Medical Technology and Health Care Spending

Introduction

- Spending on HC is rising faster than GDP
- HC prices are rising faster than the CPI
- These two trends have lead for many to bemoan the "high cost" of medical care
- Robert Wood Johnson Foundation
 - Perhaps most critically, the need to constrain health care costs is an overarching theme of many health reform proposals.

A couple of questions to consider?

- Are we spending too much on health care? How would we know?
- To answer these questions ask yourself
 - Why do expenditures increase?
 - Why do prices for a product rise?
 - Do not think of HC in particular answer these questions for any particular product

Why we should not worry

- Ebbs and flows
- Is it quality adjusted?
- Who is paying the cost?

Why we should worry

- Excess burden of taxation
- Intergeneration equality
- Excess burden of moral hazard

Newhouse

- Why have expenditures (P*Q) increased so rapidly in health care
- Simple decomposition
 - Expenditures = price*quantity
 - E=PQ
 - $-\Delta \mathbf{E} = \mathbf{P} \Delta \mathbf{Q} + \Delta \mathbf{P} \mathbf{Q}$
 - How much due to ΔP , how much to ΔQ

16

Candidate reasons for increase in health care expenditures

- Aging of the population
- Increased insurance
- Increased income (income effects)
- Supplier induced demand
- Factor productivity in service sector
- End of life care

Aging

- Average age of the population has been increasing for past half century
 - Population over 65 represented 8% in 1950
 - 12 percent today
 - 20 percent by 2040
- Newhouse: hold 1950's spending constant, increase share of elderly
- Explains only 15% of the increase

Let θ_i be fraction of people in group i 3 groups <18, 19-64, 65+

- S_i be average spending per capita in group
- Total spending is a weighted average of spending across groups
- Hold spending per group constant but impose 1950's population weights

• $S^{50} = \theta_1^{50}S_1^{50} + \theta_2^{50}S_2^{50} + \theta_3^{50}S_3^{50}$

- $S^{87} = \theta_1^{87}S_1^{87} + \theta_2^{87}S_2^{87} + \theta_3^{87}S_3^{87}$
- $S^{*50} = \theta_1^{50}S_1^{87} + \theta_2^{50}S_2^{87} + \theta_3^{50}S_3^{87}$ a_{1987}^{1987} spending at at 1950 population shares
- $(S^{87} S^{*50})/S^{*50} = 0.15$, only 15%

- 95 percentage drop in price generated a 31 percent increase in use for an elasticity of demand of roughly -0.32
- 1950-1980 saw a (27-67)/67 = -0.60 or a 60% drop in price (coinsurance)

- Which means demand should have increased by 18% (-0.6)(-0.3)
- Use increased by a factor of 5, so < 3%
- What does this reasoning miss?

Income effects

- 1940 and 1990, real GDP/capita increased by 180%
- Income elasticity of demand for medical care is 0.2 to 0.4
- Demand should have increased by 36% to 72%
- Actual use increased by 780% over this time period, about 10% of total

End of life care

- Those nearing death have incredibly high medical costs
 - 6% of seniors die each year in Medicare
 - Represent 27.9% of all expenses in 1999
 - Average Medicare spending for person in last year of life, \$25,000 in 1999
 - about \$3,000 for survivors
- This fraction has been pretty stable over time. Was 28% in 1978

Technology

- All of the factors so far, probably about 25% of the increase in medical care use over time
- What explains the rest? Technology
- MRIs, open heart surgery (CABG), angioplasty, CT scans, anti-psychotropic drugs, hip-knee replacements, neo-natal intensive care All **not** available 40 years ago. Now, commonplace

Some evidence for Technology

- Rate of increase in medical costs similar across countries suggests something broad based like technology
- Next table: If these other factors were important, we would see big increase in hospital admissions over time and length of stay. We don't. What we see is an increase in price/admission

Table 3 Utilization of Short Stay General Hospitals

Year	Adm / 1000	Length of Stay (days)	Days / 1000	Adjusted Cost / Day (1982 dollars,
1950	110.5	8.1	895.1	n.a.
1960	128.9	7.6	980.0	\$114 ^a
1970	144.9	8.2	1188.1	\$172
1980	160.4	7.6	1219.2	\$282
1986	135.4	7.1	961.3	\$437
1989	134.6	n.a.	n.a.	na

How technology generates spending

- New product to consume
 - Could displace current spending
 - Could reduce spending in other areas (offset)
- Many new products treat the symptoms and not the disease
 - Lipitor, HBP medication, Viagra, HRVs
 - In these cases, drugs work but one uses the $\ensuremath{\mathrm{Rx}}$ for ever
- Mechanical relationship: Increase spending by expanding life

Example: HIV/AIDS Drugs

- Early 1990s, quarterly mortality rates for patients w/ AIDS of 7.5%, annual rates of roughly 30%
- 1995:4, 1996:1, three new drug introduced to fight virus
 - Work by preventing the virus from replicating in the host
- Use rates increase immediately and aggregate mortality falls 70% in 18 months

• AIDS drugs are expensive, \$12K/year in some cases

- AIDS patients are expensive, \$20K/year
- ARVs extend life considerably
- This medical advance, by construction, increases lifetime spending by a considerably amount

31

- Let $r=\rho$, so lifetime costs are now M_0/δ
- After ARVs, assume costs increase to M_a and period mortality rates falls to δ_A
- Change in life expectancy is $(1 / \delta_A) (1 / \delta)$
- Quarterly mortality falls from 7.5 to 2.2 percent - life expectancy after diagnoses goes from 3.6 to 11.2 years
- M_0 is \$6242 and ARVs increase spending by 16% to \$7241
- Lifetime costs increase from \$83K to \$329K

- Cost per life saved is (\$329K-\$83K)/(11.2-3.6)
 =\$33K/life year saved (2005 \$)
- Amazing lifesaving potential
- Although expensive, it is cheap in relative terms
- So although costs are increasing a lot, this is a cost-effective program

What are some costs/life saved?

- Tengs et al., 1994. Review 587 life saving interventions
- Range: some save costs and save lives, others cost \$10 billion per life saved (1993 \$)
 - CPI in 1993 =144.5
 - CPI in 2014=236.7
 - Ratio = 236.7/144.5= 1.638, so these numbers should be increased by about 64%

- Compare CLS (cost per life saved) to what people are willing to pay (Value of a statistical life)
- Currently, EPA uses \$7.4 million VSL (\$2006) - http://yosemite.epa.gov/ee/epa/eed.nsf/pages/Mo rtalityRiskValuation.html#whatvalue
- VSLY =value of a statistical life year
- Sum VSLY over all year for VSL
- VSL = Σ_t VSLY/(1+r)^t
- Example:
 - VSLY = \$150,000, r=0.03, 80 years VSL=\$4.5 million
 - VSLY = \$150,000, r=0.03, 30 years VSL=\$3.5 million
 - VSLY = \$250,000, r=0.03, 80 years VSL=\$7.5 million

The Difficulty of Measuring Prices in Health Care

- Price indexes must keep 'all else constant'
 - Difficult to do when quality is changing rapidly (e.g., medical)
 - Boskin commission CPI overstates true inflation by
 - All good by 1.1 percentage points per year
 - Medical care growth by 3 pp/yr
- CPI only uses OOP spending as prices - With health care reform, OOP will decline and will make it seem that prices have fallen

Laspyeres Price Index

$$SPI_{t_1} = \frac{\sum_{i=1}^{n} P_i(t_1) Q_i(t_0)}{\sum_{i=1}^{n} P_i(t_0) Q_i(t_0)}$$

- n number of products
- original period t_0
- new period t_1 P_i
 - prices product i
- Q_i quantity product i

40

• Solution: What is the cost of saving "one more life year"

- Aggregates costs

- Allows quality adjustments (declining)

- But holds quality constant

Total spending (billions) \$3.0 \$4.8 3.4% Number of cases 245.687 221.133 -0.8 Average spending per case \$21.2083 \$22.1744 4.2 SOURCE: Authons' analysis of Medicare claims records for all elderly patients with a heart attack in 1984 and 1998. \$3.0 \$4.8
Number of cases 245,687 221,133 -0.8 Average spending por case \$12,063 \$21,714 4.2 SOURCE Authon' analysis of Medicare claims records for all elderly patients with a heart attack in 1984 and 1998. 5000000000000000000000000000000000000
Average spending per case \$12,083 \$21,714 4.2 SOURCE Authors' analysis of Medicare claims records for all elderly patients with a heart attack in 1984 and 1998.
SOURCE: Authons' analysis of Medicare claims records for all elderly natients with a heart attack in 1984 and 1998.

		Change in	Outcome			
Condition	Years	treatment costs	Change	Value	Net benefit	
Heart attack ^a	1984-98	\$10,000	One-year increase in life expectancy	\$70,000	\$60,000	
Low-birthweight infants ^b	1950-90	\$40,000	Twelve-year increase in life expectancy	\$240,000	\$200,000	
Depression ⁶	1991-96	\$0	Higher remission probability at some cost for those already treated			
		<\$0	More people treated, with benefits exceeding costs			
Cataracts ^d	1969-98	\$0	Substantial improvements in quality at no cost increase for those already treated			
		<\$0	More people treated, w	ith benefits exce	eding costs	
Breast cancer®	1985-96	\$20,000	Four-month increase in life expectancy	\$20,000	\$0	

Age			Life Expectancy	62		Cumulative Change (1960-2000)
	1960	1970	1980	1990	2000	
				years		
Newborn	69.90	70.76	73.88	75.37	76.87	6.97
15 Yr	57.33	57.69	60,19	61.38	62.62	5.29
45 Yr	29.50	30.12	32.27	33.44	34.38	4.88
65 Yr	14.39	15.00	16.51	17.28	17.86	3.47
Table 3. Presen	t Value of Average	e Medical Spend	ling per Person	According to Ag	e Group and Ye	ear.°
Table 3. Presen	t Value of Average	e Medical Spend Averag	ling per Person / ge per Capita Sp	According to Ag	e Group and Ye	car.° Cumulative Chang (1960-2000)
T <mark>able 3. P</mark> resen	t Value of Average 1960	e Medical Spend Averag 1970	ling per Person / ge per Capita Sp 1980	According to Agr bending 1990	e Group and Ye 2000	tar.⇔ Cumulative Change (1960–2000)
T <mark>able 3. Presen</mark> Age	t Value of Average	e Medical Spend Averaş 1970	ing per Person / ge per Capita Sp 1980	According to Ag bending 1990 S	e Group and Ye 2000	cumulative Change (1960–2000)
Table 3. Presen Age Newborn	t Value of Average 1960 13,943	e Medical Spend Averag 1970 25,528	ling per Person / ge per Capita Sg 1980 37,085	According to Agr bending 1990 S 56,120	e Group and Yo 2000 83,307	cumulative Change (1960-2000) 69,364
Table 3. Presen Age Newborn 15 Yr	t Value of Average 1960 13,943 18,700	e Medical Spend Averag 1970 25,528 32,704	ing per Person / ge per Capita Sy 1980 37,085 47,155	According to Age pending 1990 \$ \$6,120 69,457	e Group and Ye 2000 83,307 102,490	Cumulative Change (1960-2000) 69,364 83,790
Table 3. Presen Age Newborn 15 Yr 45 Yr	t Value of Average 1960 13,943 18,700 17,141	e Medical Spend Averag 1970 25,528 32,704 35,266	ing per Person / ge per Capita Sy 1980 37,085 47,155 63,275	According to Age pending 1990 \$ 56,120 69,457 100,983	e Group and Ye 2000 83,307 102,490 148,014	car.º Cumulative Change (1960-2000) 69,364 83,790 130,873

- 1950-1990 PV of lifetime medical payments increased by \$35,000
- Over the same period, life expectancy increased by 7 years
- PV of these benefits is \$130K (tacked on at the end of life, assume 2% real IR -- \$100K CLYS)

49

• Even if health care can explain only 1/4 of these benefits, medical care pays for itself

• Assume 80 year life span, tack-on the 7 years at the end, discount back to present

$$\sum_{t=81}^{87} 100,000 \,/\, (1.02)^t = \$132,746$$