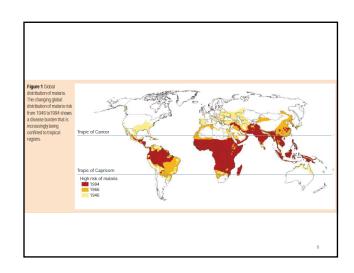
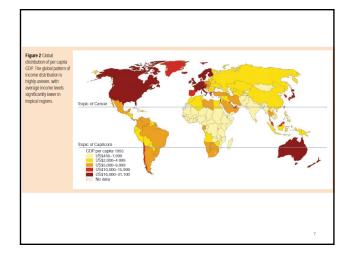

Health and Economic Growth

Health Economics
Bill Evans
Fall 2020

Preston Curve


- Suggestive of a causal link greater economic success increases life expectancy
- Could also suggest health is key to development
 economies grow with a healthy population
- Belief by many that poor health is holding back the development of many countries – especially in Africa


Many interesting questions

- Role of rising incomes?
- What do those rising incomes purchase that allows mortality to fall?
- Can you "jump start" the change in mortality?
- Q we are going to consider is a little different does health detract from growth and can a healthier population improve economic returns?
 - Some suggestive evidence from previous section

Case study: Malaria

- Burden
 - 300-500 million cases per year
 - 1 -3 million fatalities, mostly children
 - 90% of malaria mortality in Africa
- · Centered on tropics
 - Transmission less likely when temp <18°C (64.4)
 - Parasite dies at 16°C (60.8)
- Has been successfully eradicated in the US

Jeff Sachs

 "...malaria not only takes an enormous human toll in Africa, but also contributes to an enormous economic loss and is a barrier to economic growth. Investments in malaria control thus offer an enormous return in lives saved and in economic benefits for Africa."

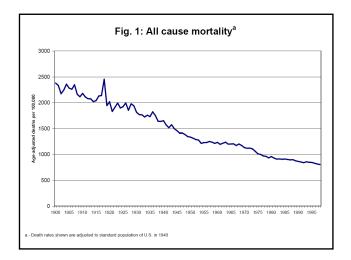
What we do in this lecture

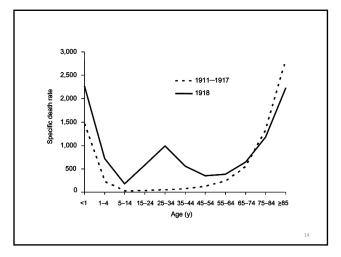
- Isolate pathways through which health can impact growth. Provide:
 - Theoretical link
 - Empirical evidence for each of these links
 - Emphasis on historical data
- Some examples rapid changes in mortality does it impact health?

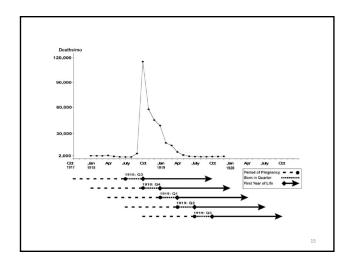
Bloom and Canning

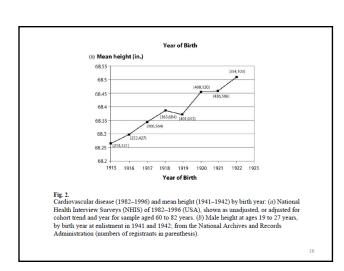
4 pathways linking health to growth

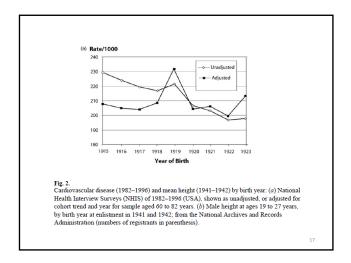
- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend

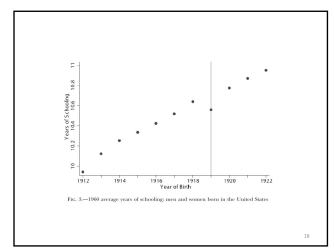

10


Health and productivity


- Many good papers demonstrate a link between heath shocks and
 - Contemporaneous productivity
 - Productivity later in life
- Much from developing country
- One quick example from the US -- 1918 Flu epidemic

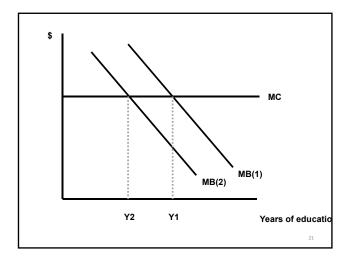

1918 Flu Epidemic


- Spanish flu
- World wide epidemic
 - Killed 30-50 million, 675K in the US
- Those particularly vulnerable
 - Children
 - Compromised immune system
 - Pregnant women



Bloom and Canning

4 pathways linking health to growth

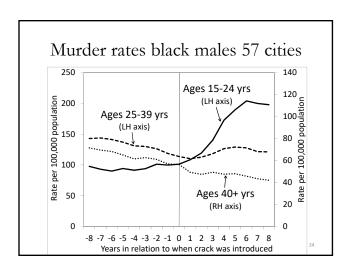

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend

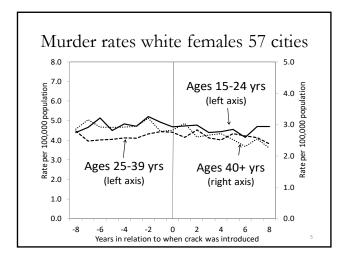
Income C D

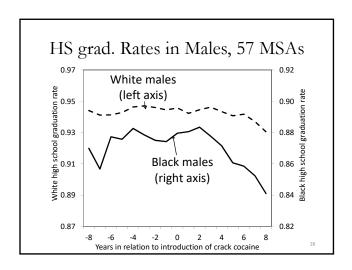
\$0

A Invest of PV(A+B)<PV(C)
Invest of PV(A+B)<PV(C+D)

18 22 55 65


Evidence: Rise of Crack Cocaine


- Crack enters in 1982 on coasts spreads to the center of the country
- Devastating to young black males
 - 2x ↑ murder rate
 - $-4x \uparrow$ in incarceration rates
- Human capital models should see↓ investment
 - → life expectancy
 - – ↓ job prospects (due to prison records)
 - ↑ "outside" option

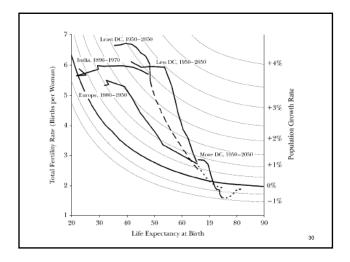

22

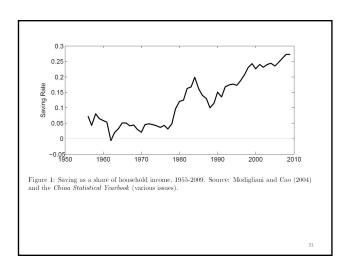
When Crack Arrives

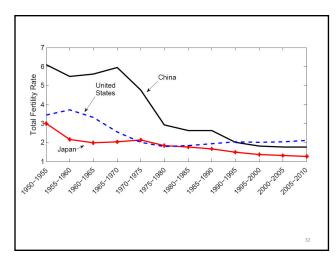
- 1982: NY, LA, Miami
- 1983: Atlanta, Riverside, SF
- 1984: Seattle, Tampa, San Jose, Ft. Lauderdale
- 1985: Detroit, Houston, KC, Orange Co., Philly, DC
- 1986: Boston, Chicago, Cleveland, Indy, Memphis, MSP, New Orleans, Newark, Sacramento
- 1987: Dallas, Portland, Milwaukee, Hartford, Newark, Providence, Greesnboro/WS

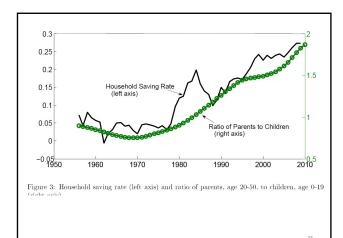
Are there other situations where there are rapid changes in mortality that one can use in the same manor?

Bloom and Canning

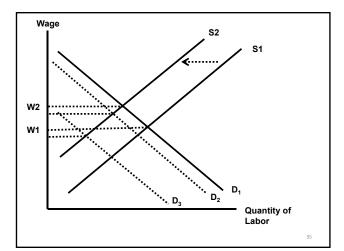

4 pathways linking health to growth

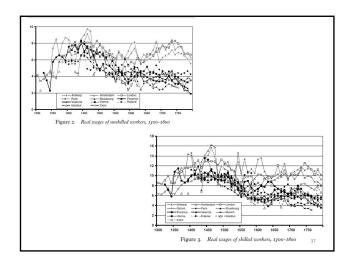

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend


Bloom and Canning


4 pathways linking health to growth

- 1. Productivity
- 2. Education
- 3. Investments in Physical Capital
- 4. Demographic dividend



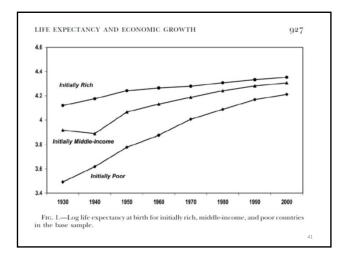


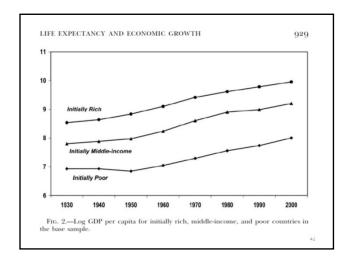
Alternate hypothesis: Black Plague

- Plague strikes Europe 1348-1350
- Carried by flees living on black rats
- Shipping routes spread the disease quickly
- Kills 75 200 million
- Reduces pre-plague population in England by 50%

	1300	1400	1500	1600	1700	1800
England and Wales	5,750	3,000	3,500	4,450	5,450	9,250
Netherlands	800	600	950	1,500	1,950	2, 100
Belgium	1,250	1,000	1,400	1,600	2,000	2,900
Italy	12,500	8,000	9,000	13,300	13,500	18, 100
Spain	5,500	4,500	5,000	6,800	7,400	11,000
Total Europe	94, 200	67,950	82,950	107,350	114,950	192, 230
Source: Paolo Malanim	a (unpublis	shed manus	script).			

Consequences


- Europe in 1300s was mired in stagnant wages and high population
- Massive decline in population increased value of labor
- Jump-started income growth in Europe
- Young: "Gift of Dying." Argues the same for Africa and AIDS


38

Acemoglu and Johnson (JPE)

- International epidemiological transition
 - Began in 1940
 - Large improvements world wide in life expectancy
- Three factors
 - Drugs (mass production of penicillin, antibiotics), vaccines (polio, measles, etc.), DDT
 - WHO
 - Change in universal values encouraged spread of changes to poor countries

- IDT was "technology" based
- Therefore it impacted poor countries the most (impacted those most in need)
- Exogenous change in mortality
- Since it impacted poor countries the most, we should see a greater change in GDP for this group if health has an impact on the economy

Explaining results

- Drop in mortality increases population
- Should increase output
- BUT -- because capital is fixed
 - Capital used more intensely
 - Productivity declines, reduces wages
- Growth in output from more people is not enough to compensate for loss in productivity per worker
- Black plague argument

LIFE EXPECTANCY,	POPULATIO		AND PERCE ESTIMATES	NTAGE OF PO	OPULATION	UNDER 20:
	WHOLE WORLD	Base S	Sample	Low- and Middle- Income Countries Only	Base Sample	LOW- AND MIDDLE- INCOME COUNTRIE ONLY
	(1)	(2)	(3)	(4)	(5)	(6)
		A. De	ependent Var	riable: Log Pop	oulation	
	Just 1960 and 2000	Just 1960 and 2000	Just 1940 and 1980	Just 1940 and 1980	Just 1940 and 2000	Just 1940 and 2000
Log life expectancy	1.60 (.30)	1.75 (.40)	1.62 (.19)	1.86 (.26)	2.01 (.22)	2.25 (.32)
Number of countries	120	59	47	36	47	36

		OLS I	ESTIMATES			
	WHOLE WORLD:	Base S	Sample	LOW- AND MIDDLE- INCOME COUNTRIES ONLY:	Base Sample:	LOW- AND MIDDLE- INCOME COUNTRIE ONLY:
	Just 1960 and 2000 (1)	Just 1960 and 2000 (2)	Just 1940 and 1980 (3)	Just 1940 and 1980 (4)	Just 1940 and 2000 (5)	Just 1940 and 2000 (6)
	(1)			1-7	(-7)	(0)
		A.	Dependent	Variable: Log	GDP	
Log life expectancy	1.17	1.55	.78	.65	.85	.43
	(.56)	(.35)	(.33)	(.42)	(.28)	(.38)
Number of countries	120	59	47	36	47	36
		B. Depe	ndent Varial	ole: Log GDP	per Capita	
Log life expectancy	42	19	81	-1.17	-1.14	-1.79
	(.58)	(.54)	(.26)	(.38)	(.27)	(.41)
Number of countries	120	59	47	36	47	36

Bleakley - Hookworm Removal in South

- Intestinal parasite, absorbs nutrients
- Symptoms: lethargy and anemia
- Death is rare
- Hookworm eventually dies, but re-infection high
- Two ways to reduce harm
 - Treatment (cheap de-worming medicine)
 - Prevention (reduced exposure to fecal matter)

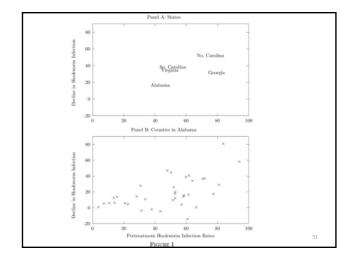
46

Rockefeller Sanitation Commission

- Formed in 1910
- Goal eradicate hookworm in the US
- Dr. Charles Stiles convinced Rockefeller of the problem
- Surveyed 600 counties in south
- Found 40% hookworm infection rate among kids

Campaign

- Primary period was 1910-15
- Treated over 400K with de-worming medicine
- Educated doctors to recognize disease
- Public education about prevention
- Program eventually taken over by state/local governments


Questions

- Did campaign reduce hookworm incidence?
- Did campaign improve educational outcomes?

Research Strategy

- Hookworm infection rates differ across areas
- Areas with high infection rates should benefit more from the campaign
- Basic difference-in-difference model
 - Low infection rate areas treated
 - High infection rates are control
- Sound familiar?

50

Econometric model

 $Y_{ijt} = (H_{j}^{pre} x Post_{j})\beta + \delta_{t} + \gamma_{j} + X_{ijt}\Gamma + \varepsilon_{ijt}$

person i, area j, time t

 Y_{ijt} outcome (like enrolled in school)

 $Post_i = 1 after 1915$

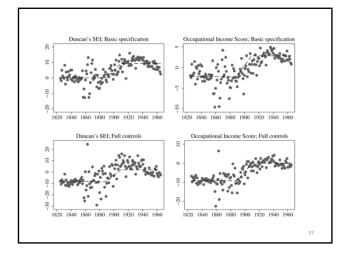
 H_i^{pre} = hookwork incidence rate before 1910

 δ_{ι} and γ_{j} are time and area effects

 X_{ijt} are control variables

He	OOKWORM AND HU	TABLE II JMAN CAPITAL: B	ASIC RESULTS	
Dependent variable	es:	(1) School enrollment	(2) Full-time school attendance	(3) Literacy
	Panel	A: Basic results	ı	
Census years	Estimating equation			
(A) 1910–1920	(1)	0.0883*** (0.0225)	0.1591*** (0.0252)	0.0587*** (0.0186)
(B) 1900–1950	(1)	0.0608*** (0.0261)	0.1247*** (0.0286)	
(C) 1900–1950	(2)	0.0954***	0.1471*** (0.0287)	

Falsification test


- Hookworms are thought to alter outcomes for children
- Suppose we look at adults over the same time period
- Should they be impacted by the intervention?

54

	(1)	(2)	(3)	(4)	(5)
Samples:	Whole	Male	Female	White	Black
		Para	meter estir	nates	
Dependent variables:					
Literacy	0.0062	-0.0107	0.0203	0.0107	-0.0014
	(0.0095)	(0.0108)	(0.0127)	(0.0112)	(0.0229)
Labor-force	-0.0069	-0.0069	-0.0056	-0.0212	0.0036
participation	(0.0134)	(0.0065)	(0.0284)	(0.0124)	(0.0249)
Occupational income	0.0526	-0.0186	0.0581	0.0855	0.0224
score	(0.2836)	(0.4912)	(0.4163)	(0.3903)	(0.3861
Lives in an urban area	0.0157	0.0030	0.0280	0.0199	0.0132
	(0.0172)	(0.0190)	(0.0177)	(0.0226)	(0.0245

Each cell reports the coefficient estimate on Hookworm × Post for the indicated sample and dependent variable. Robust standard errors in parentheses (clustering on SRA times post, number of clusters = 230). None of the reported coefficients is statistically significant at conventional confidence intervals. The sample consists of all native-born white and black adults in the 1910-1920 PIJMS between the ages of 25 and 56 (inclusive) in the RSC-surveyed geographic units. Reporting of additional coefficient estimates is suppressed. Specifications also include dummy variables for SEA, age, black, female, and year, as well as interactions of the demographic variables with Post,

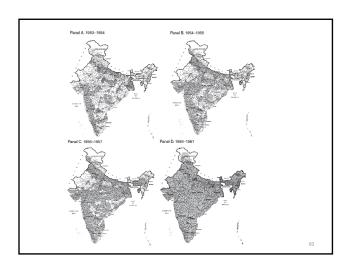
	(1)	(2)	(3)	(4)	(5)	(6)
Controls for mean-reversion:	No	Yes	No	Yes	No	Yes
Dependent variables:	Log earn	nings, 1939	Years of sci	hooling, 1940	Literacy	status, 1920
		Panel A: Main	results			
Independent variables						
Hookworm infection Rate \times	0.0286***	0.0234**	-0.0243	0.0037	0.0158***	0.0115***
years of exposure	(0.0066)	(0.0093)	(0.0328)	(0.0357)	(0.0019)	(0.0020)
	Panel I	3: Changing reti	urns to schooling			
Independent variables						
Hookworm infection Rate ×	0.0254***	0.0219***				
Years of exposure Infection × Years of exposure ×	(0.0044)	(0.0063)	n	.a.	1	1.8.
Years of schooling	(0.0009)	(0.0009)				
rears of schooling	(0.0009)	(0.0009)				
First row, first column:						
50% infection rate, 10 ye	ears of expo	sure				
0.50(10)(0.029) = 0.145	or a 14.5% i	increase in e	earnings			

Why the disparity in results?

- Bleakley shows convincing evidence of growth in outcomes later in life given medical advances in early life
- Similar results from 1918 Flu
- What is different about Acemoglu and Johnson?

58

Cutler et al., Malaria Eradication in India


- Will reductions in Malaria necessarily lead to higher education?
- What are definitive predictions about outcomes?
 - Income/consumption
 - education?

Malaria Eradication in India

- National Malaria Control Program launched April of 1953
- Heavy use of DDT
 - Effective, nontoxic for humans, cheap
 - Eradicated malaria in Taiwan, Caribbean, Balkans, parts of North Africa, north Australia, large parts of South Pacific
- Prior to program, 75 million annual cases in India and 800K annual deaths (~350 million people)

- · Two annual rounds of spraying
 - 1/3 of country initially part of program
 - Program reformulated in 1958
 - Whole country part of program in 1960-61
- Strategy Difference-in-Difference
 - Compare outcomes of groups some born before and after eradication program
 - Variation in timing of program across regions
 - Some areas had higher pre-treatment malaria rates so allow treatment to vary

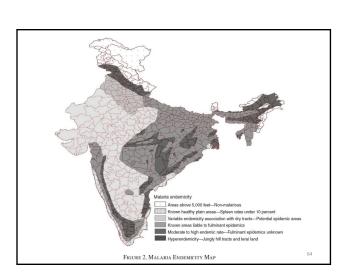
61

Model

 $y_{icd} = x_{icd}\gamma + POST_cxMalaria_d\beta + \delta_d + \alpha_c + \varepsilon_{icd}$

i = person, c = cohort, d = district

y = outcome


x = cov ariates

 $POST_c = 1$ if cohort was born after eradication program

 $Malaria_d = malaria incidence rate prior to program$

 $\alpha_d = district \ effects$

 $\delta_c = cohort\ effects$

		Litera (ages 15				Primary (ages 1		
Dependent variable:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
A2. Districts classified by aver	rage malaria cate	egory						
$Post \times malaria \ index$	-0.017 (0.006)***	0.004 (0.005)	-0.001 (0.006)	0.008 (0.011)	-0.016 (0.007)**	0.002 (0.006)	-0.005 (0.008)	0.009
Observations	111,139	111,139	111,139	111,139	111,139	111,139	111,139	111,13
State × post fixed effects		X				X		
Region × post fixed effects			X	X			X	X
District-specific linear trends				X				X
B2. Districts classified by avera	nge malaria cate	gory						
Post × malaria index	0.005 (0.006)	0.011 (0.006)*	-0.006 (0.006)	0.008 (0.010)	-0.004 (0.007)	0.005 (0.006)	-0.012 (0.008)	(0.002)
Observations	107,472	107,472	107,472	107,472	107,472	107,472	107,472	107,472
State × post fixed effects		X				X		
Region × post fixed effects			X	X			X	X
District-specific linear trends				X				X

	Log per capita household expenditure (ages 20-60)						
Dependent variable:	(1)	(2)	(3)	(4)			
A2. Districts classified by average ma	laria category						
$Post \times malaria \ index$	0.008 (0.004)**	0.011 (0.005)**	0.019 (0.006)***	0.008			
Observations	75,230	75,230	75,230	75,230			
State × post fixed effects Region×post fixed effects District-specific linear trends		X	X	X X			
B2. Districts classified by average mal	aria category						
Post × malaria index	-0.003 (0.004)	-0.003 (0.004)	0.004 (0.005)	0.011 (0.014			
Observations	75,212	75,212	75,212	75,212			
State × post fixed effects Region × post fixed effects District-specific linear trends		X	Х	X X			