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Highlights

• High order accuracy fast sweeping method on unstructured meshes is developed for the first time to deal with problems defined on complex domains.
• Multiple reference points on the computational domain are introduced to order all the cells and form alternating sweeping directions on unstructured meshes.
• The local solver is based on a fifth-order finite volume unstructured WENO scheme with unequal-sized sub-stencils for the absolute convergence of the

iterations.
• The new high order fast sweeping WENO method on unstructured meshes drives the residue of the iterations to converge to round off errors / machine zero

for all benchmark problems tested.
• By comparing with the other popular schemes, the proposed new scheme is very efficient.
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Abstract

High order accuracy fast sweeping methods have been developed in the literature to efficiently
solve steady state solutions of hyperbolic partial differential equations (PDEs) on rectangular
meshes, while they were not available yet on unstructured meshes. In this paper, we extend
high order accuracy fast sweeping methods to unstructured triangular meshes by applying fixed-
point iterative sweeping techniques to a fifth-order finite volume unstructured WENO scheme,
for solving steady state solutions of hyperbolic conservation laws. Similar as other fast sweeping
methods, fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating
sweeping strategy to cover characteristics of hyperbolic PDEs in each sweeping order to achieve
fast convergence rate to steady state solutions. An advantage of fixed-point fast sweeping
methods which distinguishes them from other fast sweeping methods is that they are explicit
and do not require inverse operation of nonlinear local systems. This also provides certain
convenience in designing high order fast sweeping methods on unstructured meshes. As in
the first order fast sweeping methods on triangular meshes, we introduce multiple reference
points to determine alternating sweeping directions on unstructured meshes. All the cells on
the mesh are ordered according to their centroids’ distances to those reference points, and the
resulted orderings provide sweeping directions for iterations. To make the residue of the fast
sweeping iterations converge to machine zero / round off errors, we follow the approach in our
early work of developing the absolutely convergent fixed-point fast sweeping WENO methods
on rectangular meshes, and adopt high order WENO scheme with unequal-sized sub-stencils,
specifically here a fifth-order finite volume unstructured WENO scheme for spatial discretization.
Extensive numerical experiments, including problems with complex domain geometries, are
performed to show the accuracy, computational efficiency, and absolute convergence of the
presented fifth-order fast sweeping scheme on triangular meshes. Furthermore, the proposed
method is compared with the forward Euler time marching method and the popular third order
total variation diminishing Rung-Kutta (TVD-RK3) time-marching method for steady state
computations. Numerical examples show that the developed fixed-point fast sweeping WENO
method is the most efficient scheme among them, and especially it can save up to 70% CPU
time costs than TVD-RK3 in order to converge to steady state solutions.

Key Words: Fixed-point fast sweeping methods, triangular mesh, high order WENO schemes,

unequal-sized sub-stencils, steady state, hyperbolic conservation laws.
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1 Introduction

Steady state problems of hyperbolic PDEs, such as hyperbolic conservation laws and Hamilton-
Jacobi equations, are common mathematical models arising in many applications, e.g. compressible
fluid mechanics, optimal control, geometric optics, image processing and computer vision, etc. One
of the most important properties of these hyperbolic type boundary value problems is that their
solution information propagates along characteristics starting from the boundary. Fast sweeping
methods, a class of iterative methods originally developed in the literature to solve static Hamilton-
Jacobi equations (see e.g. [57, 34, 35, 15]), take advantage of such property to efficiently solve steady
state problems of hyperbolic PDEs. The methods use alternating sweeping strategy to cover a fam-
ily of characteristics in a certain direction simultaneously in each sweeping order. Combined with
the Gauss-Seidel iterations, these methods can achieve a fast convergence speed. High order accu-
racy fast sweeping methods have been developed and studied extensively on rectangular meshes.
In [56], high order weighted essentially non-oscillatory (WENO) fast sweeping schemes for solving
static Hamilton-Jacobi equations on rectangular meshes were developed, where an explicit strategy
in the iterative schemes was designed to avoid directly solving very complicated local nonlinear
equations derived from high order WENO discretizations. The methods were combined with ac-
curate boundary treatment techniques such as the inverse Lax-Wendroff methods in [49]. In an
implicit way, fast sweeping methods were also applied in discontinuous Galerkin (DG) methods to
efficiently solve static Eikonal equations [26, 46, 52]. This kind of implicit high order fast sweeping
methods are very efficient and often have linear computational complexity as the first order fast
sweeping methods [57, 34, 35]); however the algorithms are much more complicated than explicit
methods such as the WENO fast sweeping methods [56], which makes these implicit high order fast
sweeping methods difficult to be applied in solving more complicated hyperbolic PDEs.

Although high order accuracy fast sweeping methods were well developed on rectangular meshes,
they have not been explored much on unstructured meshes to solve steady state problems of general
hyperbolic PDEs. A key factor in developing a high order accuracy fast sweeping method on
unstructured meshes, which is efficient and relatively easy to be implemented, is to design an
approach to effectively incorporate an unstructured nonlinearly stable scheme into the fast sweeping
iteration framework to accelerate the convergence to steady state solutions. In this paper, we
develop high order accuracy fast sweeping methods on unstructured triangular meshes by applying
fixed-point iterative sweeping techniques to a fifth-order finite volume unstructured WENO scheme,
for solving steady state solutions of hyperbolic conservation laws. The fixed-point fast sweeping
methods were first designed in [55] for solving static Hamilton-Jacobi equations on rectangular
meshes. They can be considered as a generalization of the explicit high order fast sweeping methods
in [56]. As other fast sweeping methods, the fixed-point fast sweeping methods use the Gauss-Seidel
iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in each
sweeping order to achieve fast convergence rate to steady state solutions. However, this kind
of fast sweeping methods have nice properties such as that they are fully explicit and do not
involve any inverse operation of nonlinear local systems, and they can be easily adopted to solve
complex hyperbolic systems with any monotone numerical fluxes and high order nonlinearly stable
schemes. For example, the fixed-point fast sweeping methods were applied to sparse-grid WENO
schemes for efficiently solving multidimensional Eikonal equations in [33]; in [47, 27, 28], high order
accuracy fixed-point fast sweeping WENO methods for efficiently solving steady state problems of
compressible flows modeled by nonlinear hyperbolic conservation laws were developed. As shown
in [27], it is interesting to find that the special case of using the parameter γ = 1 and the Lax-
Friedrichs flux in the third order fixed-point fast sweeping schemes is equivalent to the third order
Lax-Friedrichs fast sweeping methods in [56, 8]. Here, the “explicit” property of fixed-point fast
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sweeping methods also provides convenience for us to develop high order fast sweeping methods on
unstructured meshes.

As in the fast sweeping methods on rectangular meshes, there are also two important com-
ponents in designing fast sweeping methods on unstructured meshes: (1) a nonlinearly stable
scheme to discretize the hyperbolic PDEs, which is often called a “local solver”; (2) systematic
orderings of all grid points / cells, which can cover all directions of the characteristics. The local
solver used in this paper is in the class of WENO schemes. WENO schemes are popular high
order accuracy numerical methods for spatial discretizations of nonlinear hyperbolic conservation
laws, e.g., see [5, 22, 29, 40, 42]. They have the advantage of attaining uniform high order ac-
curacy in smooth regions of the solution while maintaining sharp and essentially non-oscillatory
transitions of discontinuities. On unstructured meshes, WENO schemes were constructed in e.g.
[13, 14, 17, 21, 23, 44, 53, 54]. These unstructured WENO schemes follow the idea in original
structured WENO schemes [22, 41], i.e., the sub-stencils have comparable size and are smaller than
the big stencil of the scheme. They can be classified to two types according to their differences in
WENO reconstructions on unstructured meshes, as that defined in [54, 30]. Specifically, the major
difference between two types of these schemes is the different method to construct sub-stencils and
find linear weights. The first type (type I) reconstruction [13, 14, 17, 44] has an order of accu-
racy not higher than that of the reconstruction on each sub-stencil. This is similar as essentially
non-oscillatory (ENO) schemes [20, 43]. The nonlinear weights in type I WENO reconstructions
do not contribute towards the increase of the order of accuracy, but they are designed purely for
the purpose of nonlinear stability, or to avoid spurious oscillations. Because type I WENO schemes
just need to choose the linear weights as arbitrary positive numbers for better linear stability (e.g.
the centered sub-stencil is assigned a larger linear weight than the others), they are easier to con-
struct than the type II WENO schemes discussed in the following. The second type (type II)
consists of WENO schemes whose order of accuracy is higher than that of the reconstruction on
each sub-stencil (see e.g. [21, 23, 53, 54]). A crucial step in building a type II WENO scheme
on unstructured meshes is to construct lower order polynomials whose weighted average will give
the same result as the high order reconstruction at each Gaussian quadrature point for the flux
integral on the element boundary. This step is actually the most difficult step in designing a robust
type II high order WENO schemes on unstructured meshes, since we can not guarantee the quality
of the unstructured meshes when the domain geometry is very complicated. Especially, when the
spatial domain has higher dimensions (e.g., three dimensional problems) and complex geometry,
the quality of the unstructured meshes is hard to control. Distorted local mesh geometries can be
easily generated. The local linear system for finding linear weights could have very large condition
number or is even singular at the places where mesh quality is bad. This is the reason why type
II WENO schemes are more difficult to construct than type I WENO schemes on unstructured
meshes. However they have a much more compact stencil than type I WENO schemes of the same
accuracy, which is an advantage in applications. In [30], the approaches of type II and type I
WENO schemes are combined to achieve a robust unstructured finite volume WENO reconstruc-
tion, and the appearance of negative and very large linear weights are avoided no matter how bad
the quality of the unstructured meshes is. Recently, high order WENO schemes with unequal-sized
sub-stencils were developed on unstructured meshes [59, 61]. As the type I WENO schemes, the
linear weights of these WENO schemes with unequal-sized sub-stencils can be chosen as arbitrary
positive numbers as long as their sum equals 1, hence they are easier to construct than the type
II WENO schemes on unstructured meshes. Also they have the same big stencil as the type II
WENO schemes, hence they are as compact as the type II WENO schemes. Another advantage
of WENO schemes with unequal-sized sub-stencils is on solving steady state problems. Studies on
high order WENO schemes on unequal-sized sub-stencils reveal that they improve the convergence

3



of high order WENO schemes with equal-sized sub-stencils to steady state solutions so that the
residue of time-marching iterations settles down to machine zero / round off errors [60, 61]. The
property of an iterative scheme that the residue of its iterations can settle down to machine zero or
the round off error level in a finite number of iterations is called “absolute convergence” in [27]. In
this paper, to make the residue of the fast sweeping iterations converges to machine zero / round off
errors, we follow the approach in our early work of developing the absolutely convergent fixed-point
fast sweeping WENO methods on rectangular meshes [27], and adopt high order WENO scheme
with unequal-sized sub-stencils, specifically here a fifth-order finite volume unstructured WENO
discretization [61] as the local solver of the fast sweeping method.

The efficient convergence of fast sweeping methods is due to the fact that all directions of char-
acteristics can be divided into a finite number of groups, and any characteristic can be decomposed
into a finite number of pieces that belong to one of the above groups, then systematic orderings can
be designed to follow the causality of each group of directions simultaneously. Orderings of all grid
points or cells on a rectangular mesh are natural. For example in a two-dimensional (2-D) prob-
lem, all directions of the characteristics can be divided into four groups, namely, up-right, up-left,
down-left, and down-right. All grid points or cells are ordered by using their indexes to provide
four orderings to cover all these four groups of characteristics. However, such natural orderings do
not exist on unstructured meshes or triangular meshes considered here. In this paper, we apply the
approach in the first order fast sweeping methods on triangular meshes [34] to the high order fast
sweeping WENO method developed here. Specifically, multiple reference points are introduced to
determine alternating sweeping directions on unstructured triangular meshes. All the cells on the
mesh are ordered according to their centroids’ distances to those reference points, and the resulted
orderings provide sweeping directions for the fixed-point iterations.

To compute steady state of hyperbolic conservation laws, the forward Euler time marching
method is preferred rather than a Runge-Kutta method, because it is very simple with a single-
step and one stage, and time direction accuracy has no effects on the numerical accuracy of steady
state solutions. However, a high order linear spatial scheme (e.g., a fifth order linear scheme) with
the forward Euler time marching is linearly unstable. Nonlinearly stable spatial discretizations such
as WENO schemes can help to stabilize the computation by the forward Euler method, but often a
very small CFL number and large amount of iterations are required to converge to steady state, as
shown in [47]. Hence, for both linear and nonlinear stability of high order schemes in solving steady
state problems of hyperbolic conservation laws, a common approach is to use a total variation
diminishing Runge-Kutta method, e.g. the popular third order scheme (TVD-RK3) [19, 43], to
time-march numerical solution to steady state. In [27, 47], it was shown that on rectangular
meshes, the fast sweeping technique can largely improve the stability of high order WENO schemes
with the forward Euler time marching, and the fast sweeping WENO schemes converge to steady
state solution much faster than the popular TVD-RK3 time-marching approach. In this paper, we
will draw the similar conclusion for the developed absolutely convergent fixed-point fast sweeping
WENO method on unstructured triangular meshes. Numerical experiments show that the proposed
fast sweeping scheme is more efficient than both the forward Euler time marching method and the
TVD-RK3 scheme, and it converges under comparable CFL numbers as the TVD-RK3 scheme for
all examples, while the direct forward Euler time marching method needs a smaller CFL number
to converge in general.

The organization of the paper is as follows. The detailed description of the new absolutely
convergent fixed-point fast sweeping WENO method on unstructured triangular meshes is provided
in Section 2. In Section 3, we perform numerical experiments to study the proposed method, and
carry out comparisons of different methods. Extensive numerical examples, including the shock
reflection, supersonic flow past a circular cylinder, and the problems of supersonic and subsonic
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(a)

(b) (c) (d) (e)

Figure 1: Unequal-sized sub-stencils of a target cell △i for the fifth order finite volume unstructured
WENO local solver. (a) sub-stencil T1; (b) sub-stencil T2; (c) sub-stencil T3, (d) sub-stencil T4; (e)
sub-stencil T5.

flows past an airfoil which have complex domain geometries, etc., are solved to show the accuracy,
computational efficiency, and absolute convergence of the presented fifth-order fast sweeping WENO
scheme on unstructured triangular meshes. Concluding remarks are given in Section 4.

2 Description of the numerical methods

We consider steady state problems of hyperbolic conservation laws with appropriate boundary
conditions. The two dimensional (2D) case has the following general form

f(u)x + g(u)y = R, (2.1)

where u is the vector of the unknown conservative variables, f(u) and g(u) are the vectors of flux
functions, and R(x, y) is the source term. For example, the steady Euler system of equations in
compressible fluid dynamics has that u = (ρ, ρu, ρv, E)T , f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , and
g(u) = (ρv, ρuv, ρv2 + p, v(E + p))T . Here ρ is the density of fluid, (u, v)T is the velocity vector, p
is the pressure, and E = p

γ′−1 +
1
2ρ(u

2+ v2) is total energy where the constant γ′ = 1.4 for the case
of air. A spatial discretization of (2.1) by a high order WENO scheme leads to a large nonlinear
system of algebraic equations with the size determined by the number of spatial triangular cells.
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2.1 The local solver

In this section, we describe the fifth-order finite volume WENO scheme with unequal-sized sub-
stencils on triangular meshes for discretization of (2.1), which is the local solver of the developed
fast sweeping method. The computational domain is partitioned by an unstructured triangular
mesh with computational cells {△i, i = 1, · · · ,M}, and M is the total number of cells in the mesh.
We integrate (2.1) over a target cell △i to obtain

1

|△i|

∫

∂△i

F · −→n ds = Ri, (2.2)

in which Ri =
1

|△i|

∫

△i
R(x, y)dxdy, F = (f,g), ∂△i is the boundary of the target cell △i, |△i| is

the area of △i, and
−→n is the outward unit normal to the boundary of △i. The line integrals in

(2.2) are discretized by a three-point Gaussian quadrature formula [21] on each edge of the cell △i

∫

∂△i

F · −→n ds ≈

3
∑

k=1

|∂△ik |

3
∑

m=1

σmF(u(xGkm
, yGkm

)) · −→n k, (2.3)

where {|∂△ik |}
3
k=1 are the lengths of the edges, {σm}3m=1 are the quadrature weights, {(xGkm

, yGkm
)}3k,m=1

are the Gaussian quadrature points, {−→n k}
3
k=1 are the outward unit normals at the quadrature

points. For linear stability, F(u(xGkm
, yGkm

)) ·−→n k,m = 1, · · · , 3; k = 1, · · · , 3 are approximated by
monotone numerical fluxes such as the Lax-Friedrichs flux

F(u(xGkm
, yGkm

)) · −→n k ≈
1

2

[

(F(u+(xGkm
, yGkm

)) + F(u−(xGkm
, yGkm

))) · −→n k

− α(u+(xGkm
, yGkm

)− u−(xGkm
, yGkm

))
]

.
(2.4)

Here α is taken as an upper bound for the eigenvalues of the flux Jacobian in the −→n k direction,
and u− and u+ are the reconstructed values of the numerical solution u inside and outside of
the target cell △i at different Gaussian quadrature points, based on the cell average values of u
on cells of the computational stencil. We use the fifth-order WENO method [61] to reconstruct
the function values of u(x, y) at different Gaussian quadrature points (xGkm

, yGkm
) on the cell

boundaries. Reconstruction on the target cell △i provides values for u− in (2.4), with detailed
algorithm given in the following. Values for u+ in (2.4) are provided by the reconstruction on one
of the neighboring cells of △i.

Reconstruction algorithm:

Step 1. Select a big central spatial stencil T1 =
{

△i,△i1,△i2,△i3,△i11,△i12,△i21,△i22,△i31,
△i32,△i112,△i121,△i212,△i221,△i312,△i321} (see Figure 1), which are formed by several layers of
neighbor cells of the target cell△i. Based on the cell average values of u on cells of T1, we construct a
quartic polynomial p1(x, y) on T1 to obtain a fifth-order approximation of the conservative variable
u. Since in general the number of cells on T1 are more than the degree of freedom of the quartic
polynomial, the least-square method is used to find p1(x, y) as in [21], namely, it is required that
p1(x, y) has the same cell average of u on the target cell △i and matches the cell averages of u on
the other cells of the stencil T1 in the least-square way:

1

|△i|

∫

△i

p1(x, y)dxdy = ui, p1(x, y) = argmin
∑

ll∈W1

(

1

|△ll|

∫

△ll

p(x, y)dxdy − ull

)2

,

W1 = {i1, i2, i3, i11, i12, i21, i22, i31, i32, i112, i121, i212, i221, i312, i321}.

(2.5)
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Note that if the number of cells located inside the stencil T1 is less than that is required for
reconstructing the polynomial because some of the cells coincide with each other, neighboring cells
in the next layer of the mesh will be added to the stencil to provide enough number of cells for the
reconstruction.

Step 2. Form three sectorial sub-stencils T2 = {△i,△i1,△i11,△i12}, T3 = {△i,△i2,△i21,△i22},
T4 = {△i,△i3,△i31,△i32} and one central sub-stencil T5 = {△i,△i1,△i2,△i3} (see Figure 1).
Note that in forming these sectorial sub-stencils T2, T3, T4, we use straight lines to connect the
barycenter of the target cell △i with its three vertices and split the plane into three sectors. Every
sectorial sub-stencil consists of the target cell △i and its neighboring cells whose barycenters lie
in the same sector. Such kind of distributions of sub-stencils are important to obtain the non-
oscillatory performance for non-smooth solutions, as shown in [30]. Then four linear polynomials
pm(x, y),m = 2, · · · , 5 on such sub-stencils are constructed to obtain second-order approximations
of the conservative variable u. Again, the least-square method is used to find pm(x, y) by requiring
that pm(x, y) has the same cell average of u on the target cell △i and matches the cell averages of
u on the other cells of the sub-stencil Tm in the least-square way:

1

|△i|

∫

△i

pm(x, y)dxdy = ui, pm(x, y) = argmin
∑

ll∈Wm

(

1

|△ll|

∫

△ll

p(x, y)dxdy − ull

)2

,

m = 2, · · · , 5;W2 = {i1, i11, i12},W3 = {i2, i21, i22},W4 = {i3, i31, i32},W5 = {i1, i2, i3}.

(2.6)

Step 3. Define the linear weights. We emphasize that different from the previous unstructured
WENO schemes [21, 54], the WENO reconstruction with unequal-sized sub-stencils here uses the
big stencil T1 as one of the sub-stencils and the other sub-stencils T2, T3, T4, T5 are much smaller,
while in the WENO schemes [21, 54], every sub-stencil is only part of the big stencil and their union
is the big stencil. To use the reconstruction p1(x, y) on the sub-stencil T1 for the final high order
accuracy, we apply the similar ideas for the central WENO schemes [24, 25] and rewrite p1(x, y) as

p1(x, y) = γ1

(

1

γ1
p1(x, y)−

5
∑

m=2

γm
γ1

pm(x, y)

)

+
5

∑

m=2

γmpm(x, y) (2.7)

with
∑5

m=1 γm = 1 and γ1 6= 0. In these expressions, γm for m = 1, · · · , 5 are the linear weights.
Following the practice in [13, 30, 58, 62], we take the linear weights as γ1 = 0.96 and γ2 = γ3 =
γ4 = γ5 = 0.01.

Step 4. Compute the smoothness indicators βk, which measure how smooth the functions pk

for k = 1, · · · , 5 are in the target cell △i. We use the same recipe for the smoothness indicators as
that in [21, 22]:

βk =

r
∑

|α|=1

∫

△i

|△i|
|α|−1(Dαpk(x, y))

2dxdy, k = 1, · · · , 5, (2.8)

where D is the differential operator and α is the multi-index for derivative orders. r = 4 for l = 1,
and r = 1 for l = 2, · · · , 5.

Step 5. Compute the nonlinear weights based on the linear weights and the smoothness
indicators. We adopt the WENO-Z type nonlinear weights as specified in [5, 7, 12], the nonlinear
weights are defined as

ωk =
ωk

∑5
k=1 ωk

, ωk = γk(1 +
τ

ε+ βk
), k = 1, · · · , 5. (2.9)

According to [58, 59], we define τ = ( |β1−β2|+|β1−β3|+|β1−β4|+|β1−β5|
4 )2, and take ε = 10−6.
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Step 6. The final reconstruction polynomial for the approximation of u(x, y) at any points of
the target cell △i is given as

u(x, y) ≈ ω1

(

1

γ1
p1(x, y)−

5
∑

m=2

γm
γ1

pm(x, y)

)

+
5

∑

m=2

ωmpm(x, y). (2.10)

Remark. Note that other high order WENO methods on unstructured meshes can also be used
as the local solver of the fast sweeping method developed here. For example, an efficient class of
WENO schemes with adaptive order, called WENO-AO schemes, were developed first in [3] for
structured meshes, then in [2] for unstructured meshes. The WENO-AO schemes and the WENO
schemes with unequal-sized sub-stencils [58, 61] share the similar idea of using a large stencil and
a telescoping set of smaller stencils for high order WENO reconstructions. They are very flexible
in choosing linear weights, hence are simpler to construct than the type II WENO schemes (e.g.
[21, 54]) on unstructured meshes. Furthermore, in [2] an efficient approach was developed to simplify
the finite volume reconstruction by using a favorable Taylor series basis with an extension of the
Parallel Axis Theorem, which makes the resulting method only require the solution of a smaller
least squares problem on each stencil, instead of solving a constrained least squares problem. It is
an interesting topic and will be explored in the future research to apply these efficient WENO-AO
schemes to the fast sweeping method proposed in this paper for solving steady state problems.

2.2 Absolutely convergent fixed-point fast sweeping WENO scheme

After the spatial discretization of the equation (2.1) by the finite volume scheme described in the
last section, we have

0 = −
1

|△i|

3
∑

k=1

|∂△ik |
3

∑

m=1

σm
1

2

[

(F(u+(xGkm
, yGkm

)) + F(u−(xGkm
, yGkm

))) · −→n k

− α(u+(xGkm
, yGkm

)− u−(xGkm
, yGkm

))
]

+Ri, i = 1, · · · ,M,

(2.11)

where M is the number of triangular cells. The aforementioned fifth-order WENO reconstructions
at Gaussian quadrature points (xGkm

, yGkm
) on the cell boundaries lead to a nonlinear algebraic

system
L(ui,ui1, · · · ,ui321) = 0, i = 1, · · · ,M. (2.12)

Note that here ui is the cell average of the numerical solution of the unknown function u on the
target cell △i. ui1, · · · ,ui321 are the cell averages on the WENO scheme’s stencil of the target cell
△i. L denotes the spatial discretization operator applied to the PDE using this fifth-order finite
volume WENO local solver, which is a nonlinear function of the cell averages of the numerical
solution on the computational stencil of the WENO scheme. The fixed-point fast sweeping schemes
for solving the nonlinear system (2.12) are based on iterative schemes of time marching type for
solving steady state problems. Time marching methods for solving steady state problems are
essentially Jacobi type fixed-point iterative schemes. The forward Euler (FE) time marching method
with time step size ∆tn to solve the nonlinear system (2.12) is the following Jacobi type fixed-point
iterative scheme

un+1
i = un

i +△tnL(u
n
i ,u

n
i1, · · · ,u

n
i321), i = 1, · · · ,M, (2.13)

where un+1
i and un

i etc. are the numerical solution values at iteration steps n + 1 and n. The
popular TVD-RK3 time marching method to solve the nonlinear system (2.12) is the following
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Jacobi type fixed-point iterative scheme:

u
(1)
i = un

i +△tnL(u
n
i ,u

n
i1, · · · ,u

n
i321), i = 1, · · · ,M,

u
(2)
i =

3

4
un
i +

1

4
u
(1)
i +

1

4
△tnL(u

(1)
i ,u

(1)
i1 , · · · , u

(1)
i321), i = 1, · · · ,M,

un+1
i =

1

3
un
i +

2

3
u
(2)
i +

2

3
△tnL(u

(2)
i ,u

(2)
i1 , · · · ,u

(2)
i321), i = 1, · · · ,M.

(2.14)

To obtain faster convergence to steady state solutions of high order unstructured WENO
schemes for solving hyperbolic PDEs than the above Jacobi type fixed-point iterations, we ap-
ply the fast sweeping techniques so that the important characteristics property of hyperbolic PDEs
can be utilized in the iterations, as in the WENO fast sweeping methods on structured meshes
[47, 27]. The fast sweeping techniques can be applied to either the FE scheme (2.13) or the TVD-
RK3 scheme (2.14). However, as that found in [47, 33], the fast sweeping scheme resulted by
applying the fast sweeping techniques to the TVD-RK3 scheme is less efficient than the obtained
method by applying the fast sweeping techniques to the FE scheme. Hence here we apply the fast
sweeping techniques to the FE scheme (2.13) and obtain the high order FE type fixed-point fast
sweeping scheme on unstructured meshes. As shown in the numerical experiments of the following
section, the FE fixed-point fast sweeping scheme permits larger CFL numbers than the original FE
scheme. In fact it has comparable CFL numbers as that of the TVD-RK3 scheme, and it is much
more efficient than the TVD-RK3 scheme to reach steady state of the solutions. The form of the
FE fixed-point fast sweeping scheme is:

un+1
i = un

i +△tnL(u
n
i ,u

∗
i1, · · · ,u

∗
i321), i = k1, · · · , kM . (2.15)

Note that the fast sweeping methods have two essential components, i.e., the Gauss-Seidel philos-
ophy and alternating direction sweeping iterations. The Gauss-Seidel philosophy requires that the
newest numerical values of u are used in the finite volume WENO reconstruction stencils as long
as they are available. Alternating direction sweepings cover characteristics in different directions.
Here the iteration direction in the FE fixed-point fast sweeping scheme (2.15), which is marked
as “i = k1, · · · , kM”, means that the iterations in the scheme (2.15) do not just proceed in only
one direction “i = 1, · · · ,M” as that in the Jacobi type schemes (2.13) and (2.14), but in the
alternating directions repeatedly.

Design of alternating sweeping directions on a rectangular mesh is natural. However, it is not
straightforward on unstructured meshes. We use the method in [34] for the first order fast sweeping
scheme on triangular meshes to form the sweeping directions of the high order scheme here, and
verify that such alternating sweeping directions are still effective for the high order scheme. The
method is briefly explained in the following. The alternating sweeping directions on unstructured
meshes are determined by ordering all the cells on the mesh according to their centroids’ distances
to some reference points on the domain. For example, let ~x denote the centroid of a cell and ~xref
denote one of the reference points. We compute the l2− distance ||~x − ~xref ||2 for each cell of the
computational mesh, and sort all the cells according to ||~x − ~xref ||2 in the ascent (or descent)
order. Then these two orderings of all the cells provide two sweeping directions. If we use these
two sweeping directions as the iteration direction “i = k1, · · · , kM” in the fixed-point fast sweeping
scheme (2.15), the sweeping directions through all cells on an unstructured mesh are actually
approximations of an outgoing (or incoming) spherical wave with respect to the reference point
~xref , which is called the sweeping wavefront in [34]. See Figure 2 for an illustration. This method
shares some similarities with the expanding wavefront model in [36, 45]. To explain the idea more
clearly, instead of an unstructured mesh, we use a very coarse Cartesian and circular mesh, with
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(a) (b)

Figure 2: Examples of reference points for: (a) a rectangular computational domain; (b) a circular
computational domain. Sweeping wavefronts (the dashed curves) based on the reference point A
are shown.

(a) the forward direction (b) the reverse direction

Figure 3: An example on sweeping number of the zones of a coarse Cartesian and circular mesh,
with respect to one of the reference points. (a): in the forward direction (i.e., the ascent order);
(b): in the reverse direction (i.e., the descent order).
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only a few zones to show the sweeping directions with respect to one of the reference points. Note
that in this example, the sweeping directions are exactly the same as the sweeping wavefronts.
Figure 3 shows the sweeping number (i.e., the order) of each cell on the mesh, in both the forward
direction and the reverse direction. The forward sweeping direction is obtained by sorting all the
cells according to their centroids’ distances to the reference point in the ascent order, while the
reverse sweeping direction is obtained by sorting all the cells according to their centroids’ distances
to the reference point in the descent order. Note that in this special example, there are cells which
are exactly on the same sweeping wavefront, namely, their centroids’ distances to the reference
point are the same (e.g., the cells marked as “1, 2, 3”, and so on, in Figure 3). For these cells, the
order of updates of them, which may depend on the sorting method used and its implementation,
does not matter and their order does not affect the convergence of the iterations. In the other
words, it is fine to update the cells marked as “1, 2, 3” in the order of “2, 1, 3”, or “3, 2, 1”, etc.
here, and similarly for the cells marked as “4, 5, 6” and the cells marked as “7, 8, 9”. This point
is also emphasized in the summary of the algorithm in the following.

If the propagating direction of the sweeping wavefront forms an acute angle with the direction
of the characteristic, then the causality (i.e., upwind information) along this characteristic can be
correctly captured in this sweeping direction. A straight characteristic in any direction can be
partitioned into two pieces by the tangent point to a particular spherical sweeping wavefront, and
each piece forms an acute angle to the outgoing or incoming sweeping wavefront. If all characteristics
are straight lines, we cover almost all characteristics by sweeping all cells according to their l2−
distances to a single reference point in both ascent and descent orders alternately, except for these
characteristics at the tangent point where the normal of the sweeping wavefront is orthogonal to the
direction of characteristics and upwind information is unable to propagate across the tangent point
from one piece to other pieces effectively. This issue can be resolved by introducing another reference
point. Then all directions of characteristics can be covered effectively by the four orderings of all
cells (i.e., both ascent and descent orders based on two reference points) except one direction, which
is orthogonal to the line connecting these two reference points. Hence at least three non-collinear
reference points are needed, and the sweepings are performed through all the cells according to
their l2− distances to these reference points in ascent and descent orderings to cover all directions
of information propagating along characteristics. When characteristics are not straight lines, any
characteristic can be divided into a finite number of pieces so that each piece can still be covered
effectively by one of the sweeping directions as shown in [57, 34], although practically we need more
than three non-collinear reference points for efficient convergence of the iterations.

As discussed in [34], the criterion for an optimal choice of reference points and their locations
on an unstructured mesh is that all directions of characteristics should be covered with minimal
redundancy. In practice, it is better if these reference points are evenly spaced both spatially
and angularly in the computational domain. For the high order WENO fast sweeping method
for hyperbolic conservation laws here, we use four reference points which are evenly (or roughly
evenly) distributed on the domain boundary, and numerical experiments show that the resulted
alternating sweeping directions are effective for fast convergence of the scheme. For example, we
use four corners as reference points if the computational domain is rectangular. Also see Figure
2 for an illustration of reference points for a rectangular computational domain and a circular
computational domain, and the sweeping wavefronts based on one of the reference points. Here we
would like to emphasize that the sweeping wavefronts (e.g., the arcs in Figure 2) can be considered
as “continuous limit” of the sweeping directions, and they are used to explain this method about
constructing the sweeping directions on unstructured meshes. However, these sweeping wavefronts
do not appear in the implementation of the method and their ordering (i.e., the ordering of the
arcs in Figure 2) does not need to be preserved in the computational codes. Instead, we need to
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save the ascent and descent orderings of all the cells on the computational mesh according to their
centroids’ distances to the chosen reference points on the domain, and use them as the sweeping
directions in the iterations. The implementation details are in the following.

For each reference point Rl, l = 1, · · · , 4, we sort all cells on the unstructured mesh according
to their centroids’ distances to the reference point Rl in ascent and descent orders, and put their
index numbers into arrays, e.g., the array S+

l (i), i = 1, 2, · · · ,M to store cell index numbers in the
resulted ascent order and the array S−

l (i), i = 1, 2, · · · ,M to store cell index numbers in the resulted
descent order. With four reference points, we obtain eight sweeping orders. Then in the proposed
fixed-point WENO fast sweeping scheme (2.15), we alternatively take ki = S+

l (i), i = 1, 2, · · · ,M
and ki = S−

l (i), i = 1, 2, · · · ,M , for l = 1, · · · , 4, as the sweeping iteration directions. Note that
these initial orderings of cells only need to be performed for a fixed mesh once and for all, hence
their cost is just a small part of the whole simulation cost. In the numerical tests of this paper,
we use a comparison-based sorting method [10]. The complete algorithm is summarized as the
following.

Step 1. Choose four reference points: Rl, l = 1, · · · , 4.
Step 2. For each reference point Rl, l = 1, · · · , 4, all triangle cells are sorted according to the

l2−distances of their centroids to the reference points Rl in ascent and descent orders, and store
their index numbers in arrays:

S+
l (i) : ascent order, i = 1, 2, · · · ,M ;

S−
l (i) : descent order, i = 1, 2, · · · ,M.

Note that if the distances of two cells’ centroids to a reference point is very close to each other,
for example, their difference is at the round-off error level, the order of updates for these two
cells, which may depend on the sorting method used and its implementation, does not matter and
their order does not affect the convergence of the iterations. This point has been discussed for the
first order scheme in [34], and also confirmed in our numerical simulations for the high order fast
sweeping method developed here.

Step 3. Gauss-Seidel iterations using the fast sweeping scheme (2.15) are performed for n =
1, 2, · · · , according to the sweeping iteration directions obtained above:

do l = 1, · · · , 4

do i = 1, · · · ,M

ki = S+
l (i);

Apply (2.15) and update un+1
ki

on the triangle ki.

enddo

Perform convergence check.

do i = 1, · · · ,M

ki = S−
l (i);

Apply (2.15) and update un+1
ki

on the triangle ki.

enddo

Perform convergence check.

enddo

Note that the convergence check is performed via first computing the iteration residue ResA
defined in the following section, then judging whether the convergence criterion ResA ≤ δ for δ > 0
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given is satisfied. If it is satisfied, we stop the Gauss-Seidel iterations. Since the strategy of alter-
nating direction sweepings utilizes the characteristics property of hyperbolic PDEs, combining with
the Gauss-Seidel philosophy, we observe the acceleration of convergence to steady state solutions as
shown in the following numerical experiments. By the Gauss-Seidel philosophy, we use the newest
numerical values on the computational stencil of the WENO scheme whenever they are available in
the current iteration step. This is why we use the notation u∗

il, l = 1, 2, 3, 11, · · · , 321, to represent
the numerical values in the scheme (2.15), and u∗

il could be the value un
il in the previous iteration

step n, or the new value un+1
il which has been updated and available in the current iteration step,

depending on the current sweeping direction of the iteration. To guarantee that the fixed-point
iteration (2.15) is a contractive mapping and converges, suitable values of △tn which depends on
the CFL number, need to be taken. This is similar to choose a suitable CFL number for stability
when a high order WENO scheme is used to solve time-dependent hyperbolic PDEs.

3 Numerical experiments

In this section, we carry out numerical experiments to test the proposed absolutely convergent
fixed-point fast sweeping WENO method on triangular meshes for solving some benchmark steady-
state problems of hyperbolic conservation laws. Computational efficiency of the fast sweeping
scheme and the other two time marching schemes is compared. For the convenience of presentation,
we call the proposed absolutely convergent fixed-point fast sweeping WENO scheme (2.15) “FE
fast sweeping scheme”, the forward Euler time marching scheme (2.13) “FE Jacobi scheme”, and
the TVD-RK3 time marching scheme (2.14) “RK Jacobi scheme”. Mesh refinement studies are
performed to compute L1 and L∞ numerical errors and accuracy orders of these iterative schemes.
Iteration numbers and CPU times for each iterative scheme to converge are recorded to compare
their computational efficiency. The convergence of the iterations is measured by the average residue
which is defined as

ResA =
M
∑

i=1

|R1i|+ |R2i|+ |R3i|+ |R4i|

4×M
. (3.1)

Here R∗i’s are the local residuals of the conservative variables, namely, R1i =
ρn+1

i
−ρn

i

∆tn
, R2i =

(ρu)n+1

i
−(ρu)n

i

∆tn
, R3i =

(ρv)n+1

i
−(ρv)n

i

∆tn
, R4i =

E
n+1

i −E
n

i

∆tn
. M is the total number of triangular cells. The

convergence criterion is set to be ResA ≤ δ, where the threshold value δ is taken to be at round
off error level 10−12 ∼ 10−11. △tn depends on the CFL number as the following

△tn =
CFL

max
1≤i≤M

(∑
3
ll=1[|(un

i
,vn

i
)·−→n ill

|+cn
i ]|∂△ill

|

2|△i|

) , (3.2)

where cni =
√

γ′pn
i

ρn
i

is the sound speed with γ′ = 1.4. In this paper, the number of iterations reported

in the numerical simulations counts a complete update of numerical values in all cells once as one
iteration. Hence these eight alternating directions in the FE fast sweeping scheme are counted as
eight iterations. In the numerical experiments, for various examples we compare the computational
efficiency of different schemes by using the largest possible CFL numbers which lead to iteration
convergence with the fastest speed for each method. To identify the largest possible CFL number
for a problem, we gradually increase / decrease the values of CFL number from an initial value.

We first test these schemes by solving two problems with a smooth solution to verify their accuracy,
and compare their efficiency to converge to a steady-state solution.
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Example 1. An Euler system of equations with source terms

In this example, we solve for steady-state solution of the following two dimensional Euler system
of equations with source terms

∂

∂t









ρ
ρu
ρv
E









+
∂

∂x









ρu
ρu2 + p
ρuv

u(E + p)









+
∂

∂y









ρv
ρuv

ρv2 + p
v(E + p)









=









0.4 cos(x+ y)
0.6 cos(x+ y)
0.6 cos(x+ y)
1.8 cos(x+ y)









. (3.3)

The exact steady-state solutions of the problem are ρ(x, y,∞) = 1 + 0.2 sin(x + y), u(x, y,∞) =
1, v(x, y,∞) = 1, p(x, y,∞) = 1+0.2 sin(x+y). The computation domain is (x, y) ∈ [0, 2π]× [0, 2π],
and the exact steady-state solutions are applied on the domain boundaries. Three different iterative
methods, i.e., the FE Jacobi scheme, the RK Jacobi scheme, and the FE fast sweeping scheme,
are used to solve the problem on successively refined unstructured triangular meshes. The coarsest
mesh used here is shown in Figure 4. In the mesh refinement study to test the accuracy orders of the
schemes, the mesh is refined by cutting each triangle in the coarse mesh into four smaller similar
ones. As discussed in Section 2, we take four corners of the domain, i.e., (0, 0), (0, 2π), (2π, 0)
and (2π, 2π), as the reference points to form the alternating sweeping directions in the FE fast
sweeping scheme. To start the iterations for the schemes, we take the numerical initial conditions
to be the same as the exact steady-state solutions, which does not satisfy the numerical schemes
and will be driven by the iterative schemes to the numerical steady states. In Table 1, we report
the numerical accuracy for the density variable, iteration numbers and CPU times when these
three different iterative schemes reach the average residue threshold value 10−12 of the convergence
criterion. It is observed that all three schemes achieve basically the same numerical errors and
the fifth order accuracy when the iterations converge. This is as expected since although they are
different iterative schemes, they converge to the solution of the same nonlinear algebraic system
resulted from the fifth order finite volume WENO local solver. However, these methods exhibit
very different computational efficiency by comparing the iteration numbers and CPU times required
by them to reach steady state. As shown in Table 1, the FE Jacobi scheme requires a very small
CFL number 0.1 to achieve the convergence. The reason is that a forward Euler time discretization
with a high order linear upwind spatial discretization suffers from linear stability issue. When the
nonlinearly stable WENO discretization is applied, it alleviates the linear instability problem. As
a result of balance, the forward Euler time marching scheme, i.e. the FE Jacobi scheme, converges
under a tiny CFL number in this example. That leads to the largest iteration numbers and the
most CPU time costs among these three iterative schemes. By using the TVD-RK3 scheme (i.e.
the RK Jacobi scheme), both linear and nonlinear stability are maintained. Hence here a larger
CFL number 0.6 can be used to make the iterations converge. Although the RK Jacobi scheme
has three stages in one time step, in this example it needs fewer number of iterations and less CPU
costs to converge to the steady state, and is more efficient than the FE Jacobi scheme. As shown
in Table 1, the proposed fixed-point fast sweeping method (i.e. the FE fast sweeping scheme) is
the most efficient one among all three iterative methods. Furthermore, it is important to notice
that the FE fast sweeping scheme permits a CFL number 0.6 which is the same as the TVD-RK3
scheme. This shows that the fixed-point fast sweeping method can improve the linear stability of
the forward Euler scheme when it is coupled with a high order spatial discretization. Hence, it
suggests that by applying the fixed-point fast sweeping technique to the forward Euler scheme, the
forward Euler scheme with a high order WENO spatial discretization becomes practically useful
and efficient in solving steady-state hyperbolic conservation laws. In Table 1, it is observed that
on refined meshes, the number of iterations for the FE fast sweeping method to converge to the
steady state is only about 13% ∼ 15% of that for the forward Euler time marching scheme, and
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Figure 4: The coarsest unstructured triangular mesh for Example 1 and Example 2.

about 25% ∼ 30% of that for the TVD-RK3 scheme. Since the Gauss-Seidel iterations in the FE
fast sweeping method (2.15) require that the newest numerical values of u are used in the finite
volume WENO reconstruction stencils as long as they are available, the WENO reconstructions
for both u− and u+ in (2.4) need to be performed twice for the same Gaussian quadrature points
on the shared boundary of two different target cells. This is the reason that the CPU time cost
of the FE fast sweeping method is about 26% ∼ 30% of that for the forward Euler time marching
scheme, and about 50% ∼ 60% of that for the TVD-RK3 scheme. Hence on refined meshes in this
example, the FE fast sweeping method saves about 70% CPU time cost for the forward Euler time
marching scheme, and saves around 50% CPU time cost for the TVD-RK3 scheme.

Example 2. An Euler system of equations without source terms

In this example, we solve for steady-state solution of the following two dimensional Euler system of
equations. Different from Example 1, the system does not involve any source terms. The equations
are

∂

∂t









ρ
ρu
ρv
E









+
∂

∂x









ρu
ρu2 + p
ρuv

u(E + p)









+
∂

∂y









ρv
ρuv

ρv2 + p
v(E + p)









=









0
0
0
0









. (3.4)

We consider the case that the system has the exact steady-state solution ρ(x, y,∞) = 1+0.2 sin(x−
y), u(x, y,∞) = 1, v(x, y,∞) = 1, p(x, y,∞) = 1, and solve the system by the FE Jacobi scheme,
the RK Jacobi scheme and the FE fast sweeping scheme to compare their performance. The
computational domain, boundary conditions, triangular meshes used for the simulations, and the
reference points to form the alternating sweeping directions in the FE fast sweeping scheme, are all
the same as these in Example 1. Also, to start the iterations for the schemes, we take the numerical
initial conditions to be the same as the exact steady-state solutions, which does not satisfy the
numerical schemes and will be driven by these iterative schemes to their numerical steady states.
In Table 2, we report the numerical accuracy for the density variable, iteration numbers and CPU
times when these three different iterative schemes reach the average residue threshold value 10−12

of the convergence criterion. It can be observed that all three schemes achieve basically the same
numerical errors and the fifth order accuracy when the iterations converge. Again, these methods
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FE Jacobi, CFL=0.1

M L1 error order L∞ error order iter♯ CPU time

58 1.24E-02 - 3.79E-02 - 5168 10.13

232 4.95E-04 4.64 1.63E-03 4.54 7387 49.33

928 1.58E-05 4.97 5.19E-05 4.97 9306 231.73

3712 5.10E-07 4.95 1.54E-06 5.07 13919 1350.48

14848 1.62E-08 4.97 5.94E-08 4.70 24950 10003.34

59392 5.13E-10 4.98 2.56E-09 4.54 40437 64344.13

RK Jacobi, CFL=0.6

M L1 error order L∞ error order iter♯ CPU time

58 1.24E-02 - 3.79E-02 - 2589 5.16

232 4.95E-04 4.64 1.63E-02 4.54 3687 25.08

928 1.58E-05 4.97 5.19E-05 4.97 4638 117.20

3712 5.10E-07 4.95 1.54E-06 5.07 6945 696.03

14848 1.62E-08 4.97 5.94E-08 4.70 12465 5086.49

59392 5.13E-10 4.98 2.55E-09 4.54 20301 32920.73

FE fast sweeping, CFL=0.6

M L1 error order L∞ error order iter♯ CPU time

58 1.24E-02 - 3.79E-02 - 686 1.99

232 4.95E-04 4.64 1.63E-03 4.54 990 11.36

928 1.58E-05 4.97 5.19E-05 4.97 1384 59.08

3712 5.10E-07 4.95 1.54E-06 5.07 1870 350.07

14848 1.62E-08 4.97 5.94E-08 4.70 3326 2756.83

59392 5.14E-10 4.98 2.56E-09 4.54 5926 21219.23

Table 1: Example 1, an Euler system of equations with source terms. Accuracy, iteration numbers
and CPU times of three different iterative schemes. CPU time unit: second.
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FE Jacobi, CFL=0.1

N L1 error order L∞ error order iter♯ CPU time

58 2.28E-02 7.62E-02 933 1.82

232 1.08E-03 4.40 4.88E-03 3.97 1191 8.01

928 3.97E-05 4.76 1.97E-04 4.63 1577 40.14

3712 1.52E-06 4.71 7.85E-06 4.65 2463 252.57

14848 5.13E-08 4.89 2.73E-07 4.85 4532 1777.16

RK Jacobi, CFL=0.6

N L1 error order L∞ error order iter♯ CPU time

58 2.28E-02 7.62E-02 705 1.58

232 1.08E-03 4.40 4.88E-03 3.97 876 6.46

928 3.97E-05 4.76 1.97E-04 4.63 1182 31.25

3712 1.52E-06 4.71 7.85E-06 4.65 1884 195.02

14848 5.13E-08 4.89 2.73E-07 4.85 3360 1372.57

FE fast sweeping, CFL=0.6

N L1 error order L∞ error order iter♯ CPU time

58 2.28E-02 7.62E-02 136 0.42

232 1.08E-03 4.40 4.88E-03 3.97 156 1.84

928 3.97E-05 4.76 1.97E-04 4.63 210 10.21

3712 1.52E-06 4.71 7.85E-06 4.65 326 64.69

14848 5.13E-08 4.89 2.73E-07 4.85 580 460.33

Table 2: Example 2, an Euler system of equations without source terms. Accuracy, iteration
numbers and CPU times of three different iterative schemes. CPU time unit: second.

exhibit very different computational efficiency by comparing the iteration numbers and CPU times
required by them to reach steady state. As shown in Table 2, the proposed FE fast sweeping scheme
is the most efficient one among all three iterative methods. It permits a larger CFL number than the
FE Jacobi scheme. On refined meshes, the number of iterations for the FE fast sweeping method to
converge to the steady state is only about 13% of that for the FE Jacobi scheme, and about 17% of
that for the RK Jacobi scheme. The Gauss-Seidel iterations in the FE fast sweeping method require
that the newest numerical values are used in the finite volume WENO reconstruction stencils, so
the WENO reconstructions for both u− and u+ in (2.4) need to be performed twice for the same
Gaussian quadrature points on the shared boundary of two different target cells. Hence, we observe
that the CPU time cost of the FE fast sweeping method is about 26% of that for the FE Jacobi
scheme, and about 33% of that for the RK Jacobi scheme. On refined meshes in this example, the
FE fast sweeping method saves about 74% CPU time cost for the forward Euler time marching
scheme, and saves about 67% CPU time cost for the TVD-RK3 scheme.

In the following examples, We study and compare these schemes by solving problems with discon-
tinuous solutions.

Example 3. Regular shock reflection

In this example, we test the absolute convergence of the proposed fixed-point fast sweeping method
on unstructured meshes, by solving the regular shock reflection problem. The problem is a 2D
steady-state Euler system of equations with a reflection condition along the bottom boundary,
as described in e.g. [47, 50, 51]. It is a typical and difficult benchmark problem of using high
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Figure 5: The computational mesh for Example 3, regular shock reflection.

order schemes to simulate steady flow. As that found in [50, 51], even with advanced techniques
to improve the steady-state convergence, it is still difficult for the residue of high order WENO
schemes to converge to the level of round off errors. The iteration residue of the fast sweeping
method in [47], which is based on the WENO scheme with equal-sized sub-stencils, hangs at the
level above 10−3.5. However, the proposed unstructured fast sweeping method with unequal-sized
sub-stencils can drive the iteration residue to the level of round off errors, as shown in the following
numerical results.

The computational domain is a rectangle and it has the length 4 and the height 1. The boundary
conditions include a reflection condition along the bottom boundary, supersonic outflow along the
right boundary, and the Dirichlet conditions on the other two boundaries:

(ρ, u, v, p)T =

{

(1.0, 2.9, 0, 5/7)T |(0,y),

(1.69997, 2.61934,−0.50632, 1.52819)T |(x,1) .

The initial values used to start the iterations in the entire domain are taken to be the same as
those at the left boundary. The computational mesh is shown in Figure 5. Four corners of the
domain are taken as the reference points to form the alternating sweeping directions in the FE
fast sweeping scheme. In Table 3, number of iterations required to reach the convergence criterion
threshold value 10−11, and total CPU time when the schemes converge under various CFL numbers
are reported for the FE Jacobi scheme, the RK Jacobi scheme and the FE fast sweeping scheme. As
the previous examples, the FE Jacobi scheme requires a very small CFL number 0.1 to achieve the
convergence, which results in many iterations and large CPU time cost. If the RK Jacobi (TVD-
RK3) scheme is used, the CFL number can be enlarged to 1.0 and its iterations converge much
more efficiently than the FE Jacobi scheme. Among these three methods, the FE fast sweeping
scheme is still the most efficient one. It can converge under the similar CFL numbers to the RK
Jacobi scheme. With the largest CFL number permitted for each method to reach steady state
solution, the proposed FE fast sweeping method on triangular meshes saves about 85% CPU time
cost for the forward Euler method, and saves about 50% CPU time cost for the TVD-RK3 method.
In Figure 6, density contours of the converged steady state solutions of these three schemes are
shown, and the similar numerical results are obtained as expected. In Figure 7, residue history in
terms of iterations for these three schemes with different CFL numbers is shown. It is observed
that the residue of iterations settles down to very small values at the level of round off errors for
all cases. The absolute convergence for the proposed fast sweeping method on triangular meshes is
verified for this difficult benchmark problem.

Example 4. The supersonic flow past a circular cylinder

In this example, we consider an inviscid, compressible flow which initially moves toward a circular
cylinder from the left at a Mach number of Ma = 2 [31, 32]. The cylinder with the radius 0.5
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FE Jacobi scheme

CFL number iteration number CPU time

0.1 20926 6681.16

0.2 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

0.6 10308 3257.98

1.0 6183 1959.48

1.1 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

0.6 3328 1851.67

1.0 1808 1020.90

1.1 Not convergent -

Table 3: Example 3, regular shock reflection. Number of iterations and total CPU time when
convergence is obtained. Convergence criterion threshold value is 10−11. CPU time unit: second.
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Figure 6: Example 3, regular shock reflection. 30 equally spaced density contours from 1.1 to 2.6
of the converged steady states of numerical solutions by three different iterative schemes.
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Figure 7: Example 3, regular shock reflection. The convergence history of the residue as a function
of number of iterations for three schemes with different CFL numbers.

is located at the origin, and the computational domain is {(x, y) : 0.5 ≤
√

x2 + y2 ≤ 20}. The
unstructured triangular mesh used in this example is shown in Figure 8, in which the number of
grid points on the boundaries is 64. As discussed in Section 2, for such circular domain here, we
take four points which are evenly distributed on the outer boundary, (−20, 0), (0,−20), (20, 0) and
(0, 20), as the reference points to form the alternating sweeping directions in the FE fast sweeping
scheme. In Table 4, number of iterations required to reach the convergence criterion threshold value
10−11, and total CPU time when the schemes converge under various CFL numbers are reported
for the FE Jacobi scheme, the RK Jacobi scheme, and the FE fast sweeping scheme. Different
from the previous examples, in this example the FE Jacobi scheme converges under a reasonable
CFL number. Although the RK Jacobi scheme still converges under a larger CFL number than
the FE Jacobi scheme, it is less efficient here due to its multi-stage structure. Consistent with
the previous examples, the FE fast sweeping scheme is still the most efficient one among three
methods, and it permits the similar CFL numbers to the RK Jacobi scheme. With the largest CFL
number allowed for the methods to reach steady state solution, the FE fast sweeping method on
unstructured triangular meshes saves about 70% CPU time cost of that by the RK Jacobi scheme
(the TVD-RK3 scheme). In Figure 9, the pressure contours of the converged steady state solutions
of these three schemes are presented. We observe similar numerical steady states of these schemes.
The residue history of these three schemes with different CFL numbers is reported in Figure 10,
which shows that the residue of iterations settles down to very small values at the level of round
off errors and verifies the absolute convergence of the proposed high order fast sweeping method
on triangular meshes.

Example 5. Supersonic and subsonic flows past an NACA001035 airfoil

In this example, we solve the problem of supersonic and subsonic flows past a single NACA001035
airfoil configuration in [11, 61]. Following the setup in [61], we consider the case of supersonic flow
with Mach number Ma = 2, angle of attack α = 1◦; and the case of subsonic flow with Mach
number Ma = 0.8, angle of attack α = 1.25◦. The computation domain is [−16, 16] × [−16, 16].
The unstructured mesh containing 5593 triangles used for this example is shown in Figure 11.
Four corners of the computational domain are taken as the reference points to form the alternating
sweeping directions in the FE fast sweeping scheme. In Table 5, number of iterations required
to reach the convergence criterion threshold value 10−11, and total CPU time when the schemes
converge under various CFL numbers are reported for the FE Jacobi scheme, the RK Jacobi scheme,
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(a) (b)

Figure 8: The computational mesh for Example 4, the supersonic flow past a circular cylinder.
Left: the whole region; right: zoomed near the circular cylinder.

FE Jacobi scheme

CFL number iteration number CPU time

0.5 132862 22369.13

0.6 110709 20776.28

0.8 83015 15220.13

0.9 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

1.0 201529 36827.34

1.1 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

1.0 34482 10957.96

1.1 Not convergent -

Table 4: Example 4, the supersonic flow past a circular cylinder. Number of iterations and total
CPU time when convergence is obtained. Convergence criterion threshold value is 10−11. CPU
time unit: second.
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Figure 9: Example 4, the supersonic flow past a circular cylinder. 30 equally spaced pressure
contours from 0.5 to 5.4 of the converged steady states of numerical solutions by three different
iterative schemes.
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Figure 10: Example 4, the supersonic flow past a circular cylinder. The convergence history of the
residue as a function of number of iterations for three schemes with different CFL numbers.
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(a) (b)

Figure 11: The computational mesh for Example 5, supersonic and subsonic flows past an
NACA001035 airfoil. Left: the whole domain; right: zoomed region near the airfoil.

and the FE fast sweeping scheme. In this example, the CFL number constraint for the FE Jacobi
scheme to converge is not as severe as that in the examples 1, 2 and 3. Using the largest CFL number
permitted and due to its simple one-stage structure, the FE Jacobi scheme takes less number of
iterations and less CPU times to converge to steady states than the RK Jacobi scheme, for both
the supersonic flow case and the subsonic flow case. Again, the FE fast sweeping scheme is the
most efficient iterative method among three methods. Here it permits much larger CFL numbers
than the FE Jacobi scheme, and also slightly larger CFL numbers than the RK Jacobi scheme. It
also has a simple one-stage structure. With the largest CFL number allowed for the methods to
reach steady state solution, the FE fast sweeping method on unstructured triangular meshes saves
about 60% ∼ 65% CPU time cost of that by the RK Jacobi scheme (the TVD-RK3 scheme) for
both the supersonic flow case and the subsonic flow case. In Figure 12, the pressure contours of the
converged steady state solutions of these three schemes are presented for the supersonic flow case
and the subsonic flow case. We observe comparable numerical steady states of these schemes. The
residue history of these three schemes with different CFL numbers is reported in Figure 13, which
shows that the residue of iterations can settle down to tiny values around 10−14 to 10−15, at the
level of round off errors. Again, the absolute convergence of the proposed high order fast sweeping
method on triangular meshes is verified in this example.

Example 6. Supersonic flows past an NACA0012 airfoil

In this example, we consider the problem of inviscid Euler supersonic flows past a single NACA0012
airfoil configuration in [32]. Following the setup in [61], we consider the case of flow with Mach
number Ma = 3, angle of attack α = 10◦; and the case of flow with Mach number Ma = 2, angle
of attack α = 1◦. The computational domain is [−15, 15] × [−15, 15]. The unstructured mesh for
this example, which consists of 9340 triangles, is shown in Figure 14. As the previous example,
four corners of the computational domain are taken as the reference points to form the alternating
sweeping directions in the FE fast sweeping scheme. In Table 6, number of iterations required
to reach the convergence criterion threshold value 10−11, and total CPU time when the schemes
converge under various CFL numbers are reported for the FE Jacobi scheme, the RK Jacobi scheme,
and the FE fast sweeping scheme. Similar to Example 5, the CFL number constraint for the FE
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supersonic, Ma = 2, α = 1◦

FE Jacobi scheme

CFL number iteration number CPU time

0.3 8118 2527.66

0.4 6077 1904.80

0.5 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

0.6 12192 3709.35

0.9 8130 2488.23

1.0 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

0.7 2031 1183.33

1.0 1508 867.25

1.1 Not convergent -

subsonic, Ma = 0.8, α = 1.25◦

FE Jacobi scheme

CFL number iteration number CPU time

0.4 95877 31918.58

0.5 76794 24608.73

0.6 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

0.6 185661 63876.05

1.0 111396 37444.54

1.1 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

1.0 32854 22258.67

1.2 24876 15613.47

1.3 Not convergent -

Table 5: Example 5, supersonic and subsonic flows past an NACA001035 airfoil. Number of
iterations and total CPU time when convergence is obtained. Convergence criterion threshold
value is 10−11. CPU time unit: second.
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Figure 12: Example 5, supersonic and subsonic flows past an NACA001035 airfoil. The converged
steady states of numerical solutions by three different iterative schemes. (a) (b) (c): 60 equally
spaced pressure contours from 0.36 to 5.27 for the case of Ma = 2, angle of attack α = 1◦; (d) (e)
(f): 30 equally spaced pressure contours from 0.7 to 1.45 for the case of Ma = 0.8, angle of attack
α = 1.25◦.
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Figure 13: Example 5, supersonic and subsonic flows past an NACA001035 airfoil. The convergence
history of the residue as a function of number of iterations for three schemes with different CFL
numbers. (a), (b), (c): for the case of Ma = 2, angle of attack α = 1◦; (d) (e) (f): for the case of
Ma = 0.8, angle of attack α = 1.25◦.
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(a) (b)

Figure 14: The computational mesh for Example 6 and Example 7, supersonic and subsonic flows
past an NACA0012 airfoil. Left: the whole domain; right: zoomed region near the airfoil.

Jacobi scheme to converge is not as severe as that in the examples 1, 2 and 3. Due to the simple
one-stage structure of the FE Jacobi scheme, it takes the FE Jacobi scheme less number of iterations
and less CPU times to converge to steady states than the RK Jacobi scheme, for both cases with
different Mach numbers. The FE fast sweeping scheme is still the most efficient iterative method
among three methods. It allows much larger CFL numbers than the FE Jacobi scheme, and even
slightly larger CFL numbers than the RK Jacobi scheme. It also has a simple one-stage structure.
With the largest CFL number permitted in each method to reach steady state solution, the FE fast
sweeping method on unstructured triangular meshes saves 50% ∼ 55% CPU time cost of that by
the RK Jacobi scheme (the TVD-RK3 scheme) for both supersonic flow cases in this example. In
Figure 15, the pressure contours of the converged steady state solutions of these three schemes are
presented for both supersonic flow cases. Again, we observe comparable numerical steady states
of these schemes. Figure 16 shows the residue history of these three schemes with different CFL
numbers. It is observed that the residue of iterations can settle down to tiny values at the level of
round off errors, which verifies the absolute convergence of the developed high order fast sweeping
method on triangular meshes here.

Example 7. Subsonic flows past an NACA0012 airfoil

As a continuation of Example 6, the problem of inviscid Euler subsonic flows past a single NACA0012
airfoil configuration in [32] is solved in this example. Two cases of subsonic flows are considered,
i.e., a flow with Mach number Ma = 0.8, angle of attack α = 1.25◦; and a flow with Mach number
Ma = 0.2, angle of attack α = 1◦. The computational domain is [−15, 15] × [−15, 15]. The un-
structured mesh used is the same as that for Example 6, which is shown in Figure 14. Four corners
of the computational domain are chosen as the reference points to form the alternating sweeping
directions in the FE fast sweeping scheme. In Table 7, number of iterations required to reach the
convergence criterion threshold value 10−11, and total CPU time when the schemes converge under
various CFL numbers are reported for the FE Jacobi scheme, the RK Jacobi scheme, and the FE
fast sweeping scheme. In this example, we also notice that the CFL number constraint for the
FE Jacobi scheme to converge is not as severe as that in the examples 1, 2 and 3, and its simple
one-stage structure makes it be more efficient to converge to steady states than the RK Jacobi
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Ma = 3, α = 10◦

FE Jacobi scheme

CFL number iteration number CPU time

0.6 75193 27432.75

0.7 64349 23534.16

0.8 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

1.0 134485 49427.91

1.2 112165 42557.77

1.3 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

1.0 44688 28805.77

1.2 37168 23178.72

1.4 31816 19563.90

1.5 Not convergent -

Ma = 2, α = 1◦

FE Jacobi scheme

CFL number iteration number CPU time

0.6 116201 47048.46

0.7 99598 40294.13

0.8 87149 36696.27

0.9 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

1.0 209200 82761.36

1.2 174319 69020.84

1.4 149425 61582.79

1.5 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

1.0 68696 47259.59

1.2 57208 38592.23

1.4 49000 32435.17

1.6 42848 29783.56

1.7 Not convergent -

Table 6: Example 6, supersonic flows past an NACA0012 airfoil. Number of iterations and total
CPU time when convergence is obtained. Convergence criterion threshold value is 10−11. CPU
time unit: second.
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Figure 15: Example 6, supersonic flows past an NACA0012 airfoil. The converged steady states
of numerical solutions by three different iterative schemes. (a) (b) (c): 30 equally spaced pressure
contours from 0.2 to 11 for the case of Ma = 3, angle of attack α = 10◦; (d) (e) (f): 30 equally
spaced pressure contours from 0.8 to 5.2 for the case of Ma = 2, angle of attack α = 1◦.
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Figure 16: Example 6, supersonic flows past an NACA0012 airfoil. The convergence history of the
residue as a function of number of iterations for three schemes with different CFL numbers. (a),
(b), (c): for the case of Ma = 3, angle of attack α = 10◦; (d) (e) (f): for the case of Ma = 2, angle
of attack α = 1◦.
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Figure 17: Example 7, subsonic flows past an NACA0012 airfoil. The converged steady states of
numerical solutions by three different iterative schemes. (a) (b) (c): 30 equally spaced pressure
contours from 0.5 to 1.46 for the case of Ma = 0.8, angle of attack α = 1.25◦; (d) (e) (f): 30 equally
spaced pressure contours from 0.98 to 1.03 for the case of Ma = 0.2, angle of attack α = 1◦.

scheme for both cases with different Mach numbers. Again, the FE fast sweeping scheme is the
most efficient iterative method among three methods. It allows much larger CFL numbers than the
FE Jacobi scheme, and comparable CFL number sizes with the RK Jacobi scheme. The FE fast
sweeping scheme also has a simple one-stage structure. With the largest CFL number permitted in
each method to reach steady state solution, the FE fast sweeping method on unstructured triangu-
lar meshes saves more than 40% CPU time cost of that by the RK Jacobi scheme (the TVD-RK3
scheme) for both subsonic flow cases in this example. The contour plots of the pressure variable of
the converged steady state solutions for these three schemes are shown in Figure 17. Comparable
numerical steady states for these different iterative schemes are observed. Figure 18 presents the
residue history of these three schemes with different CFL numbers. It is observed that the residue
of iterations can settle down to tiny values at the level of round off errors, which again verifies the
absolute convergence of the developed high order fast sweeping method on triangular meshes.

4 Concluding remarks

High order accuracy fast sweeping methods have been well developed on rectangular meshes to
efficiently solve steady state solutions of hyperbolic PDEs. However, it was still a open problem
how to design high order accuracy fast sweeping methods on unstructured meshes. In this paper,
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Ma = 0.8, α = 1.25◦

FE Jacobi scheme

CFL number iteration number CPU time

0.6 1007029 425623.98

0.7 863213 365297.07

0.8 755334 316719.83

0.9 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

1.0 1812610 742083.62

1.2 1510567 623277.44

1.4 1294810 533356.95

1.6 1208500 500951.51

1.7 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

1.0 598216 477581.42

1.2 498168 398820.98

1.4 426688 338455.70

1.6 373080 295754.15

1.7 Not convergent -

Ma = 0.2, α = 1◦

FE Jacobi scheme

CFL number iteration number CPU time

0.4 959981 392068.22

0.6 639947 273666.77

0.7 Not convergent -

RK Jacobi scheme

CFL number iteration number CPU time

1.4 822721 331972.06

1.6 767878 317268.26

1.7 Not convergent -

FE fast sweeping scheme

CFL number iteration number CPU time

1.4 274184 203245.83

1.5 252120 186856.24

1.6 Not convergent -

Table 7: Example 7, subsonic flows past an NACA0012 airfoil. Number of iterations and total
CPU time when convergence is obtained. Convergence criterion threshold value is 10−11. CPU
time unit: second.
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Figure 18: Example 7, subsonic flows past an NACA0012 airfoil. The convergence history of the
residue as a function of number of iterations for three schemes with different CFL numbers. (a),
(b), (c): for the case of Ma = 0.8, angle of attack α = 1.25◦; (d) (e) (f): for the case of Ma = 0.2,
angle of attack α = 1◦.
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we develop a high order fixed-point fast sweeping method on unstructured triangular meshes for
solving steady state solutions of hyperbolic conservation laws. Multiple reference points on the
computational domain are introduced to order all the cells and form alternating sweeping directions
on unstructured meshes. The local solver of the proposed fixed-point fast sweeping method is
based on a fifth-order finite volume unstructured WENO scheme with unequal-sized sub-stencils,
to achieve the absolute convergence of the iterations. Extensive numerical experiments, including
solving difficult problems which are defined on complex domains or challenging for high order
schemes to converge to steady states, show that the designed fixed-point fast sweeping scheme on
unstructured meshes can significantly enlarge the CFL number of the forward Euler scheme with
a high order WENO spatial discretization (e.g., the fifth order WENO scheme here) to the level of
the TVD-RK3 scheme. As a result, up to 70% CPU time can be saved by using the proposed fast
sweeping method rather than the TVD-RK3 scheme for iterations to converge to steady states of
the WENO scheme. The iteration residues of the new absolutely convergent fast sweeping method
on unstructured meshes converge to round off errors for all benchmark problems tested in this
paper.

We focus on the Euler systems in this paper. However, the high order fixed-point fast sweeping
WENO method on unstructured meshes developed here, along with the high order fixed-point fast
sweeping WENO methods on structured meshes developed in the previous work, can be naturally
extended to solve steady state problems of other hyperbolic PDEs. Since one of the key factors that
fast sweeping methods can accelerate convergence of numerical simulations to steady state solutions
is that they utilize alternating sweeping strategy to cover a family of characteristics of the PDEs
in a certain direction simultaneously in each sweeping order, the methods are especially effective
for solving steady state solutions of hyperbolic PDEs. For example, we will apply the high order
fixed-point fast sweeping WENO methods in solving steady state problems of the shallow water
equations, which arise often in many applications such as simulation of free surface flows in rivers
and coastal areas, prediction of tides, storm surge levels and coastline changes from hurricanes
and ocean currents, etc. Since the shallow water equations often admit steady state solutions in
which the flux gradients of the PDEs are exactly balanced by the source terms, it is desirable that
the numerical schemes for the shallow water equations have the well-balanced property, i.e., they
can preserve exactly the steady state solutions up to machine error with relatively coarse meshes.
Therefore, it will be important to develop fast sweeping WENO methods with the well-balanced
property for the shallow water equations. We will use these effective approaches for developing
well-balanced numerical methods in the literature, e.g. [4, 37, 6, 48, 38, 9]. Another interesting
application is to simulate steady state flow of blood in blood vessels. Although blood is usually
described as an incompressible fluid modeled by the three dimensional incompressible Navier-Stokes
equations, for which information of solutions propagates in different ways from that for hyperbolic
PDEs and this may lead to the loss of advantage of fast sweeping methods in accelerating iteration
convergence [47, 27], in recent years interesting hyperbolic PDE systems have been developed
and studied for blood flow. These hyperbolic PDE models were derived by averaging the full
three dimensional incompressible Navier-Stokes equations over the vessel cross section, assuming
that the characteristic axial length-scale is much longer than the radial one and that the flow is
axisymmetric. See e.g. [16, 39, 1]. It is expected that the fast sweeping methods developed for
these hyperbolic PDE models of blood flow will show efficient convergence to steady state solutions
as that for the Euler systems in this paper. Also the well-balanced property should be preserved
in the schemes [18]. These future work will be carried out in the next research.
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