilon_i$

 $Died_i = 1$ if died within 5 years, = 0 otherwise $x_i = controls$ income_i = annual family income

 $\hat{\beta}$ unbiased is $E[\varepsilon_i | x_i, income_i] = 0$

52

Problem:

- Realization of $\boldsymbol{\epsilon}_i$ conveys information about income
- If $\varepsilon_i > 0$, more likely to die early
- Could mean you had lower income because you were sick and could not work as much (reverse causality)
- Could mean you have a hiogh discount rate don't invest in human capital for the job market (which means lower income) and it means you maybe did not invest in health (which means higher e_i)

53

- Story we are telling is that $cov(\epsilon_i,income_i) \leq 0$
- We believe $\beta < 0$
- This means we are "overstating" the impact of income on mortality –

	Health Onset	Table 3 Economic Effects of New Health Onset							
	Wealth	OOP Expenses	Total Medical Expenses						
HRS			. ,						
Mild onset	-3,620	635	2,555						
Severe onset	-16,846	2,266	28,963						
AHEAD									
Any onset	-10,481	1,026	NA.						
HRS severe onset only									
With health insurance	-17,417	1,912	26,957						
Without health insurance	-17,282	4,576	42,166						
HRS severe onset only									
Below median income	-11,348	2,439	29,829						
Above median income	-25,371	2,014	28,085						
AHEAD any onset									
Below median income	-4,427	915	NA						
Above median income	-17,040	1,101	NA						

Clark and Royer

- Examines education/health link using shock to education in England
- 1944 law
 - Raised age of comp. schooling from 14-15
 - Went into effect April 1, 1947
 - Raised comp years of schooling to 9
 - Gave Minister of Ed power to increase to 16 under certain conditions
 - Did so in Sept 1, 1972
 - Raised comp. years of schooling to 10

57

- Produce large changes in education across birth cohorts
- Changes in education and health are "smooth" over birth cohorts
- If education alters health, should see a structural change in outcomes across cohorts as well
- What assumptions have to be true for this to generate an unbiased estimate of the impact of schooling on health?

Sullivan and von Wachter

- Consider the opposite of Gardner and Oswald what happens when someone loses income
- Lost income due to job loss
- Focus on displacement?
 - What is displacement?
 - Why displacement and not job loss?

$$y_{it} = \alpha_i + \lambda_t + x_{it}\beta + D_{it}\delta + \varepsilon_{it}$$

i = person, *t* = year Sample : people alive 1/1/1980 $y_{it} = 1$ if person dies in period *t*, = 0 otherwise $D_{it} = 1$ if person *i* was displaced in the year $\delta_k = effect$ of displacement

1	No work resta	iction		Work every y	ear
All workers (1)	Displaced workers (2)	Nondisplaced workers (3)	All workers (4)	Displaced workers (5)	Nondisplaced workers (6)
8.606	8.184	8.791	8.728	8.421	8.838
(1.069)	(1.310)	(0.883)	(0.891)	(1.064)	(0.792)
-1.344	-1.119	-1.440	-1.393	-1.197	-1.462
(0.764)	(0.793)	(0.730)	(0.736)	(0.757)	(0.716)
4.31	6.66	3.11	2.20	3.32	1.79
(7.070)	(8.207)	(6.079)	(4.736)	(5.900)	(4.145)
6.764	7.639	6.325	6.343	6.913	6.132
(0.143)	(0.263)	(0.170)	(0.152)	(0.306)	(0.175)
4.167	5.151	3.670	3.745	4.400	3.502
(0.181)	(0.347)	(0.208)	(0.189)	(0.393)	(0.214)
7.407	8.114	7.053	6.994	7.451	6.826
(0.227)	(0.411)	(0.272)	(0.242)	(0.481)	(0.280)
10.815	11.909	10.270	10.347	11.033	10.094
(0.427)	(0.777)	(0.510)	(0.458)	(0.911)	(0.529)
	All workers (1) 8.606 (1.069) -1.344 (0.764) 4.31 (7.070) 6.764 (0.143) 4.167 (0.143) 7.407 (0.227) 10.815	All workers Displaced workers (1) (2) 8.606 8.184 (1.069) (1.310) -1.344 -1.119 (0.764) (0.783) (0.433) 0.666 (7.070) (8.207) (0.143) (0.263) (1.67) 5.151 (0.143) (0.234) (0.227) (0.411) (0.815) 1.909	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

llow-up period	(1) 1980–2006	(2) 1987–2006	(3) 1987–2006	year (4) 1987–2006	(JLS sample) (5) 1987–2006
eline model with average and std. dev. of	0.170	0.147	0.148	0.088	0.104
					(0.046)
del in row (1) with one-digit industry fixed effects					0.098
del in man (1) mith and divit in diviting offerstance					(0.047) 0.088
					(0.088
					0.098
					(0.047)
					0.0008
 Linear probability model (specification row (2)) 		(0.00032)			(0.00034)
ear probability model (specification row (1))	0.0012	0.0008	0.0010	0.0006	0.0009
h firm effects	(0.00038)	(0.00050)		(0.00054)	(0.00051)
	nings in 1974–1979 Jol in row (11) with one-digit industry fixed effects Jol in row (11) with one-digit industry effects and ed career variables Jol in row (1) with industry effects and career ables ² age interactions are probability model (specification row (2)) ear probability model (specification row (1))	inings in 1974–1979 (0.038) lel in row (1) with one-digit industry fixed effects and (0.037) (0.037) lel in row (1) with one-digit industry effects and (0.038) 0.163 de career variables (0.038) lel in row (1) with industry effects and career arrobability model (specification row (20)) (0.032) over a probability model (specification row (1)) (0.012) (0.0021) (0.0012) (0.0021) (0.0012) (0.0021) (0.0012) (0.0011) (0.0011)	inings in 1974–1979 (0.036) (0.037) lel in row (1) with one-digit industry fixed effects 0.170 0.137 lel in row (1) with one-digit industry effects and 0.063 (0.037) lel in row (1) with one-digit industry effects and 0.163 0.129 ed career variables (0.038) (0.038) (0.038) lel in row (1) with industry effects and career (0.038) (0.038) (0.038) apple interactions (0.038) (0.039) (0.031) (0.0011) approbability model (specification row (1)) (0.0011) (0.00026) (0.0011) (0.0008)	inings in 1974-1979 (0.037) (0.038) id in row (1) with one-digit industry fixed offects 0.1070 0.138 id in row (1) with one-digit industry effects and 0.063 0.039) id in row (1) with one-digit industry effects and 0.038 0.039) id a row (1) with one-digit industry effects and career 0.038 0.039) 0.0440) id in row (1) with industry effects and career 0.038 0.039) 0.0440) id in row (1) with industry effects and career 0.038 0.039) 0.0440) ables* age interactions 0.0371 0.0038 0.039) ar probability model (specification row (1)) 0.00023 0.000031 0.00031 0.00031 0.00031 0.00031 0.00131	inings in 1974–1979 (0.036) (0.037) (0.038) (0.044) in row (1) with one-digit industry fixed effects 0.037) (0.038) (0.044) id in row (1) with one-digit industry effects and 0.037) (0.038) (0.049) (0.045) ed career variables (0.038) (0.039) (0.044) (0.044) (0.044) blab's age interactions (0.038) (0.039) (0.040) (0.047) (0.038) (0.039) (0.044) and probability model (specification row (21)) (0.012) (0.011) (0.0032) (0.0031) (0.00031) er probability model (specification row (1)) 0.0012 (0.0012) (0.0012) (0.0033) (0.00301) (0.00031)

Restriction on job tenure	Tenure in	1979 at least	t six years	Tenure in 1979 at least three years		
Birth cohort	1930–1959 (1)	1920–1959 (2)	1920-1959 (3)	1930–1959 (4)	1920–1959 (5)	1920-1959 (6)
Displacement effect 16+ years after displacement	0.131 (0.054)	0.108 (0.034)	0.133 (0.055)	0.161 (0.05)	0.123 (0.032)	0.152 (0.05)
Added effect for 1 year after displacement year	0.716	0.619	0.582	0.782	0.606	0.585
Added effect for 2–3 years after displacement year	(0.199) 0.559	(0.105) 0.307	(0.113) 0.279	(0.176) 0.525	(0.099) 0.318	(0.106) 0.303
Added effect for 2-5 years after displacement year	(0.147)	(0.084)	(0.091)	(0.136)	(0.078)	(0.084)
Added effect for 4-5 years after displacement year	0.198	0.040	0.020	0.204	0.033	0.024
Added energing 4-0 years after displacement year	(0.147)	(0.082)	(0.086)	(0.135)	(0.077)	(0.081)
Added effect for 6-10 years after displacement year	0.057	0.045	0.036	0.027	0.053	0.051
	(0.094)	(0.054)	(0.057)	(0.087)	(0.051)	(0.053)
Added effect for 11–15 years after displacement year	-0.066	-0.045	-0.046	-0.053	-0.044	-0.042
	(0.081)	(0.047)	(0.048)	(0.073)	(0.044)	(0.045)
Displacement and current age less than or equal to 45		2210000	0.383			0.220
			(0.131)			(0.116)
Displacement and current age between 46 and 55			0.136			0.117
			(0.075)			(0.066)

0.163		1987 - 2006	(4) 1987–2006	(5) 1987–2006
	0.129	0.128	0.069	0.069
(0.038) -0.504 (0.055)	(0.040) -0.516 (0.057)	(0.040) -0.499 (0.059)	(0.047) -0.472	(0.047) -0.472 (0.066)
0.172 (0.027)	0.163 (0.028)	0.170 (0.028)	0.174 (0.032)	0.174 (0.032)
-0.090 (0.025)	-0.090 (0.026)	-0.087 (0.026)	-0.095 (0.031)	-0.095 (0.031)
-0.002 (0.052)	0.008 (0.054)	0.016 (0.055)	0.015 (0.062)	0.015 (0.062)
Yes 505,316	Yes 367,890	Yes 358,660	Yes 308,345	Yes 308,345
ble II. Please refe	er to notes to Table l	II for further explanatio	ns. Standard errors	are in parentheses.
	(0.027) -0.090 (0.025) -0.002 (0.052) Yes 505,316	$\begin{array}{ccccc} 0.172 & 0.163 \\ (0.027) & (0.028) \\ -0.090 & -0.090 \\ (0.025) & (0.026) \\ -0.002 & 0.008 \\ (0.052) & (0.054) \\ Yes & Yes \\ 505,316 & 367,890 \\ \end{array}$	$\begin{array}{cccccc} 0.172 & 0.163 & 0.170 \\ (0.027) & (0.028) & (0.028) \\ -0.080 & -0.080 & -0.087 \\ (0.025) & (0.026) & (0.026) \\ -0.002 & 0.006 & 0.016 \\ (0.052) & (0.054) & (0.055) \\ 7es & Yes & Yes \\ 505,316 & 367,890 & 358,660 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Stress as an explanation for the SES/Health Gradient

- Usual suspects don't explain gradient
- · Leading candidate is Stress
- Low SES face more persistent stress
- Body reacts to stress in a good way in the short run
- Persistent stress can cause more permanent damage

74

HPA Axis

- Hypothalamic-pituitary-adrenal axis
- Put into work when the body faces stress
- Regulates many body functions including digestion, immune, mood, emotions, energy storage
- Concern: activation of system is "good" under stress, but it does come at a cost. Therefore, persistent stress generates more permanent damage to the body's systems

75

Cortisol

- · Circadian rhythm. Rises when awake, in late afternoon
- · Regulates many activites
- · Under stress, more cortisol is produced
 - Increases availability of glucose
 - Suppresses energy available to other systems like immune
 - Cortisol reduces after the stress subsides
- Problems
 - constant stress leads to dysregulation of HPA
 - Stress in early life can generate dysfunction of HPA

Cortisol

- · Stress increases cortisol
 - Higher among residents
 - Higher among accountants near April 15th
- Poor have elevated cortisol at all times
 They are more exposed to stress
- Elevated cortisol thought to
 - "burn out" major organs they just work harder

77

- Increases susceptibility of immune system

Primate research

- Observational studies show worse health among subordinate male baboons
 - Elevated stress hormone (glucocorticoid) levels, worse cholesterol profile
- Experimental manipulation of status provides more compelling evidence
 - Causal effects of subordination and harmful effects of "status competition"

share

----- Tobit MLE ----- Buckley-James

