

Introduction

- Intermediate micro - build models of individual, firm and market behavior
- Most models assume actors fully informed about the market specifics
- Know prices, incomes, market demand, etc.
- However, many markets do not have this degree of information
- Look at the role of 'imperfect information'
- This is more than just 'uncertainty' - we've already dealt with that issue
- Problem of asymmetric information
- Parties on the opposite side of a transaction have different amounts of information
- Ex:
- Car buyers/house sellers
- Prospective employees/employers
- Health care ripe w/ problems of asymmetric information
- Patients know their risks, insurance companies may not
- Doctors understand the proper treatments, patients may not ${ }_{3}$

Problem of individual insurance

- Consider market for health insurance
- Who has greatest demand?
- Not low income
- Risk averse
- People who anticipate greater spending
- Problem
- Firms do not know risk - people do
- Asymmetric information (AI)
- AI can lead to poor performance in market

This section

- Outline problem of asymmetric information and adverse selection
- Focus on
- How selection can impact market outcomes
- 'How much' adverse selection is in the market
- Give some examples
- How home systems might get around AI/AS
- Focus in this chapter will be on the consumer side of AI - how their information alters insurance markets
- Other examples from the supply side we will do later

Market for Lemons

- Nice simple mathematical example of how asymmetric information (AI) can force markets to unravel
- George Akeloff, 2001 Nobel Prize
- Good starting point for this analysis, although it does not deal with insurance

Problem Setup

- Market for used cars
- Sellers know exact quality of the cars they sell
- Buyers can only identify the quality by purchasing the good
- Buyer beware: cannot get your $\$$ back if you buy a bad car
- Two types of cars: high and low quality
- High quality cars are worth $\$ 22,000$ - low are worth $\$ 2000$
- Suppose that people know that in the population of used cars that $1 / 2$ are high quality
- Already a strong (unrealistic) assumption
- But even with this strong assumption, we get startling results
- Buyers do not know the quality of the product until they purchase
- Assume firms (buyers) are risk neutral
- How much are they willing to pay?
- Expected value $=(1 / 2) \$ 22 \mathrm{~K}+(1 / 2) \$ 2 \mathrm{~K}=$ \$12K
- People are willing to pay $\$ 12 \mathrm{~K}$ for an automobile
- Would $\$ 12 \mathrm{~K}$ be the equilibrium price?
- Low quality owner has $\$ 2 \mathrm{~K}$
- Only low quality owners enter the market
- Suppose you are a buyer, you pay $\$ 12 \mathrm{~K}$ for an auto and you get a lemon, what would you do?

- Sell it for on the market for $\$ 12 \mathrm{~K}$
- Eventually what will happen?
- Low quality cars will drive out high quality
- Equilibrium price will fall to $\$ 2000$
- Only low quality cars will be sold
- Here AI/AS means that only a market for low quality goods exists

Some solutions?

- Deals can offer money back guarantees
- Does not solve the asymmetric info problem, but treats the downside risk of asy. Info
- Buyers can take to a garage for an inspection
- Can solve some of the asymmetric information problem

Rothschild-Stiglitz

- Formal example of $\mathrm{AI} / \mathrm{AS}$ in insurance market
- Incredibly important theoretical contribution because it defined what would happen in an equilibrium
- Stiglitz shared prize in 2001 w/ Akerloff and Michael Spence - all worked on AI/AS
- $\mathrm{p}=$ the probability of a bad event
- $\mathrm{d}=$ the loss associated with the event
- $\mathrm{W}=$ wealth in the absence of the event
- $\mathrm{EU}_{\mathrm{wi}}=$ expected utility without insurance
- $\mathrm{EU}_{\mathrm{wi}}=(1-\mathrm{p}) \mathrm{U}(\mathrm{W})+\mathrm{pU}(\mathrm{W}-\mathrm{d})$

Graphically illustrate choices

- Two goods: Income in good and bad state
- Can transfer money from one state to the other, holding expected utility constant
- Therefore, can graph indifference curves for the bad and good states of the world
- $\mathrm{EU}_{\mathrm{wi}}=(1-\mathrm{p}) \mathrm{U}(\mathrm{W})+\mathrm{pU}(\mathrm{W}-\mathrm{d})$ $=(1-\mathrm{P}) \mathrm{U}\left(\mathrm{W}_{1}\right)+\mathrm{PU}\left(\mathrm{W}_{2}\right)$

What does slope if the IC equal?$\text { - } \mathrm{EU}_{\mathrm{w}}=(1-\mathrm{p}) \mathrm{U}\left(\mathrm{~W}_{1}\right)+\mathrm{pU}\left(\mathrm{~W}_{2}\right)$	
- $\mathrm{dEU}_{\mathrm{w}}=(1-\mathrm{p}) \mathrm{U}^{\prime}\left(\mathrm{W}_{1}\right) \mathrm{dW}_{1}+\mathrm{pU}^{\prime}\left(\mathrm{W}_{2}\right) \mathrm{dW}_{2}=0$	
$\left.\cdot \mathrm{dW}_{2} / \mathrm{dW}_{-1}=-(1 \text { Slop of indifference curve }) \text { (} \mathrm{pU} \mathrm{U}^{\prime}\left(\mathrm{W}_{2}\right)\right]$	
	${ }^{18}$

- $\operatorname{MRS}=\mathrm{dW}_{2} / \mathrm{dW}_{1}$
- How much income in the bad state to you have to give up to get $\$ 1$ in the good state and keep utility constant

- At point F - lots of W_{2} and low MU of income in bad state - Little amount of $\mathrm{W}_{1}, \mathrm{MU}$ of income of W_{1} is high - Need to give up a lot of income in the bad state to get one more $\$$ in the good state and keep utility constant - At point E, - lots of W_{1} and little W_{2} - MU of W_{1} is low, MU_{2} is high, don't need give up much income in the bad state to get $\$ 1$ in the good state and keep utility constant
22

Initial endowment

- Original situation (without insurance)
- Have W in income in the good state
- W-d in income in the bad state
- Can never do worse than this point
- All movement will be from here
- Base case from our section on expected utility

Add Insurance

- $\mathrm{EU}_{\mathrm{w}}=$ expected utility with insurance
- pay α_{1} in premiums for insurance
- α_{2} net return from the insurance (payment after loss minus premium)
- $\mathrm{EU}_{\mathrm{w}}=(1-\mathrm{p}) \mathrm{U}\left(\mathrm{W}-\alpha_{1}\right)+\mathrm{pU}\left(\mathrm{W}-\mathrm{d}+\alpha_{2}\right)$

Insurance Industry

- With probability 1-p, the firm will receive α_{1} and with probability p they will pay α_{2}
- $\pi=(1-p) \alpha_{1}-p \alpha_{2}$
- With free entry $\pi=0$
- Therefore, $(1-\mathrm{p}) / \mathrm{p}=\alpha_{2} / \alpha_{1}$
- $(1-\mathrm{p}) / \mathrm{p}$ is the odds ratio
- $\alpha_{2} / \alpha_{1}=$ MRS of $\$$ for coverage and $\$$ for premium what market says you have to trade money from the bad state to get one more dollar in the good

Thinking ahead -- some intuition

- We have two exchanges
- What you are willing to exchange money from the good to the bad state
- What the market says you have to exchange money from the good to the bad state
- An equilibrium will occur when these two are equal

Fair odds line

- People are endowed with initial conditions
- They can move from the endowment point by purchasing insurance - moving income from the good to the bad state
- The amount the market says they have to trade is the fair odds line -- a line out of the endowment with the slope equal to the fair odds
- When purchasing insurance, the choice must lie along that line

- We know that with fair insurance, people will fully insure
- Income in both states will be the same
- W- $\alpha_{1}=\mathrm{W}-\mathrm{d}+\alpha_{2}$
- Which means $\mathrm{W}_{1}=\mathrm{W}_{2}$ and $\mathrm{d}=\alpha_{1}+\alpha_{2}$
- Let W_{1} be income in the good state
- Let W_{2} be income in the bad state

What do we know

- With fair insurance
- Contract must lie along fair odds line (profits=0)
- MRS = fair odds line (tangent to fair odds line)
- Income in the two states will be equal
- Graphically illustrate
- So $\mathrm{dW}_{2} / \mathrm{dW}_{1}=-(1-\mathrm{p}) / \mathrm{p}$ at util. max. point

Consider two types of people

- High and low risk $\left(\mathrm{P}_{\mathrm{h}}>\mathrm{P}_{\mathrm{D}}\right)$
- Only difference is the risk they face of the bad event (W and d the same for both types)
- Firms cannot identify risk in advance
- People know who they are
- Question: Given that there are 2 types of people in the market, will insurance be sold?

Define equilibrium

- Two conditions
- No contract can make less than 0 in $\mathrm{E}(\pi)$
- No contract can make $\mathrm{E}(\pi)>0$
- Two possible equilibriums
- Pooling equilibrium
- Sell same policy to 2 groups
- Separating equilibrium
- Sell policies to different groups

Comparing high and low risk

- Intermediate step is necessary
- Hold income and loss from risk constant
- Change probabilities
- Compare indifference curves for high and low risk
- Only difference will be probabilities
- Definitive change in slope

Comparing high and low Risk

- $\mathrm{EU}_{\mathrm{h}}=\left(1-\mathrm{p}_{\mathrm{h}}\right) \mathrm{U}\left(\mathrm{W}-\alpha_{1}\right)+\mathrm{p}_{\mathrm{h}} \mathrm{U}\left(\mathrm{W}-\mathrm{d}+\alpha_{2}\right)$
- $\mathrm{EU}_{1}=\left(1-\mathrm{p}_{\mathrm{p}}\right) \mathrm{U}\left(\mathrm{W}-\alpha_{1}\right)+\mathrm{p}_{1} \mathrm{U}\left(\mathrm{W}-\mathrm{d}+\alpha_{2}\right)$
- $\operatorname{MRS}_{\mathrm{h}}=\left(1-\mathrm{p}_{\mathrm{h}}\right) \mathrm{U}^{\prime}\left(\mathrm{W}-\alpha_{1}\right) /\left[\mathrm{p}_{\mathrm{h}} \mathrm{U}^{\prime}\left(\mathrm{W}-\mathrm{d}+\alpha_{1}\right)\right]$
- $\mathrm{MRS}_{1}=\left(1-\mathrm{p}_{1}\right) \mathrm{U}^{\prime}\left(\mathrm{W}-\alpha_{1}\right) /\left[\mathrm{p}_{1} \mathrm{U}^{\prime}\left(\mathrm{W}-\mathrm{d}+\alpha_{1}\right)\right]$
- Compare $\left|\mathrm{MRS}_{\mathrm{h}}\right|$ vs $\left|\mathrm{MRS}_{\mathrm{l}}\right|$
- Since income will be the same for both people, $\mathrm{U}^{\prime}\left(\mathrm{W}-\alpha_{1}\right)$ and $\mathrm{U}^{\prime}\left(\mathrm{W}-\mathrm{d}+\alpha_{1}\right)$ cancel
- $\left|\mathrm{MRS}_{\mathrm{h}}\right|$ vs $\left|\mathrm{MRS}_{1}\right|$
- $\left|\left(1-\mathrm{p}_{\mathrm{h}}\right) / \mathrm{p}_{\mathrm{h}}\right|$ vs. $\left|\left(1-\mathrm{p}_{\mathrm{l}}\right) / \mathrm{p}_{\mathrm{l}}\right|$
- Since $\mathrm{p}_{\mathrm{h}}>\mathrm{p}_{1}$ then can show that \mid MRS $_{\mathrm{h}}\left|<\left|\mathrm{MRS}_{1}\right|\right.$

Will pooling equilibrium exist?

- Price paid in the pooling equilibrium will a function of the distribution of H and L risks
- Let λ be the fraction of high risk people
- Average risk in the population is
- $\mathrm{p}^{*}=\lambda \mathrm{p}_{\mathrm{h}}+(1-\lambda) \mathrm{p}_{\mathrm{l}}$
- Actuarially fair policy will be based on average risk
- $\pi=\left(1-\mathrm{p}^{*}\right) \alpha_{1}-\mathrm{p}^{*} \alpha_{2}=0$

Will pooling equilibrium exist?

- Given PC assumption, all pooled contracts must lie along fair odds line for p^{*}
- Consider option (c)
- As we demonstrated prior, holding W_{1} and W_{2} constant, $\left|M R S_{h}\right|<\left|M R S_{L}\right|$
- Consider plan b. This plan would be preferred by low risk people (to the north east). So if offered, low risk would accept.
- High risk would not consider b
- Since b lies below the fair odds line for L, it would make profits
- The exit of the low risk from plan c would make it unprofitable so this will not be offered
- The existence of b contradicts the definition of an equilibrium, so a pooling equilibrium does not exist

Separating equilibrium

- Contract (α and β) for high and low risk
$-\alpha$ provides full insurance in PC situation for H
- while β does the same for L
- Can this situation last?
- Ask question
- Would a low risk person want α contract?
- Would high risk person want β contract?

Some solutions

- Gather data about potential clients and price insurance accordingly
- Correlates of health care use are factors such as age, race, sex, location, BMI, smoking status, etc.
- 'statistical' discrimination, may be undone by legislation
- Expensive way to provide insurance - collecting data about health is costly
- Pre-existing conditions
- Insurers would not cover conditions for a period of time that were known to exist prior to coverage
- E.g., if have diabetes, would not cover expenses related to diabetes
- Reduces turnover in insurance.
- May create job lock (will do later)
- Has been reduced to some degree by Federal legislation for those continuously with ins.

Insurance Design

- Construct policies that appeal to high and low risk customers
- Their choice of insurance reveals who they are
- Example: suppose there are two policies
- High price but low deduc. and copays
- Low price, high deduc. but catastrophic coverage
$-H / L$ risk people from R / S. Who picks what?
group insurance program - employer sponsored insurance

Is adverse selection a problem?

- What is evidence of adverse selection?
- Some studies compare health care use for those with and without insurance
- Demand elasticities are low
- Large differences must be due to adverse selection
- Problem: adverse selection looks a lot like moral hazard. How do you know the difference?

Example: Harvard University

- Offered insurance through Group Insurance Commission (GIC)
- Initially offered two types of plans
- Costly plan with generous benefits (Blue Cross/Shield)
- HMO plan, cheaper, lots of cost sharing
- The generous plan costs a few hundred dollars more per person than the HMO
- Enrollment in the plans were stable over time
- Mid 1990s, Harvard faced a budget deficit (10K employees with health insurance)
- In 1994, Harvard adopted 2 cost saving strategies
- Would now no longer pay the premium difference between generous plan and the HMO - employees mst make up the difference
- Aggressively negotiated down benefits and premiums.

Premiums for the HMO fell substantially

- Out of pocket expenses for generous plan increased
- Who do you anticipate left the generous plan?
- What happened to the characteristics of the people left in the generous plan?
- What do you think happened to premiums in the generous plan?

Insurance 'death spiral'

- Adverse selection in health plan raises rates
- Lower risk patients exit due to increased costs
- Which increases costs
- Lather, rinse, repeat

Small Group Reform

- People without EPHI or small firms must purchase insurance in the 'Small Group' Market
- Small groups tend to have
- Higher prices
- Higher administrative fees
- Prices that are volatile
- Prices are a function of the demographics
- Concern: prices for some groups too high
- Lower prices for some by "community rating"
- Nearly all states have adopted some version of small group reform in 1990s

What happened?

- Increased the price for low risk customers
- Healthy 30 year old pays $\$ 180 /$ month in PA
- \$420/month in NJ with community ratings
- Low risks promptly left the market
- Which raised prices
- Policy did everything wrong

Lesson

- Idea was correct:
- Use low risk to subsidize the high risk
- But you cannot allow the low risk to exit the market

Effect of full reform on Employerprovided ins. rates, CPS			
	Before	After	Δ
Reform Small	39.36	37.39	-1.97
No ref. Small	47.18	47.04	-0.14
		$\Delta \Delta$	-1.83
Reform Large	75.79	73.71	-2.08
No ref. Large	79.61	77.36	-2.25
		$\Delta \Delta$	0.17
		$\Delta \Delta \Delta$	-2.00

