

- Previous section - outlined the benefits of insurance - smooth consumption and improve welfare
- Model: given loss L, receive q in return from insurance
- Useful model for homeowners or car insurance
- Not so for medical care
- Medical insurance tends NOT to be structured this way
- Policy holder decides when to enter market
- Insurance changes prices for the product
- Therefore, insurance generates a wedge - what doctors receive and what they pay are sometimes very difference
- Insurance has reduced the cost of care to the consumer, and hence, consumer should increase use
- "Moral hazard"

- $1^{\text {st }}$ part - use demand curves to isolate how insurance alters demand for health care
- $2^{\text {nd }}$ part - examine some estimates of the price elasticity of demand
- Along the way, we will point out how difficult it is to get this estimate and how we have had to rely on the rare experiment in this context

Some tools of the trade

- Price elasticity of demand
$-\xi_{d}=\% \Delta \mathrm{Q} / \% \Delta \mathrm{P}$
- Examples:
$-\xi_{d}=-0.3,10 \% \uparrow$ price, $3 \% \downarrow$ in demand
$-\xi_{d}=-1.75,10 \% \uparrow$ price, $17.5 \% \downarrow$ in demand
- When looking at demand curves on the same scale, the steeper demand curve, the lower elasticity of demand (absolute value)

Factors that determine elasticity of demand for medical care

- Services for more acute conditions should have lower elasticity of demand
- You need care at that moment, cannot wait for treatment
- Likewise - anything where you can substitute over time, produces a higher elasticity of demand
- Emergency room visits low elast. of demand
- What about preventive services? Dental care? X-rays?
- Availability of substitutes
- When they are plentiful, greater elasticity of demand
- what about psychoanalysis?
- Generic drugs? AIDS drugs?
$\left.\begin{array}{|l|l|}\hline \text { - Larger fraction of income, greater elast of demand } \\ \text { - Have to think twice about cost } \\ \text { - Long term care/assisted living is expensive, high elast of } \\ \text { demand (and many substitutes, like informal care) }\end{array}\right]$

Demand for medical services

- Like any other good, medical services are consumed on a per unit basis
- Doctor visits, Prescriptions, X-rays, etc.
- Some 'units' are easier to measure
- Each has a price attached to it
- What is different for medical care is that often, the price paid by the patient is not the price of the good (insurance)
- The demand for medical services slopes down just like any other product
- The position of the demand curve can however change radically based on external conditions
- Example: demand for a particular drug is highly dependent on your current state of health
- Some factors that may shift the demand curve
- Medical state
- Socioeconomic status (income and education)
- Price of other medical services
- Example: Compliments
- As price falls for good 1, people are willing to demand more of good 2 at any price

Income elasticity of demand

- $\zeta=\% \Delta \mathrm{Q} / \% \Delta$ Income
- $\zeta=0.25$
- 10% increase in income, 2.5% increase in quantity demanded
- $\zeta=1.5$
- 10\% increase in income, 15% increase in quantity demanded
- Normal goods $\zeta>0$
- Inferior goods $\zeta<0$

Shifts in demand due to health state

- Demand for medical services is state-dependent
- When health is poor, demand may be greater
- At any price, you demand more
- Change in health status could have two effects
- Shift demand
- Make less/more price responsive

- Suppose you are diagnosed w/ high cholesterol
- Predictor of heart disease
- Increased risk of death
- Standard treatment after diagnosis
- Change diet
- Increase exercise
- As cholesterol level rises, ability to control with behavior modification declines
- Therefore, demand for pharmaceutical solution should rise

Shifts due to price of other medical goods

- Strong inter-relationship between different medical services. Some are substitutes, some are compliments
- Price of one procedure can therefore impact the demand for another
- Compliments: Doctors visits and medical tests
- Substitutes: Psychotropic drugs and psychiatric visits

- Type of cost sharing varies a lot by type of insurance system
- Copayments
- Popular in managed care
- For prescription drugs
- Co-insurance
- Frequent in Fee-for-service type of arrangements
- Hospital care and diagnostic tests
- In this class - will most frequently model the impact of coinsurance - a little easier to see the DWL

Notre Dame Insurance, PPO Plan

- \$400 individual deductible
- 85% coinsurance rate (65% if out of network)
- Max out of pocket of $\$ 1950$
- First $\$ 400$ in medical spending, price=1
- After $\$ 400$, price is $\$ 0.15$
- After $\$ 10,733.33$ price falls to $\$ 0$
- Let x be total spending
- You pay 0.15 on every dollar over $\$ 400$ plus the original $\$ 400$
$-(x-400) * 0.15+400=1950$ and $x=\$ 10,733.33$

Copayments

- How do copayments impact demand?
- Example: suppose you pay a $\$ 10$ copay for each prescription (Rx)
- If the $R x$ is $\$ 50$, you pay $\$ 10$, insurance pays $\$ 40$
- Note that
- If $\mathrm{P}<\$ 10$, you pay the price
- if $\mathrm{P} \geq \$ 10$, you only pay $\$ 10$
- What does this do to your demand
- Suppose there is a copayment rate of $\$ \mathrm{C}$
- Without insurance, demand is line (ab)
- At a price of $\$ C$, people will demand Q_{1}
- With a copay of $\$ C$, any price in excess of $\$ C$ generates out of pocket price of only $\$ C$, so demand is vertical at Q ${ }_{1}$
- Demand with a copay is therefore line (acd)

- $Q_{d}=f(P)$ where P is price paid by the consumer
- Coinsurance changes this. Now there is a wedge
between what the provider gets and the patient pays between what the provider gets and the patient pays
- Let
- P_{s} the price received by suppliers (providers)
- P_{d} the price paid by the demanders (patient)

- In our supply and demand graph world, the price axis represents the transacted in the market
- Without coinsurance, let P_{t} be the transacted price $-P_{t}=P_{d}=P_{s}$
- With coinsurance, suppliers receive P_{s} but consumers only have to pay a fraction of that
$-P_{d}=c P_{t}$
- so
- $\mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\mathrm{d}} / \mathrm{c}=\mathrm{P}_{\mathrm{s}}$
- Because consumers only pay a fraction of the transacted price, they are willing to purchase more of the good at the posted transacted price
- Suppose c=25\%
- Without insurance, they would purchase 5 visits a year at $\$ 100 /$ visit
- Now, the transacted price can rise to $\$ 400 /$ visit and they would still demand 5 .
- Doctor is paid $\$ 400$, consumer pays $\$ 100$, same as before
- Consider graph on the next slide
- Without coinsurance
- When $P_{s}=0, Q_{d}=Q_{m}$
- When $P_{s}=P_{m}, Q_{d}=0$
- With coinsurance
$-P_{t}=P_{d} / c=P_{s}$
- When $P_{s}=0, P_{d}$ still $=0, Q_{d}=Q_{m}$
- (demand curve rotates at point a)
- P_{s} would have to rise to P_{m} / c to eliminate demand
- since if $\mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{m}} / \mathrm{c}, \mathrm{P}_{\mathrm{d}}=\mathrm{P}_{\mathrm{s}} \mathrm{c}=\left(\mathrm{P}_{\mathrm{m}} \mathrm{c}\right) / \mathrm{c}=\mathrm{P}_{\mathrm{m}}$

- Without insurance, at price P_{1}, patients would be willing to consume Q_{1}
- With insurance, in order for consumers to demand Q_{1}, the price received by sellers would have to rise to P_{1} / c
- Doctor charges P_{1} / c
- Consumer pays $\left(\mathrm{P}_{1} / \mathrm{c}\right) \mathrm{c}=\mathrm{P}_{1}$
- Consumer is only concerned with the price after coinsurance

Example

- Demand curve without coinsurance
$-P_{d}=100-10 \mathrm{Q}$
- Coinsurance rate of c
- With coinsurance, $P_{t}=P_{d} / c$
- Demand curve with coinsurance
$-\mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\mathrm{d}} / \mathrm{c}=(100-10 \mathrm{Q}) / \mathrm{c}$
$-P_{t}=100 / c-10 Q / c$

- Note that if $\mathrm{c}=0$, when $\mathrm{P}=\$ 50, \mathrm{Q}=5$
- With $\mathrm{c}=0.5, \mathrm{P}=\$ 50, \mathrm{Q}=7.5$

Deadweight loss of insurance

- With coinsurance
- Output \uparrow from Q_{1} to Q_{2}
- Price received by sellers \uparrow from P_{1} to P_{2}
- Recall what height of the demand curve represents
- At Q_{2} consumers value the last unit at P_{3}
- Doctors get P_{2}
- Patients only pay $\mathrm{P}_{2} \mathrm{C}$
- Now there is a wedge between what people value the last unit and what they pay
- Because of this wedge, there is use beyond a socially optimal level
- Consumers value the increased consumption at area $\mathrm{Q}_{1} \mathrm{acQ}_{2}$
- What it cost society to produce this extra output? Area $\mathrm{Q}_{1} \mathrm{ab}_{2}$
- Clearly $\mathrm{Q}_{1} a c Q_{2}<\mathrm{Q}_{1} \mathrm{abQ}_{2}$
- Area (abc) deadweight loss of insurance

What do consumers value the last unit consumed? $-\mathrm{Q}=13$ $-\mathrm{P}_{\mathrm{d}}=40-2 \mathrm{Q}=40-2(13)=14$

- DWL= triangle abc
- Area $=(1 / 2)$ height x base
- = (1/2)(56-14) (13-6)
- = 147

The tradeoffs?

(Why people hate economists)

- Recall from expected utility section
- Insurance increases welfare because it reduces uncertainty
- Consumers are willing to pay a premium to reduce uncertainty
- But -- the structure of insurance is such that consumers do not pay the full dollar price of service, encouraging them to over use, which generates a deadweight loss
- There is an optimal co-insurance rate
- Weight the benefits of spreading risk vs. cost of moral hazard
- Feldman and Dowd
- Use 1980s data
- $\$ 33$ billion to $\$ 109$ billion loss
- 9 to 29% of health care spending (mid 80 s levels)
- 9 to 29% of health care spending in 2007 is $\$ 198$ - $\$ 638$ billion
- Optimal coinsurance rate?
- Estimate puts it at about 33-45\%
- Far above current values (among those that have insurance)

