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Abstract. In this paper, we develop a novel approach by combining a new robust fi-
nite difference Hermite weighted essentially non-oscillatory (HWENO) method [51]
with the modified ghost fluid method (MGFM) [25] to simulate the compressible two-
medium flow problems. The main idea is that we first use the technique of the MGFM
to transform a two-medium flow problem to two single-medium cases by defining the
ghost fluids status based on the predicted interface status. Then the efficient and robust
HWENO finite difference method is applied for solving the single-medium flow cases.
By using immediate neighbor information to deal with both the solution and its deriva-
tives, the fifth order finite difference HWENO scheme adopted in this paper is more
compact and has higher resolution than the classical fifth order finite difference WENO
scheme of Jiang and Shu [14]. Furthermore, by combining the HWENO scheme with
the MGFM to simulate the two-medium flow problems, less ghost point information
is needed than that in using the classical WENO scheme in order to obtain the same
numerical accuracy. Various one-dimensional and two-dimensional two-medium flow
problems are solved to illustrate the good performances of the proposed method.
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1 Introduction

In this paper, a robust finite difference Hermite weighted essentially non-oscillatory
(HWENO) method recently developed in [51] is combined with the modified ghost fluid
method (MGFM) [25] to construct a novel approach in simulating the compressible two-
medium flow problems. The compressible two-medium flow problems have different
equation of state (EOS) across the material interface. This property causes challenge in
designing efficient high order accuracy schemes since numerical oscillations or inaccu-
racies may easily appear in simulation results. In the literatures, there are two major
ways to solve the compressible two-medium flow problems. One is the front capturing
method, in which the high resolution methods with numerical diffusion or viscosity are
used. The major advantages of the front capturing method are its ability to deal with
large deformation problems and extension to high dimension easily, but the numerical
inaccuracies or oscillations may still appear nearby the interface. Hence, there are vari-
ous techniques introduced by e.g. Larrouturou [17], Karni [16], Abgrall et al. [1,2], Shyue
et al. [39], Saurel et al. [36] and Chen et al. [7] to resolve this issue. The other one is
the front tracking method, where the discontinuities between the two-medium flows are
treated as internal moving interfaces. The method works very well across multi-material
interfaces, however it could lead to the entanglement of the Lagrangian meshes, and the
extension to high dimension is more difficult than the front capturing method. Classical
works on the front tracking approach includes e.g. volume of fluid (VOF) method [12],
level set method [40] and other front tracking methods [9, 42].

To combine the advantages of the front capturing and tracking methods, Fedkiw et
al. [8] constructed a new numerical method named as the ghost fluid method (GFM). In
GFM, a level set function is used to track the interface in Eulerian schemes, which makes
the interface “invisible”. The pressure and velocity at the ghost fluid nodes near the mate-
rial interface are defined as the local real values, while the density is obtained by isobaric
fixing. The method transforms a two-medium flow problem to two single-medium flow
problems via defining the ghost fluid status. Then, various state-of-the-art schemes for
the single-medium flow problems can be applied straightforwardly. The GFM offers a
flexible approach to solve the two-medium flow problems, furthermore, the extension
of the method to solve high dimensional problems is fairly easy and straightforward.
In complicated problems that a strong shock wave impacts on the interface, numerical
inaccuracies often appear at the interface, if the wave interaction and material proper-
ties on both sides of the interface are not taken into account in the GFM. To solve this
issue, Liu et al. [25] developed a modified ghost fluid method (MGFM), in which they
defined the ghost fluid values using the predicted interfacial status obtained by solving
a multi-material Riemann problem exactly or approximately. By taking the interaction of
shock waves with the interface into account, the MGFM combines the advantages of the
GFM [8] and the implicit characteristic methods [23,24]. Later on, the interface interaction
ghost fluid method (IGFM) [13], the real ghost fluid method (RGFM) [43] and the prac-
tical ghost fluid method (PGFM) [44] were developed following the idea of the Riemann
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problem-based methodology introduced in MGFM [25]. The MGFM is robust and less
problem dependent, and it also has been applied in various problems in [19,22,28,32,46].
Its accuracy analysis and error estimation are performed in [21, 45]. While the GFM [8]
and its relevant methods [13, 25, 43, 44] for solving two-medium flow problems are non-
conservative near the interface, the conservative scheme is constructed in [31].

For solving the single-medium flow problems resulted from the MGFM, there are
many successful numerical schemes. Among them, the class of high order accuracy finite
difference or finite volume weighted essentially non-oscillatory (WENO) schemes is an
excellent candidate. The first WENO scheme was designed by Liu, Osher and Chan [26]
based on the ENO scheme [11], in which they developed a nonlinear convex combina-
tion of the approximations on all candidate stencils to achieve higher order accuracy in
the smooth regions and eliminate non-physical oscillations in the discontinuous regions
of numerical solutions simultaneously. Later, Jiang and Shu [14] constructed the third
and fifth-order finite difference WENO schemes for high dimensional problems, where
they gave a general framework for the definition of smoothness indicators and nonlin-
ear weights. For more references of WENO, we refer to [3, 4, 20, 37]. In order to design a
higher order WENO scheme, a wide stencil for the reconstructions have to be used. To ob-
tain more compact schemes, Qiu and Shu [33,34] developed a new finite volume scheme
from WENO schemes via dealing with both the solution and its derivatives, named as
Hermite WENO (HWENO) scheme. The HWENO schemes can achieve higher order
numerical accuracy than the regular WENO schemes if the same spatial stencil is used.
Motivated by this, HWENO schemes were further developed for hyperbolic conserva-
tion laws in [5, 27, 29, 41, 47, 52]. In these HWENO schemes, the derivatives or the first
order moments of the solution were used directly, and different reconstruction polyno-
mials were applied in the spatial discretization of the original equation and the equations
satisfied by derivatives or the first order moments of the solution. It is quite difficult in
this approach to maintain nonlinear stability and eliminate numerical oscillations near
discontinuities of the solution. To resolve this issue, Zhao et al. [48, 50] modified the first
order moments of the solution using HWENO procedure near the discontinuities, and
the same polynomials to approximate the numerical fluxes of the original PDE and the
derived equations were used. It was found that the HWENO modifications for the first
order moments nearby the discontinuities lead to better performance in eliminating the
nonlinear oscillations than the other HWENO schemes. Later, Zhao et al. [51] further
extended this approach to the finite difference framework by modifying the derivatives
of the solution to obtain a more robust and accurate scheme than the original one in [27].
Here we will use this robust modified finite difference HWENO method [51] to simulate
the single-medium flow problems.

In this paper, we adopt the robust MGFM technique in [25] to predict the interfa-
cial status by solving a multi-material Riemann problem exactly or approximately. The
predicted interfacial values are then used to define the ghost fluid status and transform
the two-medium flow problems to two single-medium flow problems. For the single-
medium problems, we solve them by the newly developed modified finite difference
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HWENO scheme [51]. The modified finite difference HWENO scheme [51] preserves
the compact property of HWENO methods, i.e., only immediate neighbor information
is used in the spatial reconstruction. This is a very good advantage to deal with the
interface and boundary conditions in two-medium flow problems. For example, if the
classical fifth order finite difference WENO scheme [14] with the MGFM is used, we have
to define the ghost fluid status at 3 points, while only 2 ghost points are needed for the
modified fifth order finite difference HWENO scheme [51] with the MGFM. Hence it
is simpler to handle the material interface between two mediums. In summary, in this
paper we will show that the modified fifth order finite difference HWENO scheme [51]
combined with the MGFM [25] has the nice properties such as robustness, compactness
and high resolution near discontinuities and is a suitable approach for simulating the
two-medium flow problems.

The organization of the paper is as follows. In Section 2, we describe the detailed
algorithm procedures of the modified fifth order finite difference HWENO scheme com-
bined with the MGFM for solving two-medium flow problems. In Section 3, the numeri-
cal results for various gas-gas and gas-water interaction problems in one-dimension and
two-dimension are presented to show the good performances of the proposed method.
Concluding remarks are given in Section 4.

2 Numerical methods

In this section, we first present the governing equations for the one-dimensional and two-
dimensional compressible two-medium flow problems, then briefly describe the modi-
fied finite difference HWENO method [51] for the single-medium case. Next, the level
set technique is used to track the moving interface, and the modified ghost fluid method
(MGFM) [25] is adopted to define the status of ghost fluids, by which the two-medium
flow problems can be transformed to two single-medium cases. The single-medium cases
are solved by the finite difference HWENO method [51]. At last, we give a summary of
the overall implementation procedures.

2.1 Governing equations

The governing equations are the hyperbolic conservations laws

Ut+∇·F(U)=0. (2.1)

For one-dimensional Euler equations, U is (ρ,ρµ,E)T and F(U) is (ρµ,ρµ2+p,µ(E+p))T .
For two-dimensional Euler equations, U is (ρ,ρµ,ρν,E)T , and F(U) is (F1(U),F2(U)) with
F1(U) = (ρµ,ρµ2+p,ρµν,µ(E+p))T , F2(U) = (ρν,ρµν,ρν2+p,ν(E+p))T , where ρ is the
density, µ and ν are the velocity components in the x and y directions, respectively, p is
the pressure, and E is the total energy. In addition, the equations of state (EOS) is needed
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for the closure of the systems. Here, we use the γ-law for gas

ρe= p/(γ−1),

and the EOS for the water medium [6, 8, 23]

ρe=(p+NB̄)/(N−1),

where B̄=B−A, N=7.15, A=1.0×105 Pa, B=3.31×108 Pa, and ρ0=1000.0kg/m3 .

2.2 Finite difference HWENO scheme for single-medium case

The modified fifth order finite difference HWENO scheme [51] developed by Zhao et
al. is more robust than the original finite difference HWENO scheme [27], and has the
advantages that no additional positivity-preserving flux limiter methodology is required
and a larger CFL number can be used. It also has a higher order numerical accuracy than
the original finite difference HWENO scheme [27] for two-dimensional problems. The
modified HWENO scheme is more compact than the classical fifth order finite difference
WENO scheme [14] since only immediate neighbor information is needed in the recon-
struction, which makes the HWENO scheme have smaller numerical errors and higher
resolutions. Due to these good properties of the modified HWENO scheme [51], we
choose this method to solve the single-medium flow problems. To the authors’ knowl-
edge, this is the first time that the HWENO method is used in the simulations of the
compressible two-medium flow problems. To save space, here we briefly review the es-
sential procedure of the modified HWENO scheme in [51].

For the one-dimensional case, we first consider the following scalar equation
{

ut+ fx(u)=0,

u(x,0)=u0(x).
(2.2)

In the finite difference framework, the computation domain is divide by uniform grid
points {xi}, and xi+1/2 is defined as xi+∆x/2, where ∆x is the grid size xi+1−xi. Ii

denotes the cell [xi−1/2,xi+1/2]. To design a Hermite WENO scheme, we take partial
derivative w.r.t the variable x on the governing equation (2.2) and denote the partial
derivative of u(x,t) w.r.t x by a new function v(x,t). Then we have

{

ut+ f (u)x =0, u(x,0)=u0(x),

vt+h(u,v)x =0, v(x,0)=v0(x),
(2.3)

where h(u,v) = f (u)x = f ′(u)ux = f ′(u)v, and v(x,0) = ux(x,0). The semi-discrete finite
difference scheme for solving (2.3) is















dui(t)

dt
=− 1

∆x

(

f̂i+1/2− f̂i−1/2

)

,

dvi(t)

dt
=− 1

∆x

(

ĥi+1/2− ĥi−1/2

)

,

(2.4)
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where the numerical fluxes f̂i+1/2 and ĥi+1/2 are the fifth order approximation of Φi+1/2=
Φ(xi+1/2) and Ψi+1/2=Ψ(xi+1/2), respectively. Φ(x) and Ψ(x) are defined implicitly as

f (u(x))=
1

∆x

∫ x+∆x/2

x−∆x/2
Φ(x)dx, h(u(x),v(x))=

1

∆x

∫ x+∆x/2

x−∆x/2
Ψ(x)dx.

For the purpose of upwinding, we split the flux f (u) and h(u,v) into two parts: f (u)=

f+(u)+ f−(u) and h(u,v)=h+(u,v)+h−(u,v), in which
d f+(u)

du ≥0,
∂h+(u,v)

∂v ≥0 and
d f−(u)

du ≤
0, ∂h−(u,v)

∂v ≤0, respectively. Here, we apply the global Lax-Friedrichs flux splitting

f±(u)=
1

2
( f (u)±αu) and h±(u,v)=

1

2
(h(u,v)±αv),

where α=maxu | f ′(u)|. The reconstructions of f̂±i+1/2 and ĥ±i+1/2 are for the fluxes f±(u)

and h±(u,v), respectively. The final numerical fluxes f̂i+1/2 = f̂+i+1/2+ f̂−i+1/2 and ĥi+1/2 =

ĥ+i+1/2+ ĥ−i+1/2. Next, we present the reconstruction procedure for the numerical fluxes

f̂±i+1/2 and ĥ±i+1/2, and it is consisted of the following two steps.

Step 1. Modify the derivative of the solution.

Since the solution of non-linear hyperbolic conservation laws often contains disconti-
nuities where the derivative of the solution is very large, this may lead to the non-physical
oscillations of numerical solution in the discontinuous regions if high order HWENO
schemes are not designed carefully. In the modified HWENO scheme [51], we modify
the derivative value vi as described in the following. It makes this new HWENO scheme
more robust than its previous versions.

Firstly, using three small stencils S1={xi−1,xi}, S2={xi−1,xi,xi+1} and S3={xi,xi+1},
we construct three quadratic polynomials p1(x),p2(x),p3(x) on S1,S2,S3 by Hermite in-
terpolation respectively, which satisfy

p1(xi+l)=ui+l, l=−1,0, p′1(xi−1)=vi−1,

p2(xi+l)=ui+l, l=−1,0,1,

p3(xi+l)=ui+l, l=0,1, p′3(xi+1)=vi+1.

Then, we use their derivative values p′n(xi) (n=1,2,3) to modify the derivative value vi

as the following

vnew
i =

3

∑
n=1

ωn p′n(xi),

where vnew
i is the modified value of v at the point xi and ωn is the non-linear weight, and

the nonlinear convex combination of p′n(xi)(n= 1,2,3) provides the fifth order accuracy
for the modification of vi in the smooth regions. The specific formulas including the
non-linear weight ωn and the polynomial derivative value p′n(xi) can be found in [51].
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Step 2. Reconstruct the numerical fluxes f̂±i+1/2 and ĥ±i+1/2.

We only describe the reconstruction procedures for f̂+i+1/2 and ĥ+i+1/2, while the recon-

struction procedures of the negative wind numerical fluxes f̂−i+1/2 and ĥ−i+1/2 are similar.
Firstly, the same stencils S1,S2,S3 in Step 1 are used to reconstruct three cubic polynomials
p1(x),p2(x),p3(x) on S1,S2,S3, which satisfy

1

∆x

∫

Ii+l

p1(x)dx= f+(ui+l), l=−1,0,
1

∆x

∫

Ii−1

p′1(x)dx=h+(ui−1,vi−1),

1

∆x

∫

Ii

p′1(x)dx=h+(ui,v
new
i ),

1

∆x

∫

Ii+l

p2(x)dx= f+(ui+l), l=−1,0,1,
1

∆x

∫

Ii

p′2(x)dx=h+(ui,v
new
i ),

1

∆x

∫

Ii+l

p3(x)dx= f+(ui+l), l=0,1,
1

∆x

∫

Ii+1

p′3(x)dx=h+(ui+1,vi+1),

1

∆x

∫

Ii

p′3(x)dx=h+(ui,v
new
i ).

Then, f̂+i+1/2 is computed based on the function values pn(xi+1/2), n=1,2,3 as follows,

f̂+i+1/2=
3

∑
n=1

ω
f
n pn(xi+1/2),

where ω
f
n is the non-linear weight associated with the reconstruction for f̂+i+1/2. The

derivative values p′n(xi+1/2), n=1,2,3 are used to reconstruct ĥ+i+1/2:

ĥ+i+1/2 =
3

∑
n=1

ωh
n p′n(xi+1/2),

where ωh
n is the non-linear weight associated with the reconstruction for ĥ+i+1/2. Again,

the detailed formulas for the non-linear weights ω
f
n and ωh

n, the polynomial value
pn(xi+1/2) and its derivative value p′n(xi+1/2) can be found in [51].

After the spatial discretization, the semi-discrete scheme (2.4) is solved by the third
order TVD Runge-Kutta method [38] as follows,











U(1)=Un+∆tL(Un),

U(2)= 3
4Un+ 1

4 U(1)+ 1
4 ∆tL(U(1)),

U(n+1)= 1
3 Un+ 2

3U(2)+ 2
3 ∆tL(U(2)),

(2.5)

where U=(u,vnew)T for the one-dimensional case.
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For the two-dimensional case, we first consider the scalar equation
{

ut+ f (u)x+g(u)y =0,

u(x,y,0)=u0(x,y).
(2.6)

Similarly, the spatial domain is partitioned by a uniform mesh with grid points {(xi,yj)}.
The grid sizes ∆x=xi+1−xi and ∆y=yj+1−yj, and the half grid points xi+1/2=xi+∆x/2
and yj+1/2 = yj+∆y/2. The cell Ii,j is defined as [xi−1/2,xi+1/2]×[yj−1/2,yj+1/2], and its
center is (xi,yj). In order to design a HWENO scheme, we take the partial derivatives on
both sides of the governing equation (2.6) with respect to the x and y variables, respec-
tively, and introduce two new variables v=ux and w=uy. Then the following equations
are obtained:











ut+ f (u)x+g(u)y =0, u(x,y,0)=u0(x,y),

vt+h(u,v)x+r(u,v)y =0, v(x,y,0)=v0(x,y),

wt+q(u,w)x+s(u,w)y=0, w(x,y,0)=w0(x,y),

(2.7)

where
h(u,v)= f ′(u)v, r(u,v)= g′(u)v, v(x,y,0)=ux(x,y,0);

q(u,w)= f ′(u)w, s(u,w)= g′(u)w, w(x,y,0)=uy(x,y,0).

Notice that Eqs. (2.3) and (2.7) have some common points. For example, f (u)x and
g(u)y are associated with h(u,v)x and s(u,w)y, respectively. The spatial discretizations
in solving the one-dimensional case can be directly extended here for these four terms.
The discretizations for the mixed derivative terms q(u,w)x and r(u,v)y are not in the one-
dimensional case, and they are discussed in the next. Then we obtain the semi-discrete
finite difference scheme of (2.7) as follows,







































dui,j(t)

dt
=− 1

∆x

(

f̂i+1/2,j− f̂i−1/2,j

)

− 1

∆y

(

ĝi,j+1/2− ĝi,j−1/2

)

,

dvi,j(t)

dt
=− 1

∆x

(

ĥi+1/2,j− ĥi−1/2,j

)

− 1

∆y

(

r̂i,j+1/2− r̂i,j−1/2

)

,

dwi,j(t)

dt
=− 1

∆x

(

q̂i+1/2,j− q̂i−1/2,j

)

− 1

∆y

(

ŝi,j+1/2− ŝi,j−1/2

)

.

(2.8)

The next step is to reconstruct the numerical fluxes f̂i±1/2,j, ĥi±1/2,j, ĝi,j±1/2, ŝi,j±1/2, q̂i±1/2,j

and r̂i,j±1/2.
Just as one-dimensional case, the reconstruction procedure is consisted of the follow-

ing two steps. The first step is to modify the partial derivative of the solutions on all grid
points in the dimension-by-dimension way. The second step is to reconstruct these six nu-
merical fluxes. The numerical fluxes f̂i±1/2,j, ĥi±1/2,j, ĝi,j±1/2 and ŝi,j±1/2 are reconstructed
in the dimension-by-dimensional manner, while the mixed derivative terms q̂i±1/2,j and
r̂i,j±1/2 are reconstructed by a linear approximation since we have used HWENO tech-
nique to modify the partial derivatives vi,j and wi,j for all points in the first step. The
details for the first and second steps can be found in [51].
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After the spatial discretization, the semi-discrete scheme (2.8) is evolved in time by
the third order TVD Runge-Kutta method, and the formulas are given in (2.5) with U=
(u,vnew,wnew)T for two-dimensional case.

Remark 2.1. For the system case, such as one-dimensional and two-dimensional com-
pressible Euler equations, all HWENO procedures are performed on the local character-
istic field as in [14], while the linear approximation in the procedure for two-dimensional
case is applied in the component-wise.

2.3 Level set equation

The material interface moves with the velocity of the fluids between two mediums, which
is tracked by the level set method in this paper. For one-dimensional case, the moving
interface is modeled by the level set equation as follows

φt+µφx =0, (2.9)

and for two-dimensional case, it is

φt+µφx+νφy=0, (2.10)

where φ is a signed distance function. µ and ν are the velocity of the fluids in the x and y
directions, respectively. The level set equations (2.9) and (2.10) are two Hamilton-Jacobi
equations, which are solved by the hybrid fifth order finite difference WENO method
introduced in [49] (see the Appendix A there). The level set method may cause seriously
distorted contours in the case that the velocity field has a large gradient near the interface.
Here, we re-distribute the signed distance function φ to remedy this issue, which is the
re-initialization technique. For one-dimensional case, the exact location of the interface
can be obtained by Newton’s iteration method, then, we re-distribute the signed distance
function φ based on its definition. For two-dimensional problems, the material interface
between two mediums is a curve, so it is difficult to use the re-distribution technique in
one-dimensional case. Instead we solve the following re-initialization equation

φt+S(φ0)
(

√

φ2
x+φ2

y−1
)

=0, (2.11)

where S is the sign function of φ0. The re-initialization equation (2.11) is also a Hamilton-
Jacobi equation, and it is solved by the hybrid WENO method in [49] (see the Appendix
A there). Other methods for solving Hamilton-Jacobi equations can be applied too, e.g.,
a recently developed arbitrary Lagrangian-Eulerian finite difference WENO scheme for
Hamilton-Jacobi equations in [18].

2.4 Modified ghost fluid method

The modified ghost fluid method (MGFM) developed by Liu et al. [25] is mainly based
on the GFM [8], but the MGFM uses the predicted interfacial status to define the ghost
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Interface

ii−1 i+1 i+2

uI

pI

ρL
I ρR

I

Medium 1 Medium 2

Real

Ghost

uI velocity at interface

pI pressure at interface

ρL
I density at left-side interface

ρR
I density at right-side interface

Figure 1: Isentropic fixing for 1D two-medium flow problems.

fluid values, which takes the interaction of shock with the interface into consideration,
therefore, the MGFM is more robust and less problem related. Considering the good per-
formances of the MGFM, we would apply it to define the ghost fluid values, then, it turns
a two-medium flow problem into two single-medium flow problems, and we would re-
view the MGFM in the next procedures for one-dimensional and two-dimensional cases.
The main procedures are that we first predict the interface status by solving a two-
medium Riemann problem exactly or approximately, then, the predicted interface status
is used to define the ghost fluid status for each medium.

For one-dimensional case, we only take the definition of the ghost fluid status for
Medium 1 as an example, while the procedure for Medium 2 is similar. Suppose that the
interface is located between the points i and i+1 in Fig. 1, then, the statuses of Ui−1 and
Ui+2 are applied to define the two-medium Riemann problem suggested in [25], and we
can obtain the interfacial status by solving the two-medium Riemann problem exactly
or approximately as uI (velocity), pI (pressure), ρL

I (density at left-side) and ρR
I (density

at right-side), then, the velocity, pressure and density at the ghost point i+1 are directly
defined as the predicted values uI , pI , ρL

I , while for the points i and i+2, the pressure and
velocity are the real values on the local fluid, but the density at the two points is replaced
by the isentropic fixing [8, 25], and the derivative values at these points are set as zero at
the same time. Certainly, the classical fifth order WENO scheme [14] combined with the
modified ghost fluid method (MGFM) [25] needs to add the definition of the fluid status
at points i−2 and i+3 for two mediums.

For two-dimensional case, there is two velocity components, which means the two-
medium Riemann problem can’t be simply defined as one-dimensional case. Fortunately,
we have known the normal direction −→n near the interface based on the level set func-
tion (−→n =∇φ/|∇φ|), then, we can define the two-medium Riemann problem following
the normal direction. More explicitly, we calculate the normal velocity uN and tangen-
tial velocity uT near the interface, where uN is defined as (µ,ν)·−→n . Next, the normal
velocity uN, the pressure p and the density ρ are used to define the two-medium Rie-
mann problem as one-dimensional case. In terms of the MGFM [25] and the modified
HWENO scheme [51], we only need to define the fluid status of the computational do-
main for each medium including boundary and grid points in the interfacial regions by
|φ|< 2max(∆x,∆y), and the size of the band is decided by the scheme for solving the
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Medium 1

Medium 2

Interface

Real
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Figure 2: Isentropic fixing for 2D two-medium flow problems.

single-medium flow problems, while the classical fifth order WENO scheme [14] needs
to define the fluid status of the computational domain with |φ|< 3max(∆x,∆y). Later,
we take the definition of the status for Medium 1 at the points A (seen in Fig. 2) as an
example, while the definition of the information for Medium 2 is similar. First of all, we
need to find other point next to the interface (|φ|<2max(∆x,∆y)) located in the Medium
2, and the angle made by the normal of the two points must be the minimum. Suppose
that the point B meets the requirements, then, the two-medium Riemann problem in the
normal direction is defined as

U|t=tn =

{

UA,

UB,

where UA = (ρA,uA
N ,pA) and UB = (ρB,uB

N ,pB), which can be solved approximately or
exactly, then, we obtain the predicted status uI (velocity), pI (pressure), ρA

I (density at
A-side) and ρR

I (density at B-side). Similarly as one-dimensional case, we only need to
define the density at node A by isentropic fixing [8, 25], while the statuses at node B are
defined by uI , pI and ρA

I , and their tangential velocity is still the original value. At the
same time, the derivative values at nodes A and B are set as zero too.

Remark 2.2. The GFM and its relevant methods including MGFM [25], IGFM [13],
RGFM [43] and PGFM [44] for solving compressible two-medium flow problems are all
non-conservative near the interface. A conservative scheme is designed in [31], which is
mainly based on the discontinuous Galerkin framework. We will use this idea to design
a conservative HWENO scheme in the future work.

2.5 Summary of the procedures

At the end of this section, we briefly summarize the whole procedures for the simulation
of two-medium flow problems. Suppose the solution for the governing equations at time
tn has been obtained, then we advance the solution to time tn+1 as the following:
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Step 1. Compute the time step ∆tn, which satisfies the stability condition over the whole
range.

Step 2. Calculate the level set equation, and obtain the new location of the interface at
the next intermediate time step shown in Section 2.3.

Step 3. Define and solve the two-medium Riemann problem nearby the interface to ob-
tain the predicted interface status, and define the ghost fluid values for Mediums 1 and
2, respectively, introduced in Section 2.4.

Step 4. Solve the governing equations by the modified HWENO method to the next
intermediate time step given in Section 2.2 for Mediums 1 and 2, respectively.

Step 5. Repeat Step 2 to Step 4 for each sub-step of the third order Runge-Kutta temporal
discretization method, advancing the solution from Un to Un+1, then, re-initialize the
level set function.

Remark 2.3. The MGFM transforms a two-medium flow problem to two single-medium
flow problems, and we use the HWENO method to solve them. It costs the HWENO
scheme slightly more computational time than that of WENO schemes on the same
meshes, but the HWENO scheme is much more compact as only immediate neighbor
information is used in the reconstructions, which makes the HWENO scheme have less
numerical errors and higher resolution. This is observed in [51] for the single-medium
flow problems. Furthermore, the HWENO scheme is easier to implement on the modern
parallel machines and unstructured meshes as it only uses the information on the target
cell and its immediate neighbor cells, while the fifth order WENO scheme [14] needs to
add the next layer neighbor information of the immediate neighbor cells. In addition,
the MGFM needs to define the information on the ghost points by solving a two-medium
Riemann problem near the interface, and it is difficult for accurate definition of values on
multiple layers of ghost points.

3 Numerical results

In this section, we present the numerical results of the modified fifth order finite differ-
ence HWENO scheme [51], classical fifth order finite difference WENO scheme [14] and
improved fifth order finite difference WENO-Z scheme [4] with the modified ghost fluid
method [25] for two-medium flow problems which are introduced in the previous sec-
tion. And we can see three schemes have similar results, but the HWENO scheme is more
compact than the WENO scheme as only immediate neighbor information is used in the
reconstructions. The CFL number is 0.6. The units for the density, velocity, pressure,
length and time are kg/m3, m/s, Pa, m, and s, respectively.

Example 3.1. This problem contains two different gases taken from [8]. The initial condi-
tions are

(ρ,µ,p,γ)=

{

(1,0,1×105,1.4), x∈ [0,0.5),

(0.125,0,1×104,1.2), x∈ [0.5,1],
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Figure 3: Example 3.1. t= 0.0007. From left to right: density; velocity; pressure. From top to bottom: the
computed results and their partial enlarged view. Solid line: the exact solution; plus signs: the results of
the classical WENO scheme with MGFM; squares: the results of the modified HWENO scheme with MGFM;
triangles: the results of the WENO-Z scheme with MGFM. Grid points: 200.

where Inflow/outflow boundary conditions are applied here. The final time t is 0.0007.
We present the computed density ρ, velocity µ and pressure p by the classical WENO,
WENO-Z and modified HWENO schemes with MGFM against the exact solution in
Fig. 3, which illustrates the three schemes capture the location of the material interface
correctly and simulate this problem well, meanwhile, to show the good performance of
the HWENO scheme, we also give their partial enlarged pictures in the bottom of Fig. 3,
and we can see the HWENO scheme has higher resolution than WENO schemes with
slightly less transition points across the shock as the HWENO scheme is more compact
than the WENO schemes. In addition, the HWENO scheme only needs to define the
ghost fluid status at 2 points for other mediums, while the ghost fluid status at 3 points
has to be defined for the WENO schemes. For saving space, we only give the partial
enlarged picture in this problem, while for other problems, the HWENO scheme has less
transition points across the shock too, and we also can see it from the modified HWENO
scheme [51] for the single-medium flow problems.

Example 3.2. This problem contains a right going shock refracting at an air-helium in-
terface with a reflected rarefaction wave, which is also taken from [8], and the initial
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Figure 4: Example 3.2. t=0.0005. From left to right: density; velocity; pressure. Solid line: the exact solution;
plus signs: the results of the classical WENO scheme with MGFM; squares: the results of the modified HWENO
scheme with MGFM. Grid points: 200.

conditions are

(ρ,µ,p,γ)=











(4.3333,3.2817
√

105,1.5×106,1.4), x∈ [0,0.05),

(1,0,1×105,1.4), x∈ [0.05,0.5),

(0.1379,0,1×105 ,5/3), x∈ [0.5,1],

with inflow and outflow boundary conditions. The location of the interface between air
and helium is x= 0.5, and the initial strength of the shock is pl/pR = 15 at x= 0.05. The
final time is 0.0005, and we show the computed density ρ, velocity µ and pressure p by the
classical WENO and modified HWENO schemes with MGFM against the exact solution
in Fig. 4, then, we first can see that the contact discontinuity between two gases is located
in the correct cell, and two schemes have similar results.

Example 3.3. We solve the one-dimensional Euler equations (2.1) with the following Rie-
mann initial conditions as

(ρ,µ,p,γ)=











(1.3333,0.3535
√

105,1.5×105,1.4), x∈ [0,0.05),

(1,0,1×105,1.4), x∈ [0.05,0.5),

(3.1538,0,1×105 ,1.249), x∈ [0.5,1].

The final time t is up to 0.0017. This example is taken from [8] too. We present the com-
puted density ρ, velocity µ and pressure p by the classical WENO and modified HWENO
schemes combined with MGFM against the exact solution in Fig. 5, and we can see the
two schemes capture the correct location of the interface, with non-oscillations and simi-
lar comparable results.

Example 3.4. This problem has a strong shock on a gas-gas interface, and it is taken
from [25]. The strength of the right shock wave is up to pL/pR = 100, and the initial
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Figure 5: Example 3.3. t=0.0017. From left to right: density; velocity; pressure. Solid line: the exact solution;
plus signs: the results of the classical WENO scheme with MGFM; squares: the results of the modified HWENO
scheme with MGFM. Grid points: 200.
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Figure 6: Example 3.4. t=0.0001. From left to right: density; velocity; pressure. Solid line: the exact solution;
plus signs: the results of the classical WENO scheme with MGFM; squares: the results of the modified HWENO
scheme with MGFM. Grid points: 200.

conditions are

(ρ,µ,p,γ)=











(0.3884,27.1123
√

105,1.0×107,5/3), x∈ [0,0.3),

(0.1,0,1×105,5/3), x∈ [0.3,0.4),

(1,0,1×105,1.4), x∈ [0.4,1].

At the final time 0.0001, the computed density ρ, velocity µ and pressure p by the classical
WENO and modified HWENO schemes combined with MGFM against the exact solution
are given in Fig. 6, which illustrates that the two schemes work well for this gas-gas
interaction problem, and they capture the correct location of the material interface.

Example 3.5. Now, we solve a gas-water shock tube problem taken from [32] with the
following initial conditions as

(ρ,µ,p,γ)T =

{

(1270,0,8×108,1.4)T , x∈ [0,0.5),

(1000,0,1×105,7.15)T , x∈ [0.5,1],
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Figure 7: Example 3.5. t=0.00016. From left to right: density; velocity; pressure. Solid line: the exact solution;
plus signs: the results of the classical WENO scheme with MGFM; squares: the results of the modified HWENO
scheme with MGFM. Grid points: 200.
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Figure 8: Example 3.6. t=0.0001. From left to right: density; velocity; pressure. Solid line: the exact solution;
plus signs: the results of the classical WENO scheme with MGFM; squares: the results of the modified HWENO
scheme with MGFM. Grid points: 200.

then, we can see that this underwater explosion problem has extremely high pressure in
the gas medium, which would leads to a quite strong shock wave in the water medium.
The final time is up to 0.00016, and we give the computed density ρ, velocity µ and pres-
sure p by the classical WENO and modified HWENO schemes combined with MGFM
against the exact solution in Fig. 7, which shows two schemes work well and capture the
correct location of the material interface.

Example 3.6. This gas-water shock tube problem has higher energy of the explosive
gaseous medium than the initial conditions in Example 3.5, and it is also taken from [32].
The initial conditions are given as

(ρ,µ,p,γ)T =

{

(1630,0,7.81×109 ,1.4)T, x∈ [0,0.5),

(1000,0,1×105,7.15)T , x∈ [0.5,1].

The final time is 0.0001, then, the computed density ρ, velocity µ and pressure p by the
classical WENO and modified HWENO schemes combined with MGFM against the exact
solution are presented in Fig. 8, then, we can know two schemes work well for this tough
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gas-water problem with non-oscillations in the discontinuous regions, and the material
interface between two mediums is also captured rightly.

Example 3.7. Now, we solve the governing equations (2.1) for two-dimensional Euler
equations, and we first consider a problem with a Mach 1.22 air shock acting on a helium
bubble, and we show its physical initial schematic picture in the left of Fig. 9. For the
top and bottom boundaries, the reflective conditions are applied here, while the inflow
and outflow conditions are given in the left and right boundaries, respectively. The non-
dimensionalized initial conditions are

(ρ,µ,ν,p,γ)=











(1,0,0,1,1.4), pre-shocked air,

(1.3764,0.394,0,1.5698,1.4), post-shocked air,

(0.138,0,0,5/3), helium,

φ=
√

x2+y2−1, level set,

where the regions of φ≤ 0 represents the helium and the regions of φ> 0 represents the
air, meanwhile, the regions of x < 1.2 are the post-shocked air state, then, we give the
computed results for density at final time 0.5, 1.0, 2.0 and 4.0 with 560×480 uniform grid
points in Fig. 10, and this problem also had been experimentally studied in [10], which
also shows the numerical results are comparable to the experimental results. We stop the
computational time at t=4.0 before the generation of the strong re-entrant jet, which is a
complex physical phenomenon, and it might need to use quite fine meshes or adaptive
refinement techniques introduced in [15, 35].

Next, we would briefly describe the numerical results. Initially, a shock hits the he-
lium bubble, then, the incident shock partly refracts into the helium bubble, and other
part of the incident shock reflects from the surface and returns the air. At t=0.5, since the
sound speed in helium is faster than that in air, the initial regular shock becomes irregular
and has the bifurcation of the shock on the bubble surface, and the experimental results

(-3,-3)

(4,3)

x=-1.2

Post-

shocked Pre-shocked air

air

Helium

bubble

(-4,-3)

(3,3)

x=-1.2

Post-shocked
water

Pre-shocked water

Gas

Figure 9: Physical domain for Example 3.7 (left) and Example 3.8 (right).
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Figure 10: Example 3.7. The results computed by the classical WENO scheme (left) and modified HWENO
scheme (right) with MGFM. 30 equally spaced density contours from 0.1 to 1.6. From top to bottom are t=0.5,
t=1.0, t=2.0 and t=4.0, respectively. Grid points: 560×480.



Z. Zhao et al. / Commun. Comput. Phys., 30 (2021), pp. 851-873 869

given in [10] also illustrated it. At t=1.0, the refracted shock inside the helium bubble has
interacted with the tail of the bubble and transmits into the air, when the incident shock
just went through the top of the bubble. Later, the whole helium bubble starts to move to
the right. At t=2.0, the incident shock has passed over the whole bubble, then, the shape
of the bubble becomes deformed. Since then, a re-entrant jet begins to generate. Finally,
the re-entrant jet has been formed at time t = 4.0, which would leads to the instability
of the interface. As time passes, the re-entrant jet becomes stronger and stronger, which
would impact on the rear side of the bubble and make the bubble become collapse, and
in this case, the quite fine meshes or adaptive refinement techniques [15, 35] might be
needed.

Example 3.8. The final 2D example is a Mach 1.653 planar underwater shock interacting
with a gas bubble, which is taken from [32], then, we solve the two-dimensional Euler
equations (2.1) with the following non-dimensionalized initial conditions as

(ρ,µ,ν,p,γ)=











(1000,0,0,1,7.15), pre-shocked water,

(1176.3333,1.1692,0,9120,7.15), post-shocked water,

(1,0,0,1.4), gas,

φ=
√

x2+y2−1, level set,

in which φ≤0 represents the regions of gas and φ>0 represents the regions of water, and
the regions of x<1.2 is the post-shocked water state. The physical initial schematic picture
is shown in the right of Fig. 9. For the top and bottom boundaries, the reflective boundary
conditions are applied, and for the left and right boundaries, the inflow and outflow
boundary conditions are employed, respectively. We show the computed density by the
classical WENO and modified HWENO schemes at several times t=0.06, t=0.19, t=0.357
and =0.481 with 560×480 uniform grid points, and we can see the numerical results are
comparable with that given by the discontinuous Galerkin finite element methods with
MGFM [32]. The detailed physical analysis can be seen in [24] for the earlier stage, while
one can be found in [30] for the late time. Overall, the WENO and HWENO schemes have
similar numerical results for this example, but the HWENO scheme is more compact
than the WENO scheme, which makes us to deal with the relatively simple interface and
boundary conditions.

4 Concluding remarks

In this paper, we combine the modified HWENO scheme [51] with the modified ghost
fluid method [25] to simulate the compressible two-medium flow problems. Comparing
with the classical fifth order finite difference WENO scheme [14], the HWENO scheme
is more compact since only immediate neighbor information is used in the reconstruc-
tions which leads to higher resolutions near the discontinuities, even though they both
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Figure 11: Example 3.8. The results computed by the classical WENO scheme (left) and modified HWENO
scheme (right) with MGFM. 30 equally spaced density contours from 1.0 to 1200. From top to bottom are
t=0.06, t=0.19, t=0.357 and t=0.481, respectively. Grid points: 560×480.
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achieve the fifth order numerical accuracy. Furthermore, the HWENO scheme combined
with the MGFM is very suitable for the simulation of the compressible two-medium flow
problems because the HWENO scheme defines less ghost fluid information, which leads
to a simpler method in dealing with the interface and boundary conditions. In addition,
the HWENO method combined with the MGFM is very robust in simulating the gas-
gas and gas-water interaction problems. The numerical results in this paper illustrate
the good performances of the modified HWENO scheme with the modified ghost fluid
method.
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