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Intermediate Micro

* Workhorse model of intermediate micro
— Utility maximization problem

— Consumers Max U(x,y) subject to the budget constraint,
I=Px + Py

* Problem is made easier by the fact that we assume all
variables are known with certainty
— Consumers know prices and income

— Know exactly the quality of the product

* Many cases, there is uncertainty about some variables
— Uncertainty about income?
— What are prices now? What will prices be in the future?

— Uncertainty about quality of the product?

* This section, will review utility theory under uncertainty

* Will emphasize the special role of insurance in a generic
sense
— Why insurance is ‘good’ ?
— How much insurance should people purchase?

— Compare that to how insurance is usually structured in health
care




Special problems of health care insurance

Moral hazard

— Reimbursement structure of health insurance encourages
more use of medical care

Adverse selection

— Those with the most needs for medical care are attracted to
insurance

What these problems do to markets?

What these problems due to welfare?

Definitions

* Probability - likelihood discrete event will occur
— n possible events, i=1,2,.n
— P, be the probability event i happens
- 0=P=1
— P +P,+P;+...P =1

* Probabilities can be ‘subjective’ or ‘objective’,
depending on the model

* In our work, probabilities will be know with certainty

Expected value —
— Weighted average of possibilities, weight is probability

— Sum of the possibilities times probabilities

= {x,%,. .. X, }

P={P,P,...P,}

E®) = P,X, + P,X, + P,X, +...P,X,

* Roll of a die, all sides have (1/6) prob. What is
expected roll?

« B =1(1/6) + 2(1/6) + ... 6(1/6) = 3.5

* Suppose you have: 25% chance of an A, 50% B, 20%
C,4%Dand 1%F

* E[quality points] = 4(.25) + 3(.5) + 2(.2) + 1(.04) +
0(.01) =2.94




Expected utility

* Suppose income is random. Two potential values (Y,
orY,)

* Probabilities are either P, or P,=1-P,

* When incomes are realized, consumer will experience a
particular level of income and hence utility

* But, looking at the problem beforehand, a person has a
particular ‘expected utility’

* However, suppose an agent is faced with choice
between two different paths
— Choice a: Y, with probability P, and Y, with P,
— Choice b: Y5 with probability P; and Y, with P,

* Example: You are presented with two option
— ajob with steady pay or
— ajob with huge upside income potential, but one with a
chance you will be looking for another job soon

* How do you choose between these two options?
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Assumptions about utility with uncertainty

* Utility is a function of one element (income or wealth),

where U = U(Y)

* Marginal utility is positive
- U'=dU/dY >0

* Standard assumption, declining matginal utility U ' " <0

— Implies risk averse but we will relax this later

un

Utility

U,

Y, Income




Utdlity Utility
U, U = f(Y) U = f(Y)
U, U,
Uﬂ
U, U, o
Y, Y,+a Y, Y,+a Income Y, Y, Income
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Von Neumann-Morganstern Utility
* N states of the world, with incomes defined as Y, Y, * E(U) is the sum of the possibilities times probabilities
LY,
¢ Example:

— 40% chance of earning $2500/month
— 60% change of $1600/month
_ U(Y) = YO.S
— Expected utility

“ E(U) = P,UY) + PU(Y))

* E(U) = 0.4(2500)*> + 0.6(1600)*>
* E(U) =P,U(Y,) +P,U(Y,) .... + P.UY,) =0.4(50) + 0.6(40) = 44

* The probabilities for each of these states is P; P,...P,

* A valid utility function is the expected utility of the
gamble




Note that expected utility in this case is very different
from expected income
~ E(Y) = 0.4(2500) + 0.6(1600) = 1960

Expected utility allows people to compare gambles

Given two gambles, we assume people prefer the
situation that generates the greatest expected utility

— People maximize expected utility

Example
* Job A: certain income of $50K
* Job B: 50% chance of $10K and 50% chance of $90K

* Expected income is the same ($50K) but in one case,
income is much more certain

* Which one is preferred?
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U=lIn(y)

EU, = In(50,000) = 10.82

EU, = 0.5 1n(10,000) + 0.51n(90,000) = 10.31

Job (a) is preferred

Another Example

* Job1
— 40% chance of $2500, 60% of $1600
— E(Y,) = 0.4¥2500 + .6*1600 = $1960
—E(U,) = (0.4)(2500)%5 + (0.6)(1600)%5 =44
e Job2
— 25% chance of $5000, 75% of $1000
— E(Y,) = .25(5000) + .75(1000) = $2000
— E(U,) = 0.25(5000)*° + 0.75(1000)"> = 41.4
* Job 1 is preferred to 2, even though 2 has higher

expected income 2




The Importance of Marginal Utility:
The St Petersburg Paradox

e Bet starts at $2. Flip a coin and if a head appears, the
bet doubles. If tails appears, you win the pot and the
game ends.

* So, if you get H, H, H T, you win $16

* What would you be willing to pay to ‘play’ this game?
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e Probabilities?
* Pr(h)=Pr(t) = 0.5

* All events are independent
* Pr(hon2™ | hon 1*) = Pr(h on 2°d)

* Recall definition of independence
» If A and B and independent events
— Pr(A N B) = Pr(A)Pr(B)
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* Note, Pr(first tail on kth toss) =
* Pr(h on 1%)Pr(h on 274 ...)...Pr(t on k™M)=
o (1/2)(1/2)....(1/2) = (1/2)k

* What is the expected pot on the k™ trial?
e 2on1% or?2!

e 40on2M or2?

e 8on39 or 23

* So the payoff on the k" is 2k
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* What is the expected value of the gamble
o E=(1/2)82" + (1/2)%622 + (1/2)%§2% + (1/2)*§2*

=3 (3] 2)-3 W=

k=1

* The expected payout is infinite

24




Round Winnings Probability
5t $32 0.03125
10™ $1,024 0.000977
150 $32,768 3.05E-5
20t $1,048,576 9.54E-7
25t $33,554,432 2.98E-8
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Suppose Utility is U=Y"? What is E[U]?

5 (er-£ W er
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How to represent graphically

* Probability P, of having Y,

e (1-P)) of having Y,

* U, and U, are utility that one would receive if they
received Y, and Y, respectively

* BY)=P)Y, + (I-P)Y,=Y;

* U, is utility they would receive if they had income Y,
with certainty

27

Utility
Ui Y
Us
U,
U,
Income

Yy
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* Notice that E(U) is a weighted average of utilities in the
good and bad states of the world

* EU) =P Uy + (1-PHUYy)
* The weights sum to 1 (the probabilities)
* Draw a line from points (a,b)

* Represent all the possible ‘weighted averages’ of U(Y))
and U(Y,)

* What is the one represented by this gamble?
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* Draw vertical line from E(Y) to the line segment. This
is E(U)

» U, is Expected utility

« U, = E(U) = P,U(Y,) + (1-P)U(Y))
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* Suppose offered two jobs
— Job A: Has chance of a high (Y,) and low (Y,) wages
— Job B: Has chance of high (Y;) and low (Y,) wages
— Expected income from both jobs is the same
— P, and P are the probabilities of getting the high wage
situation

PY, + (1-P)Y, =P, Y; + (1-P)Y, =E(Y)
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Numeric Example

* Job A
— 20% chance of $150,000
— 80% chance of $20,000
— E(Y) = 0.2(150K) + 0.8(20K) = $46K

* JobB
— 60% chance of $50K
— 40% chance of $40K
— E(Y) = 0.6(50K) + 0.4(40K) = $46K

32




Utility
u®)

Y, Y, E®Y) Y, Y, Income
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* Notice that Job A and B have the same expected

income

* Job A is riskier — bigger downside for Job A
* Prefer Job B (Why? Will answer in a2 moment)
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* The prior example about the two jobs is instructive.
Two jobs, same expected income, very different
expected utility

* People prefer the job with the lower risk, even though
they have the same expected income

* People prefer to ‘shed’ risk — to get rid of it.
* How much are they willing to pay to shed risk?

35

Example

Suppose have $200,000 home (wealth).

Small chance that a fire will damage you house. If does,
will generate $75,000 in loss (L)

UW) = In(W)

Prob of a loss is 0.02 or 2%
Wealth in “good” state = W
Wealth in bad state = W-LL

36




E(W) = (I-P)W + P(W-L)
E(W) = 0.98(200,000) + 0.02(125,000) = $198,500

E(U) = (1-P) In(W) + P In(W-L)
E(U) = 0.98 1n(200K) + 0.02 In(200K-75K) = 12.197
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Suppose you can add a fire detection/prevention
system to your house.

This would reduce the chance of a bad event to 0 but it
would cost you $C to install

What is the most you are willing to pay for the security
system?

E(U) in the cutrent situation is 12.197

Utility with the security system is U(W-C)

Set U(W-C) equal to 12.197 and solve for C

38

In(W-C) =12.197

Recall that el"® =x

Raise both sides to the e

enW-0 = W-C = e!2197 = 198,128
198,500 — 198,128 = $372

Expected loss is $1500
Would be willing to pay $372 to avoid that loss

39

Utility

U, uw)
b
Risk Premiypf
U, ‘
C
U, "
W-IL Y, Y,=E(W) NG Wealth

40
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Will earn Y, with probability p;
— Generates utility U,
Will earn Y, with probability p,=1-p,
— Generates utility U,
E@ =p,Y; + A-p)Y,=Y;
Line (ab) is a weighted average of U, and U,
Note that expected utility is also a weighted average
A line from E(Y) to the line (ab) give E(U) for given
E(Y)
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Take the expected income, E(Y). Draw a line to (ab).
The height of this line is E(U).

EU) at E(Y) is U,

Suppose income is know with certainty at I;. Notice
that utility would be Uj, which is greater that U,

Look at Y,. Note that the Y,<Y;=E(Y) but these two
situations generate the same utility — one is expected,
one is known with certainty

42

* The line segment (cd) is the “Risk Premium.” Itis the
amount a person is willing to pay to avoid the risky
situation.

If you offered a person the gamble of Y; or income Y,
they would be indifferent.

* Therefore, people are willing to sacrifice cash to ‘shed’
risk.

43

Some numbers

Person has a job that has uncertain income
— 50% chance of making $30K, U(30K) = 18
— 50% chance of making $10K, U(10K) = 10

Another job with certain income of $16K
— Assume U($16K)=14

E(I) = (0.5)($30K) + (0.05)($10K) = $20K
E(U) = 0.5U(30K) + 0.5U(10K) = 14

44
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* Expected utility. Weighted average of U(30) and U(10).
EU) =14

* Notice that a gamble that gives expected income of
$20K is equal in value to a certain income of only $16K

* This person dislikes risk.

— Indifferent between certain income of $16 and uncertain
income with expected value of $20

— Utility of certain $20 is a lot higher than utility of uncertain
income with expected value of $20
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Utility
18 U =D

16

14 ¢

$30 Income

* Although both jobs provide the same expected income,
the person would prefer the guaranteed $20K.
* Why? Because of our assumption about diminishing
marginal utility
— In the ‘good’ state of the wortld, the gain from $20K to $30K
is not as valued as the 1¢ $10

— In the ‘bad’ state, because the first $10K is valued more than
the last $10K, you lose lots of utils.
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* Notice also that the person is indifferent between a job
with $16K in certain income and $20,000 in uncertain

* They are willing to sacrifice up to $4000 in income to
reduce risk, risk premium

48
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Example

« U= YO,S
* Job with certain income
— $400 week
— U=400"=20
* Can take another job that
— 40% chance of $900/week, U=30
— 60% chance of $100/week, U=10
~ E() = 420, EU) = 0.4(30) + 0.6(10) = 18

49

Utility
30 U =D

18

10 |....

$100 $324  $420 $900 lncome

50

* Notice that utility from certain income stream is higher
even though expected income is lower

* What is the risk premium??

* What certain income would leave the person with a
utility of 182 U=Y"?

* Soif 18 =Y 182=Y =324

* Person is willing to pay 400-324 = $76
to avoid moving to the risky job
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Risk Loving

The desire to shed risk is due to the assumption of
declining marginal utility of income

Consider the next situation.
The graph shows increasing marginal utility of income

U (Y, > U(Y,) even though Y,>Y,

52
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Utility

Income

53

Utility

Income

* What does this imply about tolerance for risk?
* Notice that at E(Y) = Y3, expected utility is Us.

* Utility from a certain stream of income at Y; would
generate U,. Note that U;>U,

* This person prefers an uncertain stream of Y instead
of a certain stream of Y;

* This person is ‘risk loving’. Again, the result is driven
by the assumption ate U™"
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Risk Neutral

e If utility function is linear, the marginal utility of
income is the same for all values of income
-U'>0
—_U'"'=0

* The uncertain income E(Y) and the certain income Y;
generate the same utility

* This person is considered risk neutral

* We usually make the assumption firms are risk neutral

56
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Example
* 25% chance of $100
* 75% chance of $1000
* E[Y] = 0.25(100) + 0.75(1000) = $775

e U=Y

* Compare to certain stream of $775
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Utility
U = a+bY
U,
U,=U,
U2 ..............
Income

Benefits of insurance

* Assume declining marginal utility
* Person dislikes risk
— They are willing to receive lower certain income rather than
higher expected income
* Firms can capitalize on the dislike for risk by helping
people shed risk via insurance

59

Simple insurance example

* Suppose income is know (Y;) but random --shocks can
reduce income
— House or car is damaged
— Can pay $ to repair, return you to the normal state of world
* Lis the loss if the bad event happens
* Probability of loss is P;

* Expected utility without insurance is

* E(U) = (1-P)U(Y,) + PU(Y, L)

60
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* Suppose you can buy insurance that costs you PREM.
The insurance pay you to compensate for the loss L.
— In good state, income is
* Y-Prem
— In bad state, paid PREM, lose L but receive PAYMENT,
therefore, income is
* Y-Prem-L+Payment
— For now, lets assume PAYMENT=L,, so
— Income in the bad state is also
¢ Y-Prem

61

* Notice that insurance has made income certain. You
will always have income of Y-PREM

* What is the most this person will pay for insurance?
* The expected loss is p,L
* Expected income is E(Y)
* The expected utility is U,

* People would always be willing to pay a premium that
equaled the expected loss
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* But they are also willing to pay a premium to shed risk

(line cd)

* The maximum amount they are willing to pay is
expected loss + risk premium

63

Utility

Willingness
to pay for
insurance

Y-L Y, E(Y) v Income

64
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Suppose income is $50K, and there is a 5% chance of
having a car accident that will generate $15,000 in loss

Expected loss is .05(15K) = $750
U = In(y)

Some properties of logs

Y=In(x) then e’ = exp(y) =x
Y=In(x?* = aln(x)

Y=In(xz) = In(x) + In(z)

65

« E(U) = Pln(Y-L) + (1-P)In(Y)
« E(U) = 0.05 In(35,000) + 0.95 In(50,000)

« E(U)=10.8
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What is the most someone will pay for insurance?

People would purchase insurance so long as utility with
certainty is at least 10.8 (expected utility without
insurance)

U, =U(Y — Prem) = 10.8

La(Y-PREM) 210.8

Y-PREM = exp(10.8)

PREM =Y-exp(10.8) = 50,000 — 49,021 =979
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* Recall that the expected loss is $750 but this person is
willing to pay more than the expected loss to avoid the
risk

* Pay $750 (expected loss), plus the risk premium ($979-
$750) = 229

68
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Utility

1 §229

e

$50,000 Income

69

$35,000 $49,021  $49,250

Supply of Insurance

* Suppose there are a lot of people with the same
situation as in the previous slide

* FEach of these people have a probability of loss P and
when a loss occurs, they have L expenses

* A firm could collect money from as many people as
possible in advance. If bad event happens, they pay
back a specified amount.

70

* Firms are risk neutral, so they are interested in expected
profits

* Expected profits = revenues — costs
— Revenues are known

— Some of the costs are random (e.g., exactly how many claims
you will pay)
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* Think of the profits made on sales to one person

* A person buys a policy that will pay them q dollars

(q=L) back if the event occurs

* To buy this insurance, person will pay “a” dollars per

dollar of coverage

* Cost per policy is fixed t

72
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* Revenues = aq
— ais the price per dollar of coverage

e Costs =pq +t
— For every dollar of coverage (q) expect to pay this p percent

of time

* E(m=aq-pq-t

e Let assume a perfectly competitive market, so in the long run ©
=0

*  What should the firm charge per dollar of coverage?

e E(m=aq-pq—-t=0

73

*a=pt(t/9

* The cost per dollar of coverage is proportion to risk

* t/qis the loading factor. Portion of price to cover
administrative costs

* Make it simple, suppose t=0.
—a=p
— If the probability of loss is 0.05, will change 5 cents per $1.00

of coverage

74

* In this situation, if a person buys a policy to insure L
dollars, the ‘actuarially fair’ premium will be P

* An actuarially fair premium is one where the premium
equals the expected loss

* In the real world, no premiums are ‘actuarially fair’
because prices include administrative costs called
‘loading factors’

75

How much insurance will people purchase when prices
are actuarially fair?

* With insurance
— Pay a premium that is subtracted from income
— If bad state happens, lose L but get back the amount of
insurance q
— They pay p+(t/q) pet dollar of coverage. Have q dollars of
coverage — so they to pay a premium of pq+t in total
¢ Utility in good state
~U=UY-pq-{

76
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Utility in bad state
- UY-L+q-pq-t

E( = A-pUlY —pq - + pU[Y-L+q-pq-]
Simplify, let t=0 (no loading costs)

E( = (-pUY —pq] + pU[Y-L+q-pq]
Maximize utility by picking optimal q
dE(u)/dq =0

7

E(uw) = (1-pU[Y - pq] + pU[Y-L+q-pq]

dE(u)/dq = (1-p) U'(y-pq)(-p)
+pU'(Y-L+g-pg)(1-p) =0

p(1-p)U'(Y-L+g-pq) = (1-p)pU'(Y-pg)

(1-p)p cancel on each side

78

U'(Y-L+q-pg) = U'(Y-pg)
Optimal insurance is one that sets marginal utilities in
the bad and good states equal

Y-L+q-pq = Y-pq

Y’s cancel, pq’s cancel,

q=L

If people can buy insurance that is ‘fair’ they will fully
insure loses.

79

Insurance w/ loading costs

Insurance is not actuarially fair and insurance does have
loading costs

Can show (but more difficult) that with loading costs,
people will now under-insure, that is, will insure for less
than the loss L.

Intution? For every dollar of expected loss you cover,
will cost more than a $1

Only get back $1 in coverage if the bad state of the
wortld happens

80
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* Recall:
— qis the amount of insurance purchased
— Without loading costs, cost per dollar of coverage is p
— Now, for simplicity, assume that price per dollar of coverage
is pK where K>1 (loading costs)

* Buy q $ worth of coverage

¢ Pay qpK in premiums

81

E(u) = (1-pU[Y - pqk] + pU[Y-L+q-pqk]

dE(w)/dq = (1-p) U' (y-pgk)(-pk)
+ pU'(Y-L+g-pgk)(1-pk) = 0

p(1-plU'(Y-L+q-pak) = (1-p)pkU'(Y-pqk)

p cancel on each side

82

¢ (I-pR)U'(Y-Ltq-pkq) = (1-p)kU’ (Y-pkq)

. @®) = ©

* Since k > 1, can show that

* (Ipk) < (-p)k

* Since (a) < (c), must be the case that
*®>@

* U'(Y-L+q-pkq) > U'(Y-pkq)

* Since U'(yl) > U'(y2), must be that y1 < y2

83

(Y-L+q-pqk) < (Y-pqk)
Y and —pgk cancel
L+q <0

Which means that q < L

When price is not ‘fair’ you will not fully insure

84
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Demand for Insurance

* Both people have income of Y

* Each person has a potential health shock
— The shock will leave person 1 w/ expenses of E1 and will
leave income at Y1=Y-E1
— The shock will leave person 2 w/ expenses of E2 and will
leave income at Y2=Y-E2
¢ Suppose that
— E1>E2, Y1<Y2

85

* Probabilities the health shock will occur are P1 and P2
* Expected Income of person 1

— E(Y), = (1I-P1)Y + P1*(Y-E1)

— E(Y), = (1-P2)Y + P2*(Y-E2)

— Suppose that E(Y); = E(Y), = Y3

86

* In this case
— Shock 1 is a low probability/high cost shock
— Shock 2 is a high probability/low cost shock
* Example
- Y=$60,000
— Shock 1 is 1% probability of $50,000 expense
— Shock 2 is a 50% chance of $1000 expense
— E(Y) = $59500

87

Utility
— '
O
Ub : .
Ua
—
Yl Ya Y2 E(Y)=Y3 Y Income
Yb b
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* Expected utility locus
— Line ab for person 1
— Line ac for person 2
* Expected utility is
— Uain case 1
— Ub in case 2
* Certainty premium —
— Line (de) for person 1, Difference Y3 — Ya
— Line (fg) for person 2, Difference Y3 - Yb

89

Implications

* Do not insure small risks/high probability events

— If you know with certainty that a costs will happen, or, costs
are low when a bad event occurs, then do not insure

— Example: teeth cleanings. You know they happen twice a
year, why pay the loading cost on an event that will happen?

90

* Insure catastrophic events
— Large but rare risks

* As we will see, many of the insurance contracts we see
do not fit these characteristics — they pay for small

predictable expenses and leave exposed catastrophic
events

91

Some adjustments to this model

* The model assumes that poor health has a monetary
cost and that is all.

— When experience a bad health shock, it costs you L to
recover and you are returned to new

* Many situations where
— health shocks generate large expenses

— And the expenses may not return you to normal
— AIDS, stroke, diabetes, etc.

92
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In these cases, the health shock has fundamentally
changed life.

We can deal with this situation in the expected utility
model with adjustment in the utility function

“State dependent” utility

— U(y) utility in healthy state

— V(y) utility in unhealthy state

93

* Typical assumption
- UY) >V(Y)
* For any given income level, get higher utility in the
healthy state
U V)
¢ For any given income level, marginal utility of the next
dollar is higher in the healthy state

Utility

Income

95

Note that:

c AtY,,
- Uy > V()
Uy >V
— Slope of line aa > slope of line bb
* Notice that slope line aa = slope of line cc

S U = VYY)

96
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What does this do to optimal insurance

* E@ = A-pUY —pq—1 + pV[Y-LHq-pq-1]
* Again, lets set t=0 to make things easy

* E = (1-pU[Y —pq] + pV[Y-L+q-pq]
*+ dE(w)/dq = (1-p)(-p)U’[Y-pq]

+p(I-p)V[Y-I+g+pg] =0
* U'[Y-pq] = V' [Y-I+q-pq]

97

* Justlike in previous case, we equalize marginal utility
across the good and bad states of the world

* Recall that
-Um>Vve
- UG =V @ ify>y,

* Since U'[Y-pq] = V'[Y-l+g-pq]

* In order to equalize matginal utilities of income, must
be the case that

[Y-pql > [Y-I+qtpq]

98

* Income in healthy state > income in unhealthy state

* Do not fully insure losses. Why?

— With insurance, you take $ from the good state of the world
(where MU of income is high) and transfer $ to the bad state
of the wotld (where MU is low)

— Do not want good money to chance bad

99

Allais Paradox

* Which gamble would you prefer
— 1A: $1 million w/ certainty
~1B: (89, §1 million), (0.01, $0), (0.1, $5 million)

* Which gamble would you prefer

—2A:  (0.89,30), (0.11, $1 million)
—2B:  (0.9,$0), (0.10, $5 million)

100
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e 15 gamble:
« UL > 0.89U(1) + 0.01U(0) + 0.1U(3)
« 0.11U(1) > 0.01U(0) + 0.1U(3)

* Now consider gamble 2
« 0.9U(0) + 0.1U(5) > 0.89U(0) + 0.11U(L)
+ 0.01U(0) + 0.1U(5) > 0.11U(1)

* Choice of Lottery 1A and 2B is inconsistent with
expected utility theory

101
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