2

4

Motivating example

- Many districts have summer school to help kids improve outcomes between grades
 - Enrichment, or
 - Assist those lagging
- Research question: does summer school improve outcomes
- Variables:
 - x=1 is summer school after grade g
 - y = test score in grade g+1

- Equation of interest
- $y_i = \beta_0 + x_i\beta_1 + \epsilon_i$
- Problem: what do you anticipate is cov(x_i, ε_i)?

LUSDINE

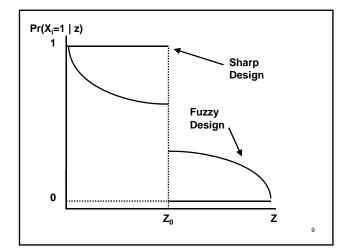
- To be promoted to the next grade, students need to demonstrate proficiency in math and reading
 - Determined by test scores
- If the test scores are too low mandatory summer school
- After summer school, re-take tests at the end of summer, if pass, then promoted

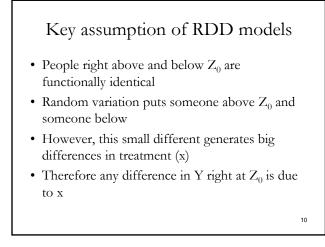
Situation

• Let Z be test score -Z is scaled such that

- Z \geq 0 not enrolled in summer school
- \bullet Z<0 enrolled in summer school
- Consider two kids
 - •#1: Z=ε
 - •#2: Z=-e
 - Where ε is small

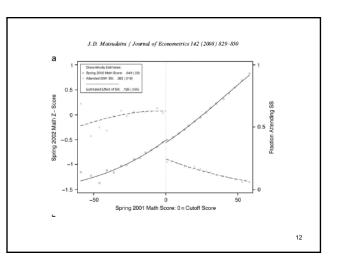
Intuitive understanding

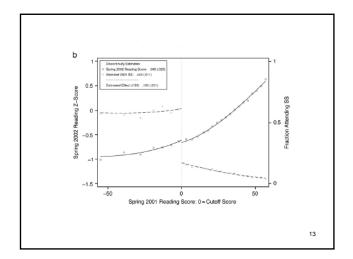

- Participants in SS are very different
- However, at the margin, those just at Z=0 are virtually identical
- One with z=-ε is assigned to summer school, but z= ε is not
- Therefore, we should see two things


- There should be a noticeable jump in SS enrollment at z<0.
- If SS has an impact on test scores, we should see a jump in test scores at z<0 as well.

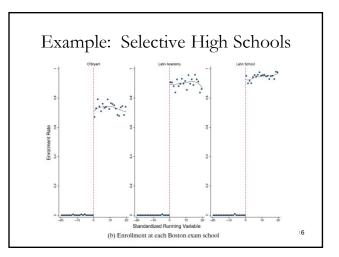
Variable Definitions

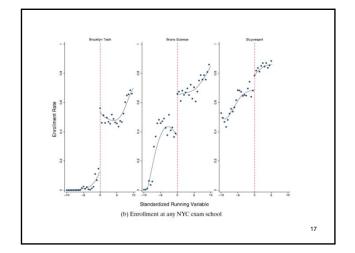
- y_i = outcome of interest
- $x_i = 1$ if NOT in summer school, =1 if in
- $D_i = I(z_i \ge 0)$ -- I is indicator function that equals 1 when true, =0 otherwise
- z_i = running variable that determines eligibility for summer school. z is re-scaled so that z_i=0 for the lowest value where D_i=1
- w_i are other covariates

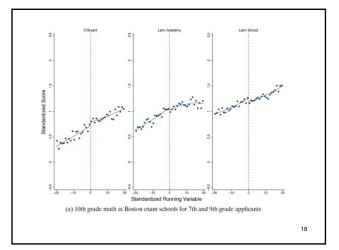

8

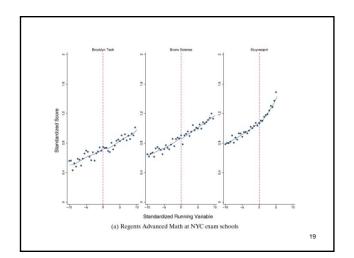


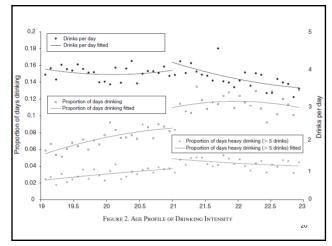
Limitation

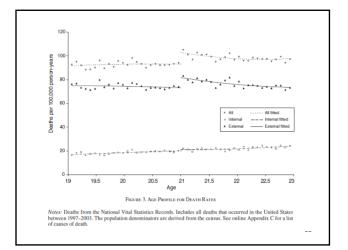

- Treatment is identified for people at the $z_i=0$
- Therefore, model identifies the effect for people at that point
- Does not say whether outcomes change when the critical value is moved






Table 1				
	Grade 3			
	Total	Attended SS		
		Yes	No	
Outcomes				
2002 math score	641.8 (.142)	620.4 (.241)	648.5 (.16)	
	[36.57]	(.241)	(.10)	
2002 reading score	649.7	621.6	658.6	
	(.176) [46.40]	(.241)	(.204)	
Summer school attendance				
Attended summer school 2001	.24	1	0	
	(.002)	(0)	(0) 14	
Days attended	4.373	18.208	0	


	Effect of being mandated		Effect of SS attendance	
	Attendance (1st Stage)	Math (Reduced form)	Math (TSLS)	Reading (TSLS
Strong 1st s	tage discontinuity			
Grade 3	.383	.049	.128	.087
	(.016)	(.02)	(.055)	(.065)
Grade 5	.385	.093	.241	.083
	(.006)	(.015)	(.039)	(.055)
Grade 6	.320	.061	.19	n.a.
	(.011)	(.014)	(.047)	(-)
Mo				
Mat	th:			
Mat	th: ide 3: 0.049/0.38	2 0 4 2 8		



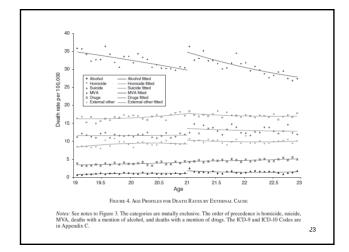


Table 1: Parti	cipation	Table 2: Intensity	
	(1)		(1)
12 or more drinks in lif	fetime		
Over 21	0.0418 (0.0242)	Proportion of days di Over 21	0.0245 (0.0086
Observations R^2	16,107 0.02	Observations R^2	16,107 0.02
Prob > Chi-Squared		Prob > Chi-Squared	
12 or more drinks in or Over 21	0.0796 (0.0254	Proportion of days heavy drinking Over 21 0.012 (0.006	
Observations R^2 Prob > Chi-Squared	16,107 0.02	Observations R^2	15,825 0.00
Any heavy drinking in	lastroan	Prob > Chi-Squared	
Any neavy arinking in Over 21	0.0761 (0.0248)	Drinks per day on da Over 21	ys drinking 0.2387 (0.2810
Observations R^2	16,107 0.01	Observations R^2	9,906 0.00
Prob > Chi-Squared		Prob > Chi-Squared	
Covariates Weights Quadratic terms Cubic terms LLR	N N Y N	Covariates Weights Quadratic terms Cubic terms LLR	N N Y N

