

Intermediate Micro

- Workhorse model of intermediate micro
- Utility maximization problem
- Consumers Max $U(x, y)$ subject to the budget constraint, $\mathrm{I}=\mathrm{P}_{\mathrm{x}} \mathrm{x}+\mathrm{P}_{\mathrm{y}} \mathrm{y}$
- Problem is made easier by the fact that we assume all variables are known with certainty
- Consumers know prices and income
- Know exactly the quality of the product
- Many cases, there is uncertainty about some variables
- Uncertainty about income?
- What are prices now? What will prices be in the future?
- Uncertainty about quality of the product?
- Will emphasize the special role of insurance in a generic sense
- Why insurance is 'good' ?
- How much insurance should people purchase?
- Compare that to how insurance is usually structured in health care
- This section, will review utility theory under uncertainty

Special problems of health care insurance

- Moral hazard
- Reimbursement structure of health insurance encourages more use of medical care
- Adverse selection
- Those with the most needs for medical care are attracted to insurance
- What these problems do to markets?
- What these problems due to welfare?

Definitions

- Probability - likelihood discrete event will occur
- n possible events, $\mathrm{i}=1,2$,..n
- P_{i} be the probability event i happens
$-0 \leq \mathrm{P}_{\mathrm{i}} \leq 1$
$-\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots \mathrm{P}_{\mathrm{n}}=1$
- Probabilities can be 'subjective' or 'objective', depending on the model
- In our work, probabilities will be know with certainty
- Expected value -
- Weighted average of possibilities, weight is probability
- Sum of the possibilities times probabilities
- $\mathrm{x}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right\}$
- $\mathrm{P}=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{\mathrm{n}}\right\}$
- $E(x)=P_{1} X_{1}+P_{2} X_{2}+P_{3} X_{3}+\ldots P_{n} X_{n}$
- Roll of a die, all sides have $(1 / 6)$ prob. What is expected roll?
- $\mathrm{E}(\mathrm{x})=1(1 / 6)+2(1 / 6)+\ldots 6(1 / 6)=3.5$
- Suppose you have: 25% chance of an A, 50% B, 20% C, $4 \% \mathrm{D}$ and $1 \% \mathrm{~F}$
- E [quality points] $=4(.25)+3(.5)+2(.2)+1(.04)+$ $0(.01)=2.94$

Expected utility

- Suppose income is random. Two potential values $\left(\mathrm{Y}_{1}\right.$ or Y_{2})
- Probabilities are either P_{1} or $P_{2}=1-P_{1}$
- When incomes are realized, consumer will experience a particular level of income and hence utility
- But, looking at the problem beforehand, a person has a particular 'expected utility'
- However, suppose an agent is faced with choice between two different paths
- Choice a: Y_{1} with probability P_{1} and Y_{2} with P_{2}
- Choice b: Y_{3} with probability P_{3} and Y_{4} with P_{4}
- Example: You are presented with two option
- a job with steady pay or
- a job with huge upside income potential, but one with a chance you will be looking for another job soon
- How do you choose between these two options?

Von Neumann-Morganstern Utility

- N states of the world, with incomes defined as $\mathrm{Y}_{1} \mathrm{Y}_{2}$ $\ldots . Y_{n}$
- The probabilities for each of these states is $P_{1} P_{2} \ldots P_{n}$
- $\mathrm{E}(\mathrm{U})$ is the sum of the possibilities times probabilities
- Example:
- 40% chance of earning $\$ 2500 /$ month
- 60% change of $\$ 1600 /$ month
- A valid utility function is the expected utility of the
$-\mathrm{U}(\mathrm{Y})=\mathrm{Y}^{0.5}$
- Expected utility
- $\mathrm{E}(\mathrm{U})=\mathrm{P}_{1} \mathrm{U}\left(\mathrm{Y}_{1}\right)+\mathrm{P}_{2} \mathrm{U}\left(\mathrm{Y}_{2}\right)$
- $\mathrm{E}(\mathrm{U})=0.4(2500)^{0.5}+0.6(1600)^{0.5}$

$$
=0.4(50)+0.6(40)=44
$$

- Note that expected utility in this case is very different from expected income

$$
-\mathrm{E}(\mathrm{Y})=0.4(2500)+0.6(1600)=1960
$$

- Expected utility allows people to compare gambles
- Given two gambles, we assume people prefer the situation that generates the greatest expected utility - People maximize expected utility

Example

- Job A: certain income of $\$ 50 \mathrm{~K}$
- Job B: 50% chance of $\$ 10 \mathrm{~K}$ and 50% chance of $\$ 90 \mathrm{~K}$
- Expected income is the same ($\$ 50 \mathrm{~K}$) but in one case, income is much more certain
- Which one is preferred?

Another Example

- Job 1
- 40% chance of $\$ 2500,60 \%$ of $\$ 1600$
$-\mathrm{E}\left(\mathrm{Y}_{1}\right)=0.4 * 2500+.6 * 1600=\$ 1960$
$-\mathrm{E}\left(\mathrm{U}_{1}\right)=(0.4)(2500)^{0.5}+(0.6)(1600)^{0.5}=44$
- Job 2
-25% chance of $\$ 5000,75 \%$ of $\$ 1000$
$-\mathrm{E}\left(\mathrm{Y}_{2}\right)=.25(5000)+.75(1000)=\$ 2000$
$-\mathrm{E}\left(\mathrm{U}_{2}\right)=0.25(5000)^{0.5}+0.75(1000)^{0.5}=41.4$
- Job 1 is preferred to 2 , even though 2 has higher expected income

The Importance of Marginal Utility: The St Petersburg Paradox

- Bet starts at $\$ 2$. Flip a coin and if a head appears, the bet doubles. If tails appears, you win the pot and the game ends.
- So, if you get H, H, H T, you win \$16
- What would you be willing to pay to 'play' this game?
- Probabilities?
- $\operatorname{Pr}(\mathrm{h})=\operatorname{Pr}(\mathrm{t})=0.5$
- All events are independent
- $\operatorname{Pr}\left(\mathrm{h}\right.$ on $2^{\text {nd }} \mid \mathrm{h}$ on $\left.1^{\text {st }}\right)=\operatorname{Pr}\left(\mathrm{h}\right.$ on $\left.2^{\text {nd }}\right)$
- Recall definition of independence
- If A and B and independent events $-\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$
- Note, $\operatorname{Pr}($ first tail on kth toss $)=$
- $\operatorname{Pr}\left(\mathrm{h}\right.$ on $\left.1^{\text {st }}\right) \operatorname{Pr}\left(\mathrm{h}\right.$ on $\left.2^{\text {nd }} \ldots\right) . . . \operatorname{Pr}\left(\mathrm{t}\right.$ on $\left.\mathrm{k}^{\text {th }}\right)=$
- $(1 / 2)(1 / 2) \ldots(1 / 2)=(1 / 2)^{\mathrm{k}}$
- What is the expected pot on the $\mathrm{k}^{\text {th }}$ trial?
- 2 on $1^{\text {st }}$ or 2^{1}
- 4 on $2^{\text {nd }}$ or 2^{2}
- 8 on $3^{\text {rd }}$, or 2^{3}
- So the payoff on the $\mathrm{k}^{\text {th }}$ is 2^{k}
- What is the expected value of the gamble
- $\mathrm{E}=(1 / 2) \$ 2^{1}+(1 / 2)^{2} \$ 2^{2}+(1 / 2)^{3} \$ 2^{3}+(1 / 2)^{4} \$ 2^{4}$

$$
E=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(2^{k}\right)=\sum_{k=1}^{\infty}(1)=\infty
$$

- The expected payout is infinite

Round	Winnings	Probability
$5^{\text {th }}$	$\$ 32$	0.03125
$10^{\text {th }}$	$\$ 1,024$	0.000977
$15^{\text {th }}$	$\$ 32,768$	$3.05 \mathrm{E}-5$
$20^{\text {th }}$	$\$ 1,048,576$	$9.54 \mathrm{E}-7$
$25^{\text {th }}$	$\$ 33,554,432$	$2.98 \mathrm{E}-8$

Suppose Utility is U $=Y^{0.5}$? What is E[U]?
$E=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(2^{k}\right)^{1 / 2}=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k / 2}\left(\frac{1}{2}\right)^{k / 2}\left(2^{k}\right)^{1 / 2}$
$=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k / 2}\left(\frac{1}{2}\right)^{k / 2}(2)^{k / 2}=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k / 2}=\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{k}=$
Can show that $=\sum_{k=1}^{\infty}\left(\sqrt{\frac{1}{2}}\right)^{k}=\left(\frac{1}{1-\sqrt{\frac{1}{2}}}\right)-1=2.414$

How to represent graphically

- Probability P_{1} of having Y_{1}
- (1-P ${ }_{1}$) of having Y_{2}
- U_{1} and U_{2} are utility that one would receive if they received Y_{1} and Y_{2} respectively
- $\mathrm{E}(\mathrm{Y})=\mathrm{P}_{1} \mathrm{Y}_{1}+\left(1-\mathrm{P}_{1}\right) \mathrm{Y}_{2}=\mathrm{Y}_{3}$
- U_{3} is utility they would receive if they had income Y_{3} with certainty

- Notice that $\mathrm{E}(\mathrm{U})$ is a weighted average of utilities in the good and bad states of the world
- $\mathrm{E}(\mathrm{U})=\mathrm{P}_{1} \mathrm{U}\left(\mathrm{Y}_{1}\right)+\left(1-\mathrm{P}_{1}\right) \mathrm{U}\left(\mathrm{Y}_{2}\right)$
- The weights sum to 1 (the probabilities)
- Draw a line from points (a,b)
- Represent all the possible 'weighted averages' of $\mathrm{U}\left(\mathrm{Y}_{1}\right)$ and $\mathrm{U}\left(\mathrm{Y}_{2}\right)$
- What is the one represented by this gamble?
- Draw vertical line from $\mathrm{E}(\mathrm{Y})$ to the line segment. This is $\mathrm{E}(\mathrm{U})$
- U_{4} is Expected utility
- $\mathrm{U}_{4}=\mathrm{E}(\mathrm{U})=\mathrm{P}_{1} \mathrm{U}\left(\mathrm{Y}_{1}\right)+\left(1-\mathrm{P}_{1}\right) \mathrm{U}\left(\mathrm{Y}_{2}\right)$

Numeric Example

- Job A
- 20% chance of $\$ 150,000$
-80% chance of $\$ 20,000$
$-\mathrm{E}(\mathrm{Y})=0.2(150 \mathrm{~K})+0.8(20 \mathrm{~K})=\$ 46 \mathrm{~K}$
- Job B
- 60% chance of $\$ 50 \mathrm{~K}$
- 40% chance of $\$ 40 \mathrm{~K}$
$-\mathrm{E}(\mathrm{Y})=0.6(50 \mathrm{~K})+0.4(40 \mathrm{~K})=\$ 46 \mathrm{~K}$

The prior example about the two jobs is instructive. Two jobs, same expected income, very different expected utility

- People prefer the job with the lower risk, even though they have the same expected income
- People prefer to 'shed' risk - to get rid of it.
- How much are they willing to pay to shed risk?

Example

- Suppose have $\$ 200,000$ home (wealth).
- Small chance that a fire will damage you house. If does, will generate $\$ 75,000$ in loss (L)
- $\mathrm{U}(\mathrm{W})=\ln (\mathrm{W})$
- Prob of a loss is 0.02 or 2%
- Wealth in "good" state $=W$
- Wealth in bad state $=\mathrm{W}-\mathrm{L}$
- $\mathrm{E}(\mathrm{W})=(1-\mathrm{P}) \mathrm{W}+\mathrm{P}(\mathrm{W}-\mathrm{L})$
- $\mathrm{E}(\mathrm{W})=0.98(200,000)+0.02(125,000)=\$ 198,500$
- $\mathrm{E}(\mathrm{U})=(1-\mathrm{P}) \ln (\mathrm{W})+\mathrm{P} \ln (\mathrm{W}-\mathrm{L})$
- $\mathrm{E}(\mathrm{U})=0.98 \ln (200 \mathrm{~K})+0.02 \ln (200 \mathrm{~K}-75 \mathrm{~K})=12.197$
- Suppose you can add a fire detection/prevention system to your house.
- This would reduce the chance of a bad event to 0 but it would cost you $\$ \mathrm{C}$ to install
- What is the most you are willing to pay for the security system?
- $E(U)$ in the current situation is 12.197
- Utility with the security system is U(W-C)
- Set U(W-C) equal to 12.197 and solve for C

- Will earn Y_{1} with probability p_{1} - Generates utility U_{1}
- Will earn Y_{2} with probability $p_{2}=1-p_{1}$ - Generates utility U_{2}
- $E(I)=p_{1} Y_{1}+\left(1-p_{1}\right) Y_{2}=Y_{3}$
- Line (ab) is a weighted average of U_{1} and U_{2}
- Note that expected utility is also a weighted average
- A line from $\mathrm{E}(\mathrm{Y})$ to the line (ab) give $\mathrm{E}(\mathrm{U})$ for given $\mathrm{E}(\mathrm{Y})$
- Take the expected income, $\mathrm{E}(\mathrm{Y})$. Draw a line to (ab). The height of this line is $\mathrm{E}(\mathrm{U})$.
- $E(U)$ at $E(Y)$ is U_{4}
- Suppose income is know with certainty at I_{3}. Notice that utility would be U_{3}, which is greater that U_{4}
- Look at Y_{4}. Note that the $\mathrm{Y}_{4}<\mathrm{Y}_{3}=\mathrm{E}(\mathrm{Y})$ but these two situations generate the same utility - one is expected, one is known with certainty
- The line segment (cd) is the "Risk Premium." It is the amount a person is willing to pay to avoid the risky situation.
- If you offered a person the gamble of Y_{3} or income Y_{4}, they would be indifferent.
- Therefore, people are willing to sacrifice cash to 'shed' risk.

Some numbers

- Person has a job that has uncertain income
-50% chance of making $\$ 30 \mathrm{~K}, \mathrm{U}(30 \mathrm{~K})=18$
-50% chance of making $\$ 10 \mathrm{~K}, \mathrm{U}(10 \mathrm{~K})=10$
- Another job with certain income of $\$ 16 \mathrm{~K}$
- Assume U(\$16K)=14
- $\mathrm{E}(\mathrm{I})=(0.5)(\$ 30 \mathrm{~K})+(0.05)(\$ 10 \mathrm{~K})=\$ 20 \mathrm{~K}$
- $\mathrm{E}(\mathrm{U})=0.5 \mathrm{U}(30 \mathrm{~K})+0.5 \mathrm{U}(10 \mathrm{~K})=14$
- Expected utility. Weighted average of $\mathrm{U}(30)$ and $\mathrm{U}(10)$. $\mathrm{E}(\mathrm{U})=14$
- Notice that a gamble that gives expected income of $\$ 20 \mathrm{~K}$ is equal in value to a certain income of only $\$ 16 \mathrm{~K}$
- This person dislikes risk.
- Indifferent between certain income of $\$ 16$ and uncertain income with expected value of $\$ 20$
- Utility of certain $\$ 20$ is a lot higher than utility of uncertain income with expected value of $\$ 20$

- Notice also that the person is indifferent between a job with $\$ 16 \mathrm{~K}$ in certain income and $\$ 20,000$ in uncertain
- They are willing to sacrifice up to $\$ 4000$ in income to reduce risk, risk premium
- Although both jobs provide the same expected income, the person would prefer the guaranteed $\$ 20 \mathrm{~K}$.
- Why? Because of our assumption about diminishing marginal utility
- In the 'good' state of the world, the gain from $\$ 20 \mathrm{~K}$ to $\$ 30 \mathrm{~K}$ is not as valued as the $1^{\text {st }} \$ 10$
- In the 'bad' state, because the first $\$ 10 \mathrm{~K}$ is valued more than the last $\$ 10 \mathrm{~K}$, you lose lots of utils.

Example	
- $\mathrm{U}=\mathrm{y}^{0.5}$ - Job with certain income - \$400 week - U=400 ${ }^{0.5}=20$ - Can take another job that - 40% chance of $\$ 900 /$ week, $\mathrm{U}=30$ -60% chance of $\$ 100 /$ week, $\mathrm{U}=10$ $-\mathrm{E}(\mathrm{I})=420, \mathrm{E}(\mathrm{U})=0.4(30)+0.6(10)=18$	
	49

Risk Loving

- The desire to shed risk is due to the assumption of declining marginal utility of income
- Consider the next situation.
- The graph shows increasing marginal utility of income
- $U^{\prime}\left(Y_{1}\right)>U^{\prime}\left(Y_{2}\right)$ even though $Y_{1}>Y_{2}$
- Notice that utility from certain income stream is higher even though expected income is lower
- What is the risk premium??
- What certain income would leave the person with a utility of 18 ? $\mathrm{U}=\mathrm{Y}^{0.5}$
- So if $18=\mathrm{Y}^{0.5,} 18^{2}=\mathrm{Y}=324$
- Person is willing to pay $400-324=\$ 76$ to avoid moving to the risky job

- What does this imply about tolerance for risk?
- Notice that at $\mathrm{E}(\mathrm{Y})=\mathrm{Y}_{3}$, expected utility is U_{3}.
- Utility from a certain stream of income at Y_{3} would generate U_{4}. Note that $\mathrm{U}_{3}>\mathrm{U}_{4}$
- This person prefers an uncertain stream of Y_{3} instead of a certain stream of Y_{3}
- This person is 'risk loving'. Again, the result is driven by the assumption are $\mathrm{U}^{`}$

Risk Neutral

- If utility function is linear, the marginal utility of income is the same for all values of income
- U'>0
- U'' $=0$
- The uncertain income $\mathrm{E}(\mathrm{Y})$ and the certain income Y_{3} generate the same utility
- This person is considered risk neutral
- We usually make the assumption firms are risk neutral

Example
- 25% chance of $\$ 100$
- 75% chance of $\$ 1000$
- $\mathrm{E}[\mathrm{Y}]=0.25(100)+0.75(1000)=\$ 775$
- $\mathrm{U}=\mathrm{Y}$
- Compare to certain stream of $\$ 775$

Benefits of insurance

- Assume declining marginal utility
- Person dislikes risk
- They are willing to receive lower certain income rather than higher expected income
- Firms can capitalize on the dislike for risk by helping people shed risk via insurance

Simple insurance example

- Suppose income is know $\left(\mathrm{Y}_{1}\right)$ but random --shocks can reduce income
- House or car is damaged
- Can pay \$ to repair, return you to the normal state of world
- L is the loss if the bad event happens
- Probability of loss is P_{1}
- Expected utility without insurance is
- $\mathrm{E}(\mathrm{U})=\left(1-\mathrm{P}_{1}\right) \mathrm{U}\left(\mathrm{Y}_{1}\right)+\mathrm{P}_{1} \mathrm{U}\left(\mathrm{Y}_{1}-\mathrm{L}\right)$
- Suppose you can buy insurance that costs you PREM. The insurance pay you to compensate for the loss L .
- In good state, income is
- Y-Prem
- In bad state, paid PREM, lose L but receive PAYMENT, therefore, income is
- Y-Prem-L+Payment
- For now, lets assume PAYMENT=L, so
- Income in the bad state is also
- Y-Prem
- Notice that insurance has made income certain. You will always have income of Y-PREM
- What is the most this person will pay for insurance?
- The expected loss is $\mathrm{p}_{1} \mathrm{~L}$
- Expected income is $\mathrm{E}(\mathrm{Y})$
- The expected utility is U_{2}
- People would always be willing to pay a premium that equaled the expected loss

- Suppose income is $\$ 50 \mathrm{~K}$, and there is a 5% chance of
- $\mathrm{E}(\mathrm{U})=\mathrm{P} \ln (\mathrm{Y}-\mathrm{L})+(1-\mathrm{P}) \ln (\mathrm{Y})$ having a car accident that will generate $\$ 15,000$ in loss
- $\mathrm{E}(\mathrm{U})=0.05 \ln (35,000)+0.95 \ln (50,000)$
- $\mathrm{U}=\ln (\mathrm{y})$
- Some properties of logs
$\mathrm{Y}=\ln (\mathrm{x})$ then $\mathrm{e}^{\mathrm{y}}=\exp (\mathrm{y})=\mathrm{x}$
$\mathrm{Y}=\ln \left(\mathrm{x}^{\mathrm{a}}\right)=\mathrm{a} \ln (\mathrm{x})$
$\mathrm{Y}=\ln (\mathrm{xz})=\ln (\mathrm{x})+\ln (\mathrm{z})$
- $\mathrm{E}(\mathrm{U})=10.8$
- What is the most someone will pay for insurance?
- People would purchase insurance so long as utility with certainty is at least 10.8 (expected utility without insurance)
- $\mathrm{U}_{\mathrm{a}}=\mathrm{U}(\mathrm{Y}-$ Prem $) \geq 10.8$
- $\operatorname{Ln}(\mathrm{Y}-\mathrm{PREM}) \geq 10.8$
- Y-PREM $=\exp (10.8)$
- PREM $=\mathrm{Y}-\exp (10.8)=50,000-49,021=979$
- Recall that the expected loss is $\$ 750$ but this person is willing to pay more than the expected loss to avoid the risk
- Pay $\$ 750$ (expected loss), plus the risk premium (\979\$ 750)=229$

- Firms are risk neutral, so they are interested in expected profits
- Expected profits $=$ revenues - costs
- Think of the profits made on sales to one person
- A person buys a policy that will pay them q dollars ($q \leq L$) back if the event occurs
- To buy this insurance, person will pay " a " dollars per dollar of coverage
- Cost per policy is fixed t
- Revenues $=\mathrm{aq}$
- a is the price per dollar of coverage
- Costs $=\mathrm{pq}+\mathrm{t}$
- For every dollar of coverage (q) expect to pay this p percent of time
- $\mathrm{E}(\pi)=\mathrm{aq}-\mathrm{pq}-\mathrm{t}$
- Let assume a perfectly competitive market, so in the long run π $=0$
- What should the firm charge per dollar of coverage?
- $\mathrm{E}(\pi)=\mathrm{aq}-\mathrm{pq}-\mathrm{t}=0$
- $a=p+(t / q)$
- The cost per dollar of coverage is proportion to risk
- t / q is the loading factor. Portion of price to cover administrative costs
- Make it simple, suppose $t=0$.
$-\mathrm{a}=\mathrm{p}$
- If the probability of loss is 0.05 , will change 5 cents per $\$ 1.00$ of coverage
- In this situation, if a person buys a policy to insure L dollars, the 'actuarially fair' premium will be LP
- An actuarially fair premium is one where the premium equals the expected loss
- In the real world, no premiums are 'actuarially fair' because prices include administrative costs called 'loading factors'

How much insurance will people purchase when prices are actuarially fair?

- With insurance
- Pay a premium that is subtracted from income
- If bad state happens, lose L but get back the amount of insurance q
- They pay $p+(t / q)$ per dollar of coverage. Have q dollars of coverage - so they to pay a premium of $\mathrm{pq}+\mathrm{t}$ in total
- Utility in good state
$-\mathrm{U}=\mathrm{U}[\mathrm{Y}-\mathrm{pq}-\mathrm{t}]$
- Utility in bad state
$-\mathrm{U}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}-\mathrm{t}]$
- $\mathrm{E}(\mathrm{u})=(1-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pq}-\mathrm{t}]+\mathrm{pU}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}-\mathrm{t}]$
- Simplify, let $\mathrm{t}=0$ (no loading costs)
- $\mathrm{E}(\mathrm{u})=(1-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pq}]+\mathrm{pU}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}]$
- Maximize utility by picking optimal q
- $\mathrm{dE}(\mathrm{u}) / \mathrm{dq}=0$
- $\mathrm{E}(\mathrm{u})=(1-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pq}]+\mathrm{pU}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}]$
- $\mathrm{dE}(\mathrm{u}) / \mathrm{dq}=(1-\mathrm{p}) \mathrm{U}^{\prime}(\mathrm{y}-\mathrm{pq})(-\mathrm{p})$
- $\quad+\mathrm{pU}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq})(1-\mathrm{p})=0$
- $\mathrm{p}(1-\mathrm{p}) \mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq})=(1-\mathrm{p}) \mathrm{pU}^{\prime}(\mathrm{Y}-\mathrm{pq})$
- (1-p)p cancel on each side
- $\mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq})=\mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{pq})$
- Optimal insurance is one that sets marginal utilities in the bad and good states equal
- $\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}=\mathrm{Y}-\mathrm{pq}$
- Y's cancel, pq's cancel,
- $q=L$
- If people can buy insurance that is 'fair' they will fully insure loses.

Insurance w/ loading costs

- Insurance is not actuarially fair and insurance does have loading costs
- Can show (but more difficult) that with loading costs, people will now under-insure, that is, will insure for less than the loss L
- Intution? For every dollar of expected loss you cover, will cost more than a $\$ 1$
- Only get back $\$ 1$ in coverage if the bad state of the world happens

- $\mathrm{E}(\mathrm{u})=(1-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pqk}]+\mathrm{pU}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pqk}]$
- $\mathrm{dE}(\mathrm{u}) / \mathrm{dq}=(1-\mathrm{p}) \mathrm{U}^{\prime}(\mathrm{y}-\mathrm{pqk})(-\mathrm{pk})$
- $\quad+\mathrm{pU}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pqk})(1-\mathrm{pk})=0$
- $\mathrm{p}(1-\mathrm{pk}) \mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pqk})=(1-\mathrm{p}) \mathrm{pk} \mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{pqk})$
- p cancel on each side
- $(1-\mathrm{pk}) \mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pkq})=(1-\mathrm{p}) \mathrm{kU} \mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{pkq})$
- $\quad(\mathrm{a})(\mathrm{b})=(\mathrm{c})(\mathrm{d})$
- Since $\mathrm{k}>1$, can show that
- $(1-\mathrm{pk})<(1-\mathrm{p}) \mathrm{k}$
- Since (a) < (c), must be the case that
- $(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pqk})<(\mathrm{Y}-\mathrm{pqk})$
- Y and -pqk cancel
- $-\mathrm{L}+\mathrm{q}<0$
- Which means that $\mathrm{q}<\mathrm{L}$
- When price is not 'fair' you will not fully insure
- (b) $>$ (d)
- $\mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pkq})>\mathrm{U}^{\prime}(\mathrm{Y}-\mathrm{pkq})$
- Since $\mathrm{U}^{\prime}(\mathrm{y} 1)>\mathrm{U}^{\prime}(\mathrm{y} 2)$, must be that $\mathrm{y} 1<\mathrm{y} 2$

Demand for Insurance

- Both people have income of Y
- Each person has a potential health shock
- The shock will leave person $1 \mathrm{w} /$ expenses of E 1 and will leave income at $\mathrm{Y} 1=\mathrm{Y}-\mathrm{E} 1$
- The shock will leave person $2 \mathrm{w} /$ expenses of E 2 and will leave income at $\mathrm{Y} 2=\mathrm{Y}-\mathrm{E} 2$
- Suppose that
- E1>E2, Y1<Y2

- Expected utility locus
- Line ab for person 1
- Line ac for person 2
- Expected utility is
- Ua in case 1
- Ub in case 2
- Certainty premium -
- Line (de) for person 1, Difference Y3 - Ya

Implications

- Do not insure small risks/high probability events
- If you know with certainty that a costs will happen, or, costs are low when a bad event occurs, then do not insure
- Example: teeth cleanings. You know they happen twice a year, why pay the loading cost on an event that will happen?
- Line (fg) for person 2, Difference Y3 - Yb
- Insure catastrophic events
- Large but rare risks
- As we will see, many of the insurance contracts we see do not fit these characteristics - they pay for small predictable expenses and leave exposed catastrophic events

Some adjustments to this model

- The model assumes that poor health has a monetary cost and that is all.
- When experience a bad health shock, it costs you L to recover and you are returned to new
- Many situations where
- health shocks generate large expenses
- And the expenses may not return you to normal
- AIDS, stroke, diabetes, etc.

Note that:

- At Y_{1},
$-\mathrm{U}\left(\mathrm{Y}_{1}\right)>\mathrm{V}\left(\mathrm{Y}_{1}\right)$
$-U^{\prime}\left(Y_{1}\right)>V^{\prime}\left(Y_{1}\right)$
- Slope of line aa > slope of line bb
- Notice that slope line aa = slope of line cc
$-U^{\prime}\left(Y_{1}\right)=V^{\prime}\left(Y_{2}\right)$

What does this do to optimal insurance

- $\mathrm{E}(\mathrm{u})=(1-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pq}-\mathrm{t}]+\mathrm{pV}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}-\mathrm{t}]$
- Again, lets set $\mathrm{t}=0$ to make things easy
- $\mathrm{E}(\mathrm{u})=(1-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pq}]+\mathrm{pV}[\mathrm{Y}-\mathrm{L}+\mathrm{q}-\mathrm{pq}]$
- $\mathrm{dE}(\mathrm{u}) / \mathrm{dq}=(1-\mathrm{p})(-\mathrm{p}) \mathrm{U}[\mathrm{Y}-\mathrm{pq}]$ $+p(1-p) V^{`}[Y-1+q+p q]=0$
- $\mathrm{U}^{`}[\mathrm{Y}-\mathrm{pq}]=\mathrm{V}^{`}[\mathrm{Y}-1+\mathrm{q}-\mathrm{pq}]$
- Just like in previous case, we equalize marginal utility across the good and bad states of the world
- Recall that
$-U^{\prime}(y)>V^{\prime}(y)$
$-U^{\prime}\left(y_{1}\right)=V^{\prime}\left(y_{2}\right)$ if $y_{1}>y_{2}$
- Since $U^{`}[Y-p q]=V^{`}[Y-1+q-p q]$
- In order to equalize marginal utilities of income, must be the case that
$[\mathrm{Y}-\mathrm{pq}]>[\mathrm{Y}-1+\mathrm{q}+\mathrm{pq}]$

Allais Paradox

- Which gamble would you prefer
- 1A: $\quad \$ 1$ million $w /$ certainty
- 1B: $\quad(.89, \$ 1$ million $),(0.01, \$ 0),(0.1, \$ 5$ million $)$
- Which gamble would you prefer
- 2A: $\quad(0.89, \$ 0),(0.11, \$ 1$ million $)$
- 2B: $\quad(0.9, \$ 0),(0.10, \$ 5$ million $)$
- $1^{\text {st }}$ gamble:
- $\mathrm{U}(1)>0.89 \mathrm{U}(1)+0.01 \mathrm{U}(0)+0.1 \mathrm{U}(5)$
- $0.11 \mathrm{U}(1)>0.01 \mathrm{U}(0)+0.1 \mathrm{U}(5)$
- Now consider gamble 2
- $0.9 \mathrm{U}(0)+0.1 \mathrm{U}(5)>0.89 \mathrm{U}(0)+0.11 \mathrm{U}(1)$
- $0.01 \mathrm{U}(0)+0.1 \mathrm{U}(5)>0.11 \mathrm{U}(1)$
- Choice of Lottery 1 A and 2 B is inconsistent with expected utility theory

