Employer mandates and health insurance reform

Health Economics Bill Evans

Introduction

- Tax code encourages firms to provide health insurance to workers
- Therefore, employers are the primary source of health insurance for the non-elderly, non-indigent
- Also the primary reason for such a high uninsurance rate
- Reform proposals tend to be centered around expanding insurance through employers

2

Tradeoffs

- The government sometimes mandates employers provide a particular benefit
- Sometimes the government taxes the firm and then provides the benefit to all
- When is one more preferred than another? Do we get less distortions from one program than another?

Language

- Legislation tends to suggest that firms are the ones paying for the mandate
 - Firms need to pay their "fair share"
- Ex: MA enacted "pay or play" in 2006. that portion of act was called "Fair Share Contribution."
- Important question is one of incidence who pays for the mandate?

Current context

• Should the government

- Mandate firms provide health insurance
 - Tie the benefit to employment
 - · only benefit those that work
- Should it tax current workers and provide the benefit directly to all
- Similar but distinct distortions in both cases

Examples

• Many examples of government mandates – firms required to provide some benefit to workers – a benefit tied to employment

6

8

- Three key examples
 - Unemployment insurance
 - Workers compensation
 - Social security

Example: Unemployment insurance

- All states required to pay for unemployment insurance (UI) for workers
- Workers receive UI is they are fired/layed off
- Do not receive benefits if they quit
- Premium is a function of
 - Earnings
 - benefit level
 - firm's previous history of job turnover

7

- Premiums are collected from firms
- Benefits are provided by state UI programs
- Program taxes firms, then provides workers with a benefit

Raise taxes to pay for some Government-provided benefit

- Suppose that the govt. will provide some benefit TO ALL not just to workers
- · Benefit is not contingent on employment
- The funds for this program must come from somewhere

- For simplicity, lets assume it will come from a payroll tax collected from firms
 - Fixed costs per hour of employment
 - Increase in the hourly costs of labor
- Example: Medicare primarily financed by payroll tax, available to all aged 65 and above

10

- D1 is the original demand for labor before the payroll tax
 - At W1 firms willing to hire H1 hours
- Remember, Y axis is the wage transacted between firms and employees
- Impose a payroll tax of \$t/hour
- · For every hour hired
 - Firms pays wage to worker
 - Additional \$t to government

11

q

- Under the payroll tax, how much are firms willing to hire?
- To hire H1 hours, wage must fall to W1-t
 - Firms is only willing to pay a total of W1 per hour if it hires H1 workers
 - Firms pays W1-t to workers
 - Addition t to the govt.
 - Total of W1
- Payroll tax shifts down the demand for labor by amount equal to the tax

- Market equilibrium before tax

 W1, H1

 Payroll tax shifts down the demand for labor by an amount equal to the tax
- Market clearing wage falls to W2, employment falls to H2
- The payroll tax to fund health insurance has distorted the labor market

Tax incidence – who pays for the tax?

- · Notice two things
 - Wage received by workers has fallen from W1 to
 W2. Workers are paying for the coverage in the form of lower wages
 - Wage paid by the firm has increased
 - Wage transacted between firm/worker fallen from W1 to W2
 - Total compensation is W2 + t, so, cost has increased from W1 to W2+t

- Old friend dead weight loss has appeared again
- Because labor demand had declined, consumer's surplus has shrunk
 - Old CS = Area above line $W_1 d$ and below demand
 - New CS = Area above line W_2a and below demand
 - 17

- Because supply has fallen, there is a change in producers surplus
 - Old PS = area below line W_1d and above supply

- New PS = area below W_2C and above supply
- Total surplus has fallen by
 Area facdg

- Some of that area is captured by the government in the form of taxes
- H2(t) = area (facg)
- Firms pay area (fabh)
- Workers pay area (hbcg)
- An area is lost (adg) -- dead weight loss of taxation

Employer mandate

- Employers must provide health insurance to workers
- Suppose that the cost of the program is \$t per hour to the firm
- The mandate has the same impact as a per unit payroll tax
 - To hire H1 hours, firm is willing to pay W1
 - With a tax, the only way they would hire H1 is if wages fell to W1-t

What about labor supply?

- Height of supply curve represents what people would supply to labor market at prevailing wage
- Position of labor supply curve is a function of job attributes
 - When the job 'improves', people willing to supply more at any prevailing wage
 - As quality of job declines, they supply less

- Original supply curve is S1

 At wage W1, workers willing to supply H1
- With employer mandate, firms now provide health insurance
- Workers value the insurance, so at any hours, they are willing to take less in wages for the same job
- supply curve shifts down by a distance equal to the benefit (S1+V) $$_{\rm 28}$$

Three cases

- Case 1: V=0 - workers do not value mandate at all
- Case 2: V<T
 - Workers value the mandate less than they pay in taxes
- Case 3: V=T
 - Workers value the mandate at what it costs them in taxes

- Consider what is more efficient: govt mandate firms provide or govt tax and then provide
- E1 is initial equilibrium
- E2 is equilibrium under govt tax/provision
- E3 is equilibrium under employer mandate

Case 1

Labor demand

33

35

- Under tax will shift down by the amount of the tax
- Under mandate, will shift down by the amount of the implicit tax
- Labor supply:
 - Will not change in either situation because workers do not valueE1 original equilibrium

- Demand curve falls by t
- Supply curve falls by v

- Without mandates, Equilibrium E1. H1 hours, workers required W1 in wage.
- With mandates, equilibrium E₃. Quality of the job improves, so supply curve falls, new hours/wages are H3/W3
- What is the equilibrium if the govt taxes and provides the benefits directly? E2
- Govt mandates look superior in this case

- Demand curve shifts down by t
- Supply curve shifts down by v

• Workers

- Receive W1-t in an hourly wage
- Receive t in benefits
- Receive W1-t+t = W1 in hourly benefits
- Firms
 - Pay W1-t in hourly wage
 - Pay t in benefits
 - Pay W1 in total compensation per hour

45

When workers value the benefit

- Mandates are superior to govt tax/provision
- Why: when tie benefits to the job, the labor market distortions of govt tax/provision are reduced/eliminated because of a supply response
- Key result: if workers value benefits they pay for the mandated benefits in the form of lower wages --

46

Example

- Supply: $W_s = 40 + (1/3)L$
- Demand: $W_d = 190 (2/3)L$
- W is daily wage, L is number of workers willing to work a full day
- Market equilibrium:

$$-W_s = W_d$$

$$-40 + (1/3)L = 190 - (2/3)L$$

$$-150 = L$$

-W = 40 + (1/3)(150) = 90

47

- Case 1: Suppose a mandates increases costs by \$30/day. Workers do not value the benefit. What is the market outcome?
- Demand for workers will fall by a vertical distance of the tax or \$30
- Nothing will happen to supply
- $W_d t = 190 (2/3)L 30 = 160 (2/3)L$
- $W_d t = W_s$

- 160 (2/3)L = 40 + (1/3)L
- L = 120,
- $W_s = 40 + (1/3)L = 50 + (1/3)120 = 80$
- L has fallen by 30 units
- Wage received by workers has fallen by \$10 (from \$90 to \$80)
- 49

- Cost per day for firms hiring workers has increased by \$20
 - Old wage is \$90
 - New cost is \$80 wage + \$30 =\$110 cost per day in benefits

Case 3

- Suppose workers value the benefit at \$30/day (V=30)
- Labor supply curve will shift down by an amount equal to the benefit
- $W_d t$ is still 160-(2/3)L
- Supply is now W_s -v = 40+(1/3)L \$30
- $W_s V = 10 + (1/3)L$

51

- New market equilibrium
- $W_{d}-t = W_{s}-v$
- 160 (2/3)L = 10 + (1/3)L
- L = 150
- $W_d = 60$

- Workers receive a job that is values at \$90/day
 - \$60 in wages
 - \$30 in benefits
- Firms are paying \$90 per day in employment
 - \$60 in wages
 - \$30 in benefits

Gruber

- Prior to 78, few plans covered childbirth
- 1975-79, 23 states passed laws mandating coverage for childbirth
- 1978 Pregnancy Discrim Act, prohibited any differential treatment of pregnancy in employment relationship
- State/Fed law increased cost of health insurance by expanding benefits

54

- Research question: who pays for the additional benefit?
- Readily-identifiable beneficiaries:
 Families w/ worker/spouse in childbearing age
- Easily identifiable group who receive no benefit - Single men
 - Older couples past childbearing age

- Efficiency of group mandates assumes cost shifting via wage
- Some limits
 - Anti-discrim laws
 - Min wage
 - Work practices (unions) that make pay uniform
- If you cannot shift costs, may change incentive to hire the group receiving the benefit

Experimental Design

- Difference-in-difference-
- 1st difference in difference
 - Treatment states before and after intervention
 - Sample includes people likely impacted by the law (married women)
- 2nd difference in difference
 - Treatment states before and after intervention
 - Samples include people not likely impacted (single males and older women)

57

Two potential experiments

- Experiment 1
 - Treatment: states that adopted laws
 - Control: those that did nothing
- Experiment 2:
 - Treatment: Federal law
 - Control: states that had a statute in place

58

- Data: May CPS used to identify insurance status (Now is done in March)
- Problem: Prior to 1978, not all states identified – some in state groups
- Three large states with laws: IL, NJ, NY
- All other states from same region that can be identified prior to 1978 are in control

- Controls: – IL (OH and IN)
 - NY and NJ (MA, CT and NC)

TABLE 1— THE COST OF ADDING MATERNITY BENEFITS TO A HEALTH INSURANCE PACKAGE				
Coverage	Demographic group	Annual cost (1990 dollars)	Annual cost (1978 dollars)	Cost as percentage of 1978 weekhy earnings
Family	20-29-year-old females	\$984	\$360	4.6
Family	30-39-year-old females	\$756	\$277	3.5
Individual	20-29-year-old females	\$324	\$119	1.5
Individual	30-39-year-old females	\$252	\$92	0.9
Family	20-29-year-old males	\$984	\$360	2.9
Family	30-39-year-old males	\$756	\$277	1.7

DDD, N	Iean Lo	og Hour	ly Wag	e
		Before	After	Δ
Treatment: Mar.	Reform	1.547	1.513	-0.034
Women 20-40	No ref.	1.369	1,397	0.028
			$\Delta\Delta$	-0.062
Control: older	Reform	1.759	1.748	-0.011
women and single males	No ref.	1.630	1.627	-0.003
			$\Delta\Delta$	-0.008
			ΔΔΔ	-0.054 62

· Previous two slides

- Maternity benefits are 4-5% of weekly wages for married women ≤ 40
- Wages of this group fell by 5-6%
- What does this imply about efficiency of labor market?

Burkhauser/Simon

- Standard prediction: pay or play will reduce wages of newly insured
- Implicit tax on business of \$2-\$3/hour
- Problem: uninsured concentrated in low wage jobs and wages cannot fall below minimum level
- What will happen for these workers?

63

	% of	% uninsured
Wages	workers	
\$0-\$4.99	1.86	4.15
\$5.0-\$7.24	8.58	19.62
\$7.25-\$10.24	19.61	36.49
\$10.25-\$14.99	25.50	24.04
\$15+	44.45	15.70
	100.00	100.00

	% of	% uninsured
Firm size	workers	
<25	24.9	43.19
25-99	14.94	16.16
100-499	15.36	11.84
500+	44.81	28.82
	100.00	100.00

Two groups (25+ employee size)

- If wages are currently below \$7.25, pay-or-play, none of the mandate will be captured in the form of lower wages
- If wages are \$7.25 to \$10.25, some of the pay or play mandate cannot be captured in the form of lower wages (assume \$3.00/hour cost)

70

Results

- 386K employees without insurance will lose their job as a result of pay or play initiative
- 363K workers employees with insurance from spouse but without EPHI will lose job
- 11 million will gain insurance, cost is roughly 750,000 greater unemployed (0.75 per pt rise in unemployment rate)
- What are the two key assumption?