Asymmetric Information and Adverse selection

Health Economics Bill Evans

Introduction

- Intermediate micro build models of individual, firm and market behavior
- Most models assume actors fully informed about the market specifics
 - Know prices, incomes, market demand, etc.
- However, many markets do not have this degree of information
- · Look at the role of 'imperfect information'

2

- This is more than just 'uncertainty' we've already dealt with that issue
- Problem of asymmetric information
 - Parties on the opposite side of a transaction have different amounts of information
 - Ex:
 - Car buyers/house sellers
 - Prospective employees/employers
- Health care ripe w/ problems of asymmetric information
 - Patients know their risks, insurance companies may not
 - Doctors understand the proper treatments, patients may not

Problem of individual insurance

- Consider market for health insurance
- Who has greatest demand?
 - Not low income
 - Risk averse
 - People who anticipate greater spending
- Problem
 - Firms do not know risk people do
 - Asymmetric information (AI)
- AI can lead to poor performance in market

This section

- Outline problem of asymmetric information and adverse selection
- Focus on
 - How selection can impact market outcomes
 - 'How much' adverse selection is in the market
 - Give some examples
 - How home systems might get around AI/AS

5

7

- Focus in this chapter will be on the consumer side of AI how their information alters insurance markets
- Other examples from the supply side we will do later

Market for Lemons

- Nice simple mathematical example of how asymmetric information (AI) can force markets to unravel
- George Akeloff, 2001 Nobel Prize
- Good starting point for this analysis, although it does not deal with insurance

Problem Setup

- Market for used cars
- Sellers know exact quality of the cars they sell
- Buyers can only identify the quality by purchasing the good
- Buyer beware: cannot get your \$ back if you buy a bad car

8

- Two types of cars: high and low quality - High quality cars are worth \$22,000
 - low are worth \$2000
- Suppose that people know that in the population of used cars that 1/2 are high quality
 - Already a strong (unrealistic) assumption
 - But even with this strong assumption, we get startling results
- 9

- Buyers do not know the quality of the product until they purchase
- Assume firms (buyers) are risk neutral
- How much are they willing to pay?
- Expected value = (1/2)\$22K + (1/2)\$2K = \$12K
- People are willing to pay \$12K for an automobile
- Would \$12K be the equilibrium price?

12

- Who is willing to sell an automobile at \$12K
 - High quality owner has \$22K auto
 - Low quality owner has \$2K
- Only low quality owners enter the market
- Suppose you are a buyer, you pay \$12K for an auto and you get a lemon, what would you do?
- Sell it for on the market for \$12K
- Eventually what will happen?
 - Low quality cars will drive out high quality
 - Equilibrium price will fall to \$2000
 - Only low quality cars will be sold
- Here AI/AS means that only a market for low quality goods exists

 Buyers can take to a garage for an inspection
 Can solve some of the asymmetric information problem

Rothschild-Stiglitz

- Formal example of AI/AS in insurance market
- Incredibly important theoretical contribution because it defined what would happen in an equilibrium
- Stiglitz shared prize in 2001 w/ Akerloff and Michael Spence all worked on AI/AS

14

13

15

- p = the probability of a bad event
- d = the loss associated with the event
- W=wealth in the absence of the event
- EU_{wi} = expected utility without insurance
- $EU_{wi} = (1-p)U(W) + pU(W-d)$

Graphically illustrate choices

- Two goods: Income in good and bad state
- Can transfer money from one state to the other, holding expected utility constant
- Therefore, can graph indifference curves for the bad and good states of the world
- $EU_{wi} = (1-p)U(W) + pU(W-d)$ = (1-P)U(W₁) + PU(W₂)

- EU_w = expected utility with insurance
- pay α_1 in premiums for insurance
- α₂ net return from the insurance (payment after loss minus premium)
- $EU_w = (1-p)U(W-\alpha_1) + pU(W-d+\alpha_2)$

Insurance Industry

- With probability 1-p, the firm will receive α_1 and with probability p they will pay α_2
- $\pi = (1-p) \alpha_1 p \alpha_2$
- With free entry $\pi = 0$

25

27

- Therefore, $(1-p)/p = \alpha_2/\alpha_1$
- (1-p)/p is the odds ratio
- α_2/α_1 = MRS of \$ for coverage and \$ for premium what market says you have to trade money from the bad state to get one more dollar in the good

Thinking ahead -- some intuition

- We have two exchanges
 - What you are willing to exchange money from the good to the bad state
 - What the market says you have to exchange money from the good to the bad state
- An equilibrium will occur when these two are equal

Fair odds line

- · People are endowed with initial conditions
- They can move from the endowment point by purchasing insurance moving income from the good to the bad state
- The amount the market says they have to trade is the fair odds line -- a line out of the endowment with the slope equal to the fair odds
- When purchasing insurance, the choice must lie along that line

28

- Which means $W_1 = W_2$ and $d = \alpha_1 + \alpha_2$
- Let W₁ be income in the good state
- Let W₂ be income in the bad state

- $dEU_w = (1-p)U'(W_1)dW_1 + pU'(W_2)dW_2 = 0$
- $dW_2/dW_1 = -(1-p)U'(W_1)/[pU'(W_2)]$
- With fair ins., $W_1 = W_2$ and $U'(W_1) = U'(W_2)$
- So $dW_2/dW_1 = -(1-p)/p$ at util. max. point

What do we know

- With fair insurance
 - Contract must lie along fair odds line (profits=0)
 - MRS = fair odds line (tangent to fair odds line)
 - Income in the two states will be equal
- Graphically illustrate

31

Consider two types of people

- High and low risk $(P_h > P_l)$
- Only difference is the risk they face of the bad event (W and d the same for both types)
- Firms cannot identify risk in advance
- People know who they are
- Question: Given that there are 2 types of people in the market, will insurance be sold?

Define equilibrium

- Two conditions
 - No contract can make less than 0 in $E(\pi)$
 - No contract can make $E(\pi) > 0$
- Two possible equilibriums
 - Pooling equilibrium
 - Sell same policy to 2 groups
 - Separating equilibrium
 - Sell policies to different groups

35

Comparing high and low risk

- Intermediate step is necessary
- Hold income and loss from risk constant
- Change probabilities
- Compare indifference curves for high and low risk
- Only difference will be probabilities
- Definitive change in slope

36

- Compare |MRS_h| vs |MRS_l|
- Since income will be the same for both people, U'(W- α₁) and U'(W-d+α₁) cancel
- $|MRS_h| vs |MRS_l|$

- $|(1-p_h)/p_h|$ vs. $|(1-p_l)/p_l|$
- Since $p_h > p_l$ then can show that $|MRS_h| < |MRS_l|$

Will pooling equilibrium exist?

- Price paid in the pooling equilibrium will a function of the distribution of H and L risks
- Let λ be the fraction of high risk people
- Average risk in the population is
- $p^* = \lambda p_h + (1 \lambda)p_l$
- Actuarially fair policy will be based on average risk
- $\pi = (1-p^*) \alpha_1 p^* \alpha_2 = 0$

40

Will pooling equilibrium exist?

- Given PC assumption, all pooled contracts must lie along fair odds line for p*
- Consider option (c)
- As we demonstrated prior, holding W_1 and W_2 constant, $|MRS_h| < |MRS_L|$
- Consider plan b. This plan would be preferred by low risk people (to the north east). So if offered, low risk would accept.

43

- High risk would not consider b
- Since b lies below the fair odds line for L, it would make profits
- The exit of the low risk from plan c would make it unprofitable so this will not be offered
- The existence of b contradicts the definition of an equilibrium, so a pooling equilibrium does not exist

Some solutions

- Gather data about potential clients and price insurance accordingly
 - Correlates of health care use are factors such as age, race, sex, location, BMI, smoking status, etc.
 - 'statistical' discrimination, may be undone by legislation
 - Expensive way to provide insurance collecting data about health is costly

47

- · Pre-existing conditions
 - Insurers would not cover conditions for a period of time that were known to exist prior to coverage
 - E.g., if have diabetes, would not cover expenses related to diabetes
 - Reduces turnover in insurance.
 - May create job lock (will do later)
 - Has been reduced to some degree by Federal legislation for those continuously with ins.

- Gather people (by area, employer, union)
- price policy by pool risk
- Require purchase (otherwise, the low risks opts out)
- Next section of class is about the largest group insurance program – employer sponsored insurance

Insurance Design

- Construct policies that appeal to high and low risk customers
- · Their choice of insurance reveals who they are
- Example: suppose there are two policies – High price but low deduc. and copays
 - Low price, high deduc. but catastrophic coverage
 - H/L risk people from R/S. Who picks what?

50

Is adverse selection a problem?

- What is evidence of adverse selection?
- Some studies compare health care use for those with and without insurance
 - Demand elasticities are low
 - Large differences must be due to adverse selection
 - Problem: adverse selection looks a lot like moral hazard. How do you know the difference?

51

Example: Harvard University

- Offered insurance through Group Insurance Commission (GIC)
- Initially offered two types of plans
 - Costly plan with generous benefits (Blue Cross/Shield)
 - HMO plan, cheaper, lots of cost sharing
- The generous plan costs a few hundred dollars more per person than the HMO
- Enrollment in the plans were stable over time

- Mid 1990s, Harvard faced a budget deficit (10K employees with health insurance)
- In 1994, Harvard adopted 2 cost saving strategies
 - Would now no longer pay the premium difference between generous plan and the HMO – employees mst make up the difference
 - Aggressively negotiated down benefits and premiums.
 Premiums for the HMO fell substantially
 - Out of pocket expenses for generous plan increased

- Who do you anticipate left the generous plan?
- What happened to the characteristics of the people left in the generous plan?
- What do you think happened to premiums in the generous plan?

Б	л

			Employee payment		yment	Share of
	Plan	Total premium	Old policy	New policy	Change	enrollment 1994
Individual PPO	HealthFlex Blue	\$2773	\$ 555	\$1152	\$597	16%
IPA	BayState	2127	489	576	87	5
	Pilgrim	2123	382	564	182	2
	Tufts	2119	381	564	183	8
G/S	HCHP	1945	253	384	131	25
HMO aver	HUGHP age	1957 \$1980	235 \$ 277	396 \$ 421	161 \$144	44 84%
Family					40.00	
PPO	HealthFlex Blue	\$6238	\$1248	\$2208	\$960	22%
IPA	BayState	5772	1154	1572	418	9
	Pilgrim Tufts	5734 5721	1032 1030	1488 1488	456 458	3 10
G/S	HCHP	5721	683	1488	458 373	28
6/5	HUGHP	5252 5264	683	1056	436	28
HMO aver		\$5395	\$ 776	\$1191	\$415	78%

TRENDS IN		LE II IUMS AND F	I	Sharp rise is C For PPO	
		1 1 2 12 12	Year		
Measure	1992	1993	1994	1995	1996
Individual					
Out-of-pocket cost of PPO	\$ 290	\$ 279	\$ 361	_	_
1995 treatment group	290	279	361	\$ 731	\$1414
1996 treatment group	290	279	361	346	1414
Share of enrollees in PPO*	20%	20%	20%	_	_
1995 treatment group	_	_	18	14%	- 9%
1996 treatment group	_	_	13	12	5
Real premium					
PPO	\$2854	\$2794	\$2828	\$2773	\$3228
HMOs	2066	2239	2240	1980	1910
	increase in I d drop in en	PPO premiu rollment	ms		57

Provide states	1994–1995 sample 199				995-19	95–1996 sample		
First year enrollment	HMO		PPO		HMO		PPO	
Second year enrollment	нмо	PPO	нмо	PPO	нмо	PPO	нмо	PPO
Share of enrollees	99%	1%	15%	85%	100%	0%	39%	61%
Average age	41**	46**	46**	50**	41	***	46**	51**
Percent <40	50%	26%	31%	21%	50%	***	30%	15%
Percent 40–60	44	68	56	61	45	***	60	66
Percent >60	6	6	13	18	5	***	10	19
Index of spending	0.96	1.09	1.09	1.16	0.97	***	1.09	1.20
Average spending	-	-	-	-	-	-	\$1893	\$2648
Individual and family individual/family policies. **Difference between percent level. ****Too few people for 1	age of peo	ple switc	-	-				-

Insurance 'death spiral'

- Adverse selection in health plan raises rates
- Lower risk patients exit due to increased costs
- Which increases costs
- Lather, rinse, repeat

- People without EPHI or small firms must purchase insurance in the 'Small Group' Market
- Small groups tend to have
 - Higher prices
 - Higher administrative fees
 - Prices that are volatile

63

- Prices are a function of the demographics
- Concern: prices for some groups too high
- Lower prices for some by "community rating"
- Nearly all states have adopted some version of small group reform in 1990s

62

What happened?

- Increased the price for low risk customers - Healthy 30 year old pays \$180/month in PA
 - \$420/month in NJ with community ratings
- Low risks promptly left the market
- Which raised prices
- · Policy did everything wrong

Lesson

- Idea was correct: – Use low risk to subsidize the high risk
- But you cannot allow the low risk to exit the market

State	Full reform	Partial reform	Bare bones	State	Full reform	Partial reform	Bare bones	
			plan laws				plan laws	
AK.	1994-1996			MT	1994-1996		1992-1996	
AL				NC	1992-1996		1993-1996	
AR		1992-1996	1993-1996	ND	1995 - 1996	1994-1992	1992-1996	
AZ		1994-1996	1992-1996	NE	1995-1996	1992-1994	1992-1996	
CA	1994-1996			NH	1996	1994-1995		
CO	1996	1995	1992-1996	NJ	1995-1996		1992-1996	
CT	1992-1996		1992-1996	NM	1996	1992-1995	1992-1996	
DC				NV			1992-1996	
DE	1994-1996	1992-1993	1994-1996	NY	1994-1996			
FL	1994-1996	1992-1993	1994-1996	OH	1993-1996			
GA		1992-1996	1994-1996	OK	1995-1996	1993-1994	1991-1996	
IA	1993-1996	1992	1992-1996	OR		1992-1996	1992-1996	
ID	1994-1996		1996	PA				
IL		1995-1996	1992-1994	RI	1993-1996		1991-1996	
IN		1993-1996		SC	1996	1992-1995		
KS	1993-1996	1992	1993-1996	SD	1996	1992-1995		
KΥ	1996		1991-1996	TN	1994-1996		1994-1996	
LA	1995-1996	1992-1994		TX	1995-1996			
MA	1992-1996		1992-1996	UT		1996		
MD	1995-1996		1992-1996	VA	1994-1996		1991-1996	
ME	1994-1996	1991-1993		VT	1993-1996			
MI				WA	1994-1996		1993-1996	
MN	1994-1996		1994-1996	WI		1993-1996	1993-1996	
MO	1995-1996	1994	1992-1996	WV		1992-1996	1992-1996	
MS		1996	1993-1996	WY	1993-1996		1993-1996	6

Effect of full reform on Employer- provided ins. rates, CPS									
Before After Δ									
Reform	Small	39.36	37.39	-1.97					
No ref.	Small	47.18	47.04	-0.14					
			$\Delta \Delta$	-1.83					
Reform	Large	75.79	73.71	-2.08					
No ref.	Large	79.61	77.36	-2.25					
			$\Delta\Delta$	0.17					
			ΔΔΔ	-2.00					
					66				

