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Integration factor methods are a class of ‘‘exactly linear part’’ time discretization methods.
In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of
Computational Physics, 214 (2006) 521–537], a class of efficient implicit integration factor
(IIF) methods were developed for solving systems with both stiff linear and nonlinear
terms, arising from spatial discretization of time-dependent partial differential equations
(PDEs) with linear high order terms and stiff lower order nonlinear terms. The tremendous
challenge in applying IIF temporal discretization for PDEs on high spatial dimensions is
how to evaluate the matrix exponential operator efficiently. For spatial discretization on
unstructured meshes to solve PDEs on complex geometrical domains, how to efficiently
apply the IIF temporal discretization was open. In this paper, we solve this problem by
applying the Krylov subspace approximations to the matrix exponential operator. Then
we apply this novel time discretization technique to discontinuous Galerkin (DG) methods
on unstructured meshes for solving reaction–diffusion equations. Numerical examples are
shown to demonstrate the accuracy, efficiency and robustness of the method in resolving
the stiffness of the DG spatial operator for reaction–diffusion PDEs. Application of the
method to a mathematical model in pattern formation during zebrafish embryo develop-
ment shall be shown.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

High order accuracy numerical methods (e.g. weighted essentially non-oscillatory (WENO) methods, discontinuous
Galerkin (DG) methods, spectral methods, etc.) are especially efficient for numerically solving problems which contain com-
plex solution structures, and have been applied extensively in computational fluid dynamics. Efficient and high order tem-
poral numerical schemes are important for the performance of high accuracy numerical simulations. A lot of state-of-the-art
high order time-stepping methods were developed. Here we just give a few examples and it is not a complete list. For exam-
ple, the total variation diminishing (TVD) Runge–Kutta (RK) schemes [54,55,28,29]; high order implicit–explicit (IMEX) mul-
tistep/Runge–Kutta methods and their applications [2,3,34,36,47,59,51,68]; spectral deferred correction (SDC) methods
[9,24,33,41,42,45]; hybrid methods of SDC and high order RK schemes [12]; etc.
. All rights reserved.
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Integration factor (IF) methods are a broad class of time discretization methods which have been combined with spatial
discretization methods especially spectral methods [25,8,10,56] for solving various partial differential equations (PDEs).
They are especially useful for many important mathematical models in fluid dynamics or biological problems which involve
nonlinear PDEs with the linear highest spatial derivatives. The method of lines generates stiff systems of ordinary differential
equations (ODEs) with the stiff linear terms (nonlinear terms could also be stiff, depending on different problems). Integra-
tion factor methods are a class of ‘‘exactly linear part’’ time discretization methods for the solution of this type of stiff sys-
tems. This class of methods perform the time evolution of the stiff linear operator via evaluation of an exponential function
of the corresponding matrix. Hence for PDEs with linear high order derivatives, the integration factor type time discretization
can remove both the stability constrain and numerical errors from the high order derivatives.

Traditional integration factor methods have a disadvantage that large error coefficients are produced when the linear
term has a large norm [8]. Recently Krogstad developed a method which can improve the accuracy of the traditional inte-
gration factor methods significantly [38]. Another class of ‘‘integration factor’’ type methods, the exponential time differenc-
ing (ETD) methods [5,6,22,35], can also obtain a better accuracy than the traditional integration factor methods. For ETD
methods, extra treatments are needed for consistent order of accuracy [35,23].

The explicit integration factor methods use explicit linear multi-step methods or explicit Runge–Kutta methods to treat
the nonlinear terms in the system (e.g. the explicit ETD-RK schemes [22]), which are very efficient for systems with stiff lin-
ear part but nonstiff or mildly stiff nonlinear part. In [32], explicit exponential Runge–Kutta methods for the time integration
of semilinear parabolic problems were analyzed. For systems with both stiff linear and nonlinear terms, an implicit treat-
ment of nonlinear terms is desirable. In [48], we developed a class of efficient implicit integration factor (IIF) methods for
solving systems with both stiff linear and nonlinear terms. A novel property of the methods is that the implicit terms are
free of the exponential operation of the linear terms. Hence when the methods are applied to PDEs with stiff nonlinear reac-
tions (e.g. the reaction–diffusion systems arising from mathematical models in computational developmental biology), the
exact evaluation of the linear part is decoupled from the implicit treatment of the nonlinear reaction terms. As a result, the
size of the nonlinear system arising from the implicit treatment is independent of the number of spatial grid points; it only
depends on the number of the original PDEs. This distinguishes our IIF methods [48] from implicit ETD methods in [6]. An-
other efficient approach to decouple the stiff nonlinear terms from the linear terms is to use operator splitting integration
factor methods (e.g. [44]). We would like to point out that our approach is different from the operator splitting methods,
hence is free of operator splitting errors.

The tremendous difficulty in implementing integration factor type method for high dimensional problems is how to effi-
ciently evaluate the product of the matrix exponential and a vector. The differential matrix from the high dimensional spatial
discretization is usually very large and sparse, but its exponential matrix will be dense. CPU cost and storage of such expo-
nential matrix are prohibitive for high dimensional problems, although it can be handled well for 1D problems [48]. On rect-
angular meshes, the compact integration factor methods [49] can be used to deal with this issue. By introducing a compact
representation for the matrix approximating the differential operator, the compact IIF methods apply matrix exponential
operations sequentially in every spatial direction. As the results, exponential matrices which are calculated and stored have
small sizes, as those in the 1D problem. For example for a 3D problem, if we have N grid points in every direction of the x, y
and z directions, then we do not need to work on the full N3 � N3 matrix and its exponential as in the original non-compact
IIF methods [48], but just need to consider several N � N matrices and their exponentials. The storage and CPU time required
for compact IIF schemes are smaller by orders of magnitude than the non-compact ones. The operation count of compact
integration factor schemes is O(N4) vs. O(N6) for non-compact ones. See more details in [49]. But how to apply this approach
to spatial discretization on high dimensional unstructured meshes for dealing with complex domain geometry is still un-
clear. In this paper, we address this problem by using the Krylov subspace approximations to the matrix exponential oper-
ator and develop the Krylov implicit integration factor (Krylov IIF) methods for spatial discretization on triangular meshes.

The Krylov subspace methods were used and analyzed by Gallopoulos and Saad [26], Saad [52] for the approximation of a
product of a exponential matrix of a large sparse differential matrix and a given vector, in the finite difference discretization
of a time-dependent diffusion equation. Since in many applications including the integration factor methods, one does not
need the full exponential matrix, but only the matrix–vector product. See the review paper [46]. As discovered in [31], the
convergence to eADtv is substantially faster than that of corresponding Krylov methods for the solution of linear system
(I � DtA)x = v, which arises in the implicit treatment of diffusion or other high order derivative terms, at least unless a good
preconditioner is available.

For the spatial directions, discontinuous Galerkin (DG) finite element methods are a class of popular high order accuracy
spatial discretization methods for numerically solving various partial differential equations (PDEs) arising from computa-
tional fluid dynamics and other computational physics problems. DG methods confer several advantages that make them
attractive for applications. These include common advantages shared by all finite element methods such as their ability
for easy handling of complicated geometry and boundary conditions. Since DG methods use completely discontinuous piece-
wise polynomial space for the numerical solution and the test functions, this property makes DG methods have lots of flex-
ibility which is not shared by continuous Galerkin finite element methods, such as their flexibility for easy h–p adaptivity
including changes of approximation orders between neighboring elements and allowing general meshes with hanging nodes,
their compactness hence efficient parallel implementation [7], and their easy coordination with finite volume techniques for
computing problems with discontinuous or sharp gradient solutions. The first DG method was introduced by Reed and Hill
[50], in the framework of neutron transport. A major development of DG methods was carried out by Cockburn et al. in a
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series of papers [16,17,14,18,19], in which they established a framework to easily solve nonlinear time dependent hyperbolic
conservation laws. Good references for DG methods and their recent development can be found in the review papers
[15,13,20].

In recent years, DG methods have been generalized to solve time dependent PDEs containing higher spatial derivatives.
This class of new methods are termed local discontinuous Galerkin (LDG) methods. See e.g. [4,21,43,61–66,37]. In a recent
paper [11], Cheng and Shu developed a new DG method for solving time dependent PDEs with higher order spatial deriva-
tives, based on [1,27,58]. The scheme is formulated by repeated integration by parts of the original equation and then replac-
ing the interface values of the solution by carefully chosen numerical fluxes. When DG methods are applied to discretize the
spatial variables for convection–diffusion problems or other PDEs which have high order derivatives, a large coupled stiff
ordinary differential equations (ODEs) system is generated. An explicit time discretization for the resulting stiff ODE system
will suffer from extremely small time step restriction for stability. In [60], time discretization techniques including semi-im-
plicit spectral deferred correction method, the additive Runge–Kutta method and the exponential time differencing (ETD)
method for solving the stiff ODEs resulting from a LDG spatial discretization to PDEs with high order spatial derivatives
on 1D spatial domain were compared and studied.

To test our new Krylov IIF schemes in this paper, we apply them to solve the stiff ODE system resulting from a DG spatial
discretization for reaction–diffusion problems on 2D triangular meshes [69]. Due to the stiffness of the spatial operators, the
implicit discretization was formulated for the P1 case in [69] and an operator-splitting approach was used to enhance the
computation efficiency. The DG spatial discretization in [69] is based on [11], but the numerical fluxes are different from
those in [11]. In this paper, we will formulate the implicit DG discretization for both the P1 and P2 cases, and apply the
new Krylov IIF schemes for the time-marching. Numerical examples are shown to demonstrate the accuracy, efficiency
and robustness of the method in resolving the stiffness of the DG spatial operator for reaction–diffusion PDEs which have
higher than first order spatial derivatives. Application of the method to a mathematical model in spatial pattern formation
during zebrafish embryo development shall be shown.

The rest of the paper is organized as following. In Section 2, we derive and formulate the Krylov IIF methods. In Section 3,
we describe in detail the P1 and P2 DG spatial discretization for reaction–diffusion equations on 2D triangular meshes; then
apply the new Krylov IIF methods to the resulting stiff ODE systems. Numerical experiments are presented in Section 4. Dis-
cussions and conclusions are given in Section 5.

2. Implicit integration factor methods based on Krylov subspace approximation

We first review the original IIF methods developed in [48]. Then we propose the new IIF methods based on Krylov sub-
space approximations to the matrix exponential operator.

2.1. Review of the original IIF methods

Assume that we need to solve a system of ODEs which arises after a spatial discretization of a PDE system whose highest
order term is linear and has higher than first order derivative (e.g. a reaction–diffusion equation):
dUðtÞ
dt
¼ AUðtÞ þ FðUðtÞÞ; ð1Þ
where U(t) 2 RN, A 2 RN�N is the constant approximation matrix for the linear differential operator of the highest order deriv-
ative, F(U(t)) 2 RN is the nonlinear term. The matrix A is usually a sparse matrix when a finite difference or finite element
method is used for the spatial discretization.

To construct the IIF methods for (1), we multiply it by the integration factor e�A t and integrate over one time step from tn

to tn+1 � tn + Dt to obtain
Uðtnþ1Þ ¼ eADtUðtnÞ þ eADt
Z Dt

0
e�AsFðUðtn þ sÞÞds: ð2Þ
Then we approximate the integrand in (2) by using an r � 1th order Lagrange interpolation polynomial with interpolation
points at tn+1, tn, . . . , tn+2�r, and obtain the rth order IIF scheme
Unþ1 ¼ eADtUn þ Dt a1FðUnþ1Þ þ
Xr�2

i¼0

a�ieðiþ1ÞADtFðUn�iÞ
 !

; ð3Þ
where
a�i ¼
1
Dt

Z Dt

0

Yr�2

k¼�1
k–i

sþ kDt
ðk� iÞDt

ds; �1 6 i 6 r � 2: ð4Þ
See [48,49] for the values of coefficients aj for the schemes with different orders. For example, the second order scheme is of
the following form
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Unþ1 ¼ eADt Un þ
Dt
2

FðUnÞ
� �

þ Dt
2

FðUnþ1Þ ð5Þ
and the third order scheme is
Unþ1 ¼ eADtUn þ Dt
5

12
FðUnþ1Þ þ

2
3

eADtFðUnÞ �
1

12
e2ADtFðUn�1Þ

� �
: ð6Þ
The distinct feature of the scheme (3) is that the nonlinear implicit term F(Un+1) does not involve the matrix exponential
operator, unlike the implicit ETD schemes [6]. Hence if the nonlinear operator F itself does not involve the coupling of the
numerical values at the spatial grid points (e.g. the nonlinear reactions), the size of nonlinear system resulted from the im-
plicit treatment is independent of the number of the spatial grid points, and it only depends on the number of the original
PDEs.

Remark. We consider the time step size Dt to be uniform in the time evolution in this paper. The methods to efficiently deal
with non-uniform time step sizes (e.g., in adaptive time step computation; in solving PDEs with hyperbolic terms and the CFL
condition constraint) will be reported in the future.
2.2. IIF methods based on Krylov subspace approximation

The efficiency of the IIF schemes (3) largely depends on the methods to evaluate the product of the matrix exponential
and a vector, for example eADtUn. For PDEs defined on high spatial dimensions (two spatial dimensions (2D) and above), the
method of lines (MOL) with a specific spatial discretization will generate a large and sparse matrix A in (1). But the expo-
nential matrix eADt is dense. For example if a finite difference method is used on a 2D rectangular mesh with N grid points
in both x and y directions, then the matrix A has size N2 � N2. In [48], for a given spatial and temporal numerical resolution,
the exponential matrices such as eADt are pre-computed and stored for later use at every time step. For one-dimensional
problems, this works very well since the size of the matrix A is manageable. For 2D and 3D problems, direct computation
and storage of such exponential matrix are prohibitive in terms of both CPU cost and computer memory.

On rectangular meshes, the compact IIF methods [49] can be used to deal with this issue for some differential operators
(e.g. the Laplacian operator). The compact IIF methods introduce a compact representation for the matrix approximating the
differential operator. The compact form involves storage only proportional to the number of unknowns, i.e. the size of U, un-
like the non-compact approach, which is proportional to the square of the unknowns. As a result, exponential matrices which
are calculated and stored have small sizes, as those in the 1D problem. For example, for a 3D problem if we have Nx, Ny and Nz

grid points in x, y and z directions, then instead of considering the full (NxNyNz) � (NxNyNz) matrix and its exponential, we just
consider Nx � Nx, Ny � Ny and Nz � Nz matrices and their exponentials. The storage and CPU time required for compact IIF
schemes are smaller by orders of magnitude than the original non-compact ones in [48]. The operation count of compact

IIF schemes is O N2
x NyNz þ NxN2

y Nz þ NxNyN2
x

� �
vs. O N2

x N2
y N2

z

� �
for non-compact IIF schemes.

For spatial discretization on high dimensional unstructured meshes (e.g. triangular meshes), how to formulate a compact
matrix representation of the spatial operations and how to apply this approach are still unclear. Moreover, application of
compact IIF methods to more general spatial operators (e.g. the general diffusion operators involving mixed derivatives)
is not straightforward. So we re-consider the non-compact IIF methods (3) and look for another way to efficiently compute
the matrix exponential operations.

Although the matrix A is sparse for many spatial discretizations, the exponential matrix eADt is dense. Directly computing
and storing eADt for spatial discretization on high dimensional unstructured meshes are not practical for a typical machine.
Fortunately we do not need the full exponential matrix eADt itself, but only the products of the exponential matrix and some
vectors in (3). The Krylov subspace approximations to the matrix exponential operator is an excellent choice in terms of both
accuracy and efficiency. For example, in [26,52], the Krylov subspace methods were used for the approximation of eADtv,
where A is a large sparse matrix and v is a given vector, in the finite difference discretization of a time-dependent diffusion
equation. Next we apply the Krylov subspace method to approximate the products of the exponential matrix and vectors in
our IIF schemes (3) and derive the new Krylov IIF methods. First we describe the Krylov subspace methods to approximate
eADtv, following the literature (e.g. [26,46]).

The large sparse matrix A is projected to the Krylov subspace
KM ¼ spanfv ;Av ;A2v ; . . . ;AM�1vg: ð7Þ
The dimension M of the Krylov subspace is much smaller than the dimension N of the large sparse matrix A. In all numerical
computations of this paper, we take M = 25 for different N, and accurate results are obtained as shown in Section 4. An ortho-
normal basis VM = [v1,v2,v3, . . . ,vM] of the Krylov subspace KM is generated by the well-known Arnoldi algorithm [57] as the
following.

1. Compute the initial vector: v1 = v/kvk2.
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2. Perform iterations: Do j = 1, 2, . . . , M:
(1) Compute the vector w = A vj.
(2) Do i = 1, 2, . . . , j:
(a) Compute the inner product hi,j = (w,vi).
(b) Compute the vector w = w � hi,jvi.
(3) Compute hj+1,j = kwk2.
(4) If hj+1,j � 0, then
stop the iteration;
else

compute the next basis vector vj+1 = w/hj+1,j.
In the Arnoldi algorithm, if hj+1,j � 0 for some j < M, it means that the convergence has occurred and the Krylov subspace
KM = span{v1,v2, . . . ,vj}, so the iteration can be stopped at this step j, and we assign the value of this j to M. This algorithm will
produce an orthonormal basis VM of the Krylov subspace KM. Denote the M �M upper Hessenberg matrix consisting of the
coefficients hi,j by HM. Since the columns of VM are orthogonal, we have
HM ¼ VT
MAVM : ð8Þ
This means that the very small Hessenberg matrix HM represents the projection of the large sparse matrix A to the Krylov
subspace KM, with respect to the basis VM. Also since VM is orthonormal, the vector VMVT

MeADtv is the orthogonal projection
of eADtv on the Krylov subspace KM, namely, it is the closest approximation to eADtv from KM. Therefore
eADtv ’ VMVT
MeADtv ¼ bVMVT

MeADtv1 ¼ bVMVT
MeADtVMe1;
where b = kvk2, and e1 denotes the first column of the M �M identity matrix IM. Use the fact of (8), we have the
approximation
eADtv ’ bVMeHMDte1: ð9Þ
Thus the large eADt matrix exponential problem is replaced with a much smaller eHMDt problem. The small matrix exponential
eHMDt will be computed using a scaling and squaring algorithm with a Padé approximation with only computational cost of
O(M2), see [30,46,26]. Applying the Krylov subspace approximation (9) to (3), we obtain the Krylov IIF schemes
Unþ1 ¼ Dta1FðUnþ1Þ þ b0;nVM;0;neHM;0;nDte1 þ Dt
Xr�2

i¼1

a�ibi;nVM;i;neðiþ1ÞHM;i;nDte1

 !
; ð10Þ
where b0,n = kUn + a0DtF(Un)k2, bi,n = kF(Un�i)k2, VM,0,n and HM,0,n are orthonormal basis and upper Hessenberg matrix gener-
ated by the Arnoldi algorithm with the initial vector Un + a0DtF(Un). VM,i,n and HM,i,n are orthonormal basis and upper Hes-
senberg matrix generated by the Arnoldi algorithm with the initial vectors F(Un�i), for i = 1, 2, . . . , r � 2. We would like to
point out that VM,0,n and VM,i,n, i = 1, 2, . . . , r � 2 are orthonormal bases of different Krylov subspaces for the same matrix
A, which are generated with different initial vectors in the Arnoldi algorithm. The value of M is taken to be large enough such
that the errors of Krylov subspace approximations are much less than the truncation errors of the numerical schemes (3).
From our numerical experiments in this paper (Section 4), we can see that our numerical schemes have already given a clear
accuracy order with a very small size M = 25, and M does not need to be increased when the spatial–temporal resolution is
refined. Specifically the second order Krylov IIF scheme has the form
Unþ1 ¼
1
2

DtFðUnþ1Þ þ bnVM;neHM;nDte1; ð11Þ
where bn ¼ kUn þ 1
2 DtFðUnÞk2, VM,n and HM,n are orthonormal basis and upper Hessenberg matrix generated by the Arnoldi

algorithm with the initial vector Un þ 1
2 DtFðUnÞ. And the third order Krylov IIF scheme has the form
Unþ1 ¼
5

12
DtFðUnþ1Þ þ b0;nVM;0;neHM;0;nDte1 �

1
12

Dtb1;nVM;1;ne2HM;1;nDte1; ð12Þ
where b0;n ¼ kUn þ 2
3 DtFðUnÞk2, b1,n = kF(Un�1)k2, VM,0,n and HM,0,n are orthonormal basis and upper Hessenberg matrix gener-

ated by the Arnoldi algorithm with the initial vector Un þ 2
3 DtFðUnÞ. VM,1,n and HM,1,n are orthonormal basis and upper Hes-

senberg matrix generated by the Arnoldi algorithm with the initial vector F(Un�1).

Remark. we would like to emphasize that the Krylov IIF schemes given in (10)–(12) are novel methods which combine the
original IIF schemes with the Krylov subspace approximations. These new methods are designed to deal with more general
and complex problems.
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3. Implicit DG formulations and application of Krylov IIF methods

To test our Krylov IIF methods, we apply them to solve the stiff ODE system arising from a DG discretization of reaction–
diffusion equations on 2D triangular meshes. Let X be an open, bounded domain on which the reaction–diffusion system
@u
@t
¼ DDuþ FðuÞ ð13Þ
is defined, where u often represents concentrations of a group of chemical molecules, D is the constant diffusion matrix, Du is
the Laplacian associated with the diffusion of the molecules u, and F(u) describes the nonlinear chemical reactions. For the
simplicity of the description, we consider the scalar case of (13). The numerical formulae for the scalar case can be straight-
forwardly extended to solve the system case component by component. We consider a triangulation Xh of X which consists of
non-overlapping triangles fMmgN

m¼1. Let hmin = min16m6N qm, where qm is the diameter of the inscribed circle of the triangleMm.
Define the finite element space Vk

h ¼ fv : v j
Mm
2 PkðMmÞ; m ¼ 1; . . . ;Ng, where Pk(Mm) denotes the set of all polynomials of

degree at most k on Mm.
We apply the DG formulation in [69] to discretize the reaction–diffusion Eq. (13) in the spatial direction, and keep the

time variable continuous. This DG discretization is based on a DG formulation for convection–diffusion equations in [11],
but we use different numerical fluxes for the diffusion term. The semi-discrete scheme is: find u 2 Vk

h, such that
Z
Mm

utvdx� D
Z
Mm

ur2vdxþ D
Z
@Mm

ûrv �~n@Mm dS� D
Z
@Mm

vgru �~n@Mm dS ¼
Z
Mm

FðuÞvdx ð14Þ
holds true for any v 2 Vk
h and m = 1, . . . , N. The numerical fluxes on the element edges @Mm are chosen as
û ¼ uin þ uext

2
; ð15Þ

gru ¼ ðruÞin þ ðruÞext

2
þ b½u�; ð16Þ
where the jump term
½u� ¼ ðuext � uinÞj@Mm
�~n@Mm ; ð17Þ
uin and uext are the limits of u at x 2 @Mm taken from the interior and the exterior of Mm, respectively,~n@Mm is the outward unit
normal to the element Mm at x 2 @Mm, and b is a positive constant that is of the order Oðh�1

minÞ. In all computations in this paper,
we take b = 10/hmin. The choice of numerical fluxes (15)–(17) is crucial for the stability and convergence of the DG scheme
(14). We use the central/ average numerical fluxes for the diffusion terms. In [11], the alternative numerical fluxes were used
for the diffusion terms. The differences of the central and alternative numerical fluxes were discussed in [20] for the LDG
method. We will explore the application of the alternative numerical fluxes [11] to the DG schemes (14) on triangular
meshes in our future work.

To apply the Krylov IIF schemes (10) to the DG spatial discretization (14), we will need the matrix expression (i.e., the
implicit DG formulae) as (1). This is a different step from the explicit DG methods for hyperbolic conservation laws. The im-
plicit DG formulae for the P1 case has been given in [69]. In this paper, we will present the implicit DG formulae for both the
P1 and P2 cases. For each element Mm, we denote its three neighboring elements by im, jm, and km. To simplify notations in the
following presentation, we will omit the subscript m and just use i, j, k to represent the neighboring cells of Mm.

The implicit DG formulae for the P1 case has been derived in [69]. But to make the paper self-contained, we will re-present
the P1 case in Section 3.1. The new formulae for the P2 case will be given in Section 3.2.

3.1. The P1 case

The linear polynomial on Mm is represented by
uðx; y; tÞ ¼ amðtÞ þ bmðtÞnm þ cmðtÞgm; ð18Þ
where
nm ¼
x� xm

hm
; ð19Þ

gm ¼
y� ym

hm
ð20Þ
and (xm,ym) is the barycenter of the element Mm, hm ¼
ffiffiffiffiffiffiffiffiffi
jDmj

p
with jDmj denoting the area of the triangle Mm. By taking v = 1,

nm, gm on Mm and v = 0 elsewhere, the DG formulation (14) can be converted from the integral form to the following semi-
discretized ODE system, for m = 1, . . . , N:
q11a0mðtÞ þ q12b0mðtÞ þ q13c0mðtÞ ¼ D
X

l¼m;i;j;k

wal1alðtÞ þwbl1blðtÞ þwcl1clðtÞ½ � þ ðq11=3Þ
X
l¼i;j;k

Fðuðxm;l; ym;lÞÞ; ð21Þ
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q21a0mðtÞ þ q22b0mðtÞ þ q23c0mðtÞ ¼ D
X

l¼m;i;j;k

½wal2alðtÞ þwbl2blðtÞ þwcl2clðtÞ� þ ðq11=3Þ
X
l¼i;j;k

Fðuðxm;l; ym;lÞÞnmðxm;l; ym;lÞ; ð22Þ

q31a0mðtÞ þ q32b0mðtÞ þ q33c0mðtÞ ¼ D
X

l¼m;i;j;k

½wal3alðtÞ þwbl3blðtÞ þwcl3clðtÞ� þ ðq11=3Þ
X
l¼i;j;k

Fðuðxm;l; ym;lÞÞgmðxm;l; ym;lÞ;

ð23Þ
where the coefficients fqrsg
3
r;s¼1; ffwalrg3

r¼1; fwblrg3
r¼1; fwclrg3

r¼1gl¼m;i;j;k are constants which depend on the local geometry of the

mesh (i.e., triangle Mm and its neighboring cells i, j, k and ~n@Mm ), the local basis functions 1, {nl,gl}l=m,i,j,k, and the constant b.
{(xm,l,ym,l)}l=i,j,k are the mid-points of the three edges {el}l=i,j,k of Mm which serve as Gaussian quadrature points for the P1 case
in the integral involving the nonlinear reaction terms in (14). The detailed formulae for computing these constants are pre-
sented in the technical report which is available at ‘‘http://www.nd.edu/�yzhang10/IIF-DG-report.pdf’’. In our implementa-
tion, these mesh-dependent constants are pre-calculated and stored before the time evolution since they do not depend on
the numerical solution u. Rewrite Eqs. (21)–(23) to the matrix–vector form
Q mV
!
0
mðtÞ ¼ D

X
l¼m;i;j;k

Wl V
!

l
ðtÞ þ F

!

m
ðV
!

m
Þ m ¼ 1; . . . ;N; ð24Þ0 1 0 1 0 1 0 1
where Q m ¼
q11 q12 q13
q21 q22 q23
q31 q32 q33

@ A; Wl ¼
wal1 wbl1 wcl1

wal2 wbl2 wcl2

wal3 wbl3 wcl3

@ A; ~Vm ¼
amðtÞ
bmðtÞ
cmðtÞ

@ A; ~Vl ¼
alðtÞ
blðtÞ
clðtÞ

@ A, and ~Fmð~VmÞ ¼

ðq11=3Þ
P

l¼i;j;kFðuðxm;l; ym;lÞÞ
ðq11=3Þ

P
l¼i;j;kFðuðxm;l; ym;lÞÞnmðxm;l; ym;lÞ

ðq11=3Þ
P

l¼i;j;kFðuðxm;l; ym;lÞÞgmðxm;l; ym;lÞ

0@ 1A.

3.2. The P2 case

The procedure to construct the P2 implicit DG spatial discretizations with third order accuracy will follow that of the P1

case, with a larger semi-discretized system. The number of local equations on each triangle depends on the degree of free-
doms of the approximation polynomial. On each triangle Mm, a quadratic polynomial
uðx; y; tÞ ¼ amðtÞ þ bmðtÞnm þ cmðtÞgm þ dmðtÞnmgm þ emðtÞn2
m þ fmðtÞg2

m ð25Þ
will be constructed. In (14), we take v ¼ 1; nm;gm; nmgm; n
2
m;g2

m on Mm and v = 0 elsewhere and convert the integral formula-
tion to the semi-discretized ODE system
Q m
~V 0mðtÞ ¼ D

X
l¼m;i;j;k

Wl
~VlðtÞ þ~Fmð~VmÞ m ¼ 1; . . . ;N; ð26Þ
where Q m ¼

q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26
q31 q32 q33 q34 q35 q36
q41 q42 q43 q44 q45 q46
q51 q52 q53 q54 q55 q56
q61 q62 q63 q64 q65 q66

0BBBBBB@

1CCCCCCA; Wl ¼

wal1 wbl1 wcl1 wdl1 wel1 wfl1

wal2 wbl2 wcl2 wdl2 wel2 wfl2

wal3 wbl3 wcl3 wdl3 wel3 wfl3

wal4 wbl4 wcl4 wdl4 wel4 wfl4

wal5 wbl5 wcl5 wdl5 wel5 wfl5

wal6 wbl6 wcl6 wdl6 wel6 wfl6

0BBBBBB@

1CCCCCCA; ~Vm ¼

amðtÞ
bmðtÞ
cmðtÞ
dmðtÞ;
emðtÞ;
fmðtÞ

0BBBBBB@

1CCCCCCA; ~Vl ¼

alðtÞ
blðtÞ
clðtÞ
dlðtÞ;
elðtÞ;
flðtÞ

0BBBBBB@

1CCCCCCA, and

~Fmð~VmÞ ¼

q11
P7

m¼1xmFðuðxmm ;ymm ÞÞ
q11
P7

m¼1xmFðuðxmm ;ymm ÞÞnmðxmm ;ymm Þ
q11
P7

m¼1xmFðuðxmm ;ymm ÞÞgmðxmm ;ymm Þ
q11
P7

m¼1xmFðuðxmm ;ymm ÞÞnmðxmm ;ymm Þgmðxmm ;ymm Þ
q11
P7

m¼1xmFðuðxmm ;ymm
ÞÞn2

mðxmm ;ymm
Þ

q11
P7

m¼1xmFðuðxmm ;ymm
ÞÞg2

mðxmm ;ymm
Þ

0BBBBBBBB@

1CCCCCCCCA
.

Again the detailed formulae for elements of matrices Qm, Wm and Wl,l = i, j, k are given in the technical report which is
available at ‘‘http://www.nd.edu/�yzhang10/IIF-DG-report.pdf’’. These mesh-dependent constants do not depend on the
numerical solution u and are pre-calculated and stored before the time evolution. ðxmm ; ymm

Þ; m ¼ 1; . . . ;7 are the Gaussian
quadrature points in the triangle Mm for computing the integral involving the nonlinear reaction terms for the P2 case. Their
values are also given in the aforementioned technical report.

Remark. The procedure to construct the P3 or higher order implicit DG spatial discretization will follow the similar
procedure as for the P1 and P2 cases. The local ODE systems will have the same form as (24) and (26), but with larger sizes
which depend on the degrees of freedom of the approximation polynomials. For example, if the degree of freedom of the
approximation polynomial is p on each element, the local ODE system will have the size p.

http://www.nd.edu/~yzhang10/IIF-DG-report.pdf
http://www.nd.edu/~yzhang10/IIF-DG-report.pdf
http://www.nd.edu/~yzhang10/IIF-DG-report.pdf
http://www.nd.edu/~yzhang10/IIF-DG-report.pdf
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3.3. Application of Krylov IIF schemes

Finally we have the ODE system resulting from the P1 (24) or P2 (26) DG spatial discretization:
~V 0mðtÞ ¼ D
X

l¼m;i;j;k

fWl
~VlðtÞ þ

~eF mð~VmÞ; m ¼ 1; . . . ;N; ð27Þ
where fWl ¼ Q�1
m Wl,

~eF m ¼ Q�1
m
~Fm. Q�1

m and fWl are mesh-dependent data and they do not depend on the numerical solution u.
So we pre-calculate and store these data before the time evolution. Note that, the nonlinear term ~eF mð~VmÞ considered in this
paper arises from the nonlinear reaction or source terms and no spatial derivative is involved in it, so the nonlinear operator
~eF m is local, namely it only depends on the unknowns ~Vm on the element Mm. For more general and complex PDEs in which the
nonlinear terms involve spatial derivatives, the nonlinear operator ~eF m is not local any more. Hence implicit treatment of the
global nonlinear operator leads to coupled nonlinear system which is expensive to solve. For such case, semi-implicit ap-
proach needs to be applied to reduce the computational cost. Again, this will be one of our future works.

Assembling the local systems (27), we get the global ODE system arising from the implicit DG spatial discretization for a
reaction–diffusion equation on a triangular mesh
U0ðtÞ ¼ AU þ FðUÞ; ð28Þ
where U ¼ ðVT
1;V

T
2; . . . ;VT

NÞ
T , A is a p � N � p � N sparse matrix with block structures, where p is the degrees of freedom on each

triangular element. The nonzero elements in A are p � p sub-matrices DfWl distributed on corresponding locations, and
FðUÞ ¼ ~eF 1ð~V1ÞT ;
~eF 2ð~V2ÞT ; . . . ;

~eF Nð~VNÞT
� �T

:

Remark. The sparse matrix A is the P1 or P2 DG discretization (14) of the Laplacian operator Dr2. For the sparse matrix A we
only store the nonzero elements (those DfWl blocks) and their locations in the matrix [53]. In our implementation we avoid
the operations involving zero elements in the sparse matrix A.

Now for the ODE system (28), we can directly apply the Krylov IIF methods (10) for the time evolution. In our numerical
experiments, we apply the second order Krylov IIF method (11) for the P1 DG spatial discretization, and the third order Kry-
lov IIF method (12) for the P2 DG spatial discretization to achieve consistent spatial–temporal accuracy orders. As the ori-
ginal IIF methods, the Krylov IIF methods will result in a local nonlinear algebraic system on every triangular element. The
number of algebraic equations of the local system is the product of the degrees of freedom p and the number of equations
in the PDEs system. We use the Newton method to solve the small nonlinear algebraic system on every triangular element.
In the Newton iterations to compute Un+1, we use the numerical values Un at time step tn as the initial guess. And the
threshold value for judging Newton iteration convergence is set to be 10�15. Newton iterations converge very fast for all
numerical examples in this paper, since the nonlinear systems are local and have small sizes. While iteration numbers
are larger for larger time step sizes (due to bigger distances between the initial guess Un and the solution Un+1), the average
iteration number is about 5 for nonlinear numerical examples in the next section (the iteration number is just 2 for linear
problems).
4. Numerical experiments

In this section we present numerical examples to show the stability, accuracy and efficiency of the Krylov IIF methods in
resolving the stiffness of the DG spatial operator for reaction–diffusion PDEs on 2D triangular meshes. The methods are
firstly tested on a set of problems with exact solutions. Then application of the method to long-time simulation of a math-
ematical model which describes the dorsal–ventral pattern formation during the zebrafish embryo development will be
shown. From numerical experiments we can observe that large time step sizes are achieved in numerical computations of
these parabolic PDEs by the DG method.

In this paper, all of the time-dependent reaction–diffusion systems we considered are subject to no-flux boundary con-
ditions. If the element edge el of Mm is aligned with the domain boundary oX, we take uinjel

¼ uext jel
, and ðruÞinjel

�~nel
¼

ðruÞextjel
�~nel
¼ 0 in the numerical fluxes (15)–(17). Hence we have
ûjel
¼ uinjel

; grujel
�~nel
¼ 0
in scheme (14).
All computations in this paper are performed on a 2.39 GHz, 8 GB RAM Linux computer.

4.1. Numerical examples with exact solutions

In this subsection, we perform convergence studies for the second and third order Krylov IIF methods which are applied to
the P1 and P2 DG spatial discretizations respectively on triangular meshes, as shown in Fig. 1(a) which is a coarse one with 56
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Fig. 1. (a) A coarse mesh with 56 triangles in the convergence studies in Section 4.1; (b) a coarse mesh with 2415 triangles in the numerical simulations for
the zebrafish model in Section 4.2.
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elements. The refinement of the triangular meshes is done in a uniform way, namely by cutting each triangle into four smal-
ler similar ones.

To show the stiffness of the DG spatial discretization matrix A for the diffusion operatorr2, we study the eigenvalues and
condition numbers related to A. In Table 1, we list the largest negative eigenvalue k0(A) of the P1 or P2 DG discretization
matrices A for the diffusion operator r2 on the domain [0,1]2 with no-flux boundary conditions, on successively refined
meshes. The matrices A have a 0 eigenvalue due to the no-flux boundary condition. We can see that the matrices A have
quite large magnitude eigenvalues for not so refined meshes. If an regular implicit method is used for the time discretization
(e.g. the backward Euler method), a linear system with the coefficient matrix I � DtA needs to be solved. In Table 1, we also
list the condition numbers of the matrices I � DtA for successively refined spatial–temporal meshes, with Dt = hmin. These
condition numbers are quite large for not so refined 2D meshes. Next we will show that the Krylov IIF methods developed
in this paper work quite well for this DG spatial discretization.

Example 1. Consider the two-dimensional linear parabolic problem
Table 1
Eigenva
domain
will ari
meshes

Nee

14
56

224
896

3584
ut ¼ uxx þ uyy þ að2p2e�t cosðpxÞ cosðpyÞ � uÞ; ðx; yÞ 2 ð0;1Þ � ð0;1Þ
uðx; y;0Þ ¼ cosðpxÞ cosðpyÞ;

(
ð29Þ
with no-flux boundary conditions. a is a constant. We use this linear problem to test the linear stability of our methods. We
consider the a = 0 and a = 1 cases. a = 0 corresponds to a pure diffusion problem, i.e., F(U(t)) = 0 in (1). a = 1 corresponds to a
linear reaction–diffusion problem.

(Case 1, a = 0.) This is a pure diffusion problem with the exact solution uðx; y; tÞ ¼ e�2p2t cosðpxÞ cosðpyÞ. The computation
is carried up to T = 0.6 with M = 25 at which the L1, L2 and L1 errors are measured. The time step size Dt = hmin. CPU time,
errors and order of accuracy for the second order Krylov IIF method with P1 DG spatial discretization are reported in Table
2, and for the third order Krylov IIF method with P2 DG spatial discretization are reported in Table 3. We can observe that we
obtain desired accuracy orders for both cases. In the Tables, Nee is the number of triangular elements of the computational
meshes, and N = 3 � Nee (P1 case) or N = 6 � Nee (P2 case) is the number of unknown degrees of freedom in the spatial direc-
lue and condition number study. k0(A) is the largest negative eigenvalue of P1 or P2 DG discretization matrices A for the diffusion operator r2 on the
[0,1]2 with no-flux boundary conditions, on successively refined meshes. cond(I � DtA) are condition numbers for the linear operator I � DtA, which

se if an implicit treatment of the diffusion term is used. Time step size Dt = hmin is used. Nee is the number of triangular elements of the computational
.

Dt P1 P2

cond(I � DtA) k0(A) cond(I � DtA) k0(A)

0.2079 2.7549E+03 �3.1490E+03 2.2734E+04 �4.2638E+03
0.1039 4.8715E+03 �1.3522E+04 3.6438E+04 �1.7467E+04
0.0520 9.0636E+03 �5.5484E+04 6.3633E+04 �7.0285E+04
0.0260 1.9658E+04 �2.2407E+05 1.3349E+05 �2.8164E+05
0.0130 3.6801E+04 �8.9920E+05 2.4045E+05 �1.1277E+06



Table 3
Example 1, case 1. CPU time, error, and order of accuracy of the third order Krylov IIF method with P2 DG spatial discretization. Final time T = 0.6.

Nee N CPU (s) L1 error Order L2 error Order L1 error Order

14 84 0.01 3.46E�07 – 4.02E�07 – 6.02E�07 –
56 336 0.05 1.12E�08 4.95 1.47E�08 4.78 6.34E�08 3.25

224 1344 0.26 8.19E�10 3.78 1.06E�09 3.79 8.25E�09 2.94
896 5376 1.99 7.24E�11 3.50 9.38E�11 3.50 1.04E�09 2.99

3584 21504 16.05 8.11E�12 3.16 1.06E�11 3.14 1.30E�10 3.00
14336 86016 134.62 9.83E�13 3.04 1.30E�12 3.03 1.63E�11 3.00
57344 344064 994.91 1.25E�13 2.98 1.65E�13 2.98 2.06E�12 2.98

Table 2
Example 1, case 1. CPU time, error, and order of accuracy of the second order Krylov IIF method with P1 DG spatial discretization. Final time T = 0.6.

Nee N CPU (s) L1 error Order L2 error Order L1 error Order

14 42 0.00 2.60E�06 – 3.17E�06 – 6.47E�06 –
56 168 0.02 1.20E�06 1.12 1.48E�06 1.10 2.70E�06 1.26

224 672 0.12 3.70E�07 1.70 4.54E�07 1.70 9.00E�07 1.59
896 2688 0.69 9.86E�08 1.91 1.21E�07 1.91 2.41E�07 1.90

3584 10752 5.24 2.49E�08 1.98 3.06E�08 1.98 6.09E�08 1.98
14336 43008 40.23 6.24E�09 2.00 7.67E�09 2.00 1.52E�08 2.00
57344 172032 368.65 1.56E�09 2.00 1.92E�09 2.00 3.81E�09 2.00
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tion. If the original IIF schemes are used, it is computationally prohibitive to compute the matrix exponential for such huge
N � N matrices, especially when the spatial mesh is refined. For the Krylov IIF schemes in this paper, we only need to com-
pute the matrix exponentials of 25 � 25 matrices, which are independent of the degrees of freedom N. As shown in the CPU
time of the numerical tables, we can see that the computations are very efficient. When the spatial mesh is refined, the num-
ber of degrees of freedom N increase 4 times and the total time steps double. From Tables 2 and 3, we see that the CPU time
approximately increases 8 times when the mesh is refined once. So the CPU time approximately linearly depends on the
number of degrees of freedom. Also, we obtain a clean second and third order accuracy in the computations for a fixed Krylov
space dimension M = 25 for all meshes, and this indicates that the errors generated by the Krylov subspace approximations
are much smaller than the truncation errors of the numerical schemes. This is also confirmed by the numerical results in
Table 4, in which we show numerical errors if different dimensions M of the Krylov subspace are used in the second order
Krylov IIF method with P1 DG spatial discretization, for a fixed spatial mesh. We can see that the numerical errors are com-
parable for smaller values of M and larger ones. So the numerical errors shown in Table 4 are mainly due to the truncation
errors of the DG spatial discretizations (14)(the temporal truncation errors from the IIF part (5) are 0 since this problem only
has the linear diffusion part), and the numerical errors by the Krylov subspace approximations are negligible in this example.
We will further perform theoretical error analysis on this in our future work. The numerical results also show that even for
this parabolic PDE, we can use a large time step size proportional to the spatial grid size for a stable and accurate compu-
tation. Actually for this problem which only has linear diffusion terms, in the time direction the Krylov IIF method can evolve
the linear DG spatial discretization operator almost ‘‘exactly’’ up to the numerical errors of the Krylov subspace approxima-
tions. This is shown in both Tables 4 and 5. From these two tables, we can see that even if we use a very large time step size
Dt = 0.6, namely we just use one time-step to reach the final time T, we can still obtain comparable numerical errors as those
in the computations by using Dt = hmin and a clear second order accuracy as shown in Table 5.

(Case 2, a = 1.) This is a linear reaction–diffusion equation with the exact solution u(x,y, t) = e�tcos(px)cos(py). Unlike the
case 1 which is a pure diffusion problem, the numerical errors from temporal IIF discretizations of the reaction term will play
a role since F(U(t)) in (1) is not zero any more. The computation is carried up to T = 2.0 with M = 25 at which the L1, L2 and L1

errors are measured. We test the linear stability of our methods by increasing the time step size successively as Dt = hmin,
Dt = 2hmin, and Dt = 4hmin. CPU time, errors and order of accuracy for the second order Krylov IIF method with P1 DG spatial
discretization are reported in Table 6, and for the third order Krylov IIF method with P2 DG spatial discretization are reported
in Table 7. We can observe that we obtained desired accuracy orders for all cases. In the tables, Nee is the number of
Table 4
Example 1, case 1. Numerical errors if different dimensions M of the Krylov subspace are used in the second order Krylov IIF method with P1 DG spatial
discretization. Final time T = 0.6. Two different time step sizes Dt = 0.6 and Dt = hmin are used. The spatial mesh is the one which has Nee = 3584 triangles.

M Dt = 0.6 Dt = hmin

L1 error L2 error L1 error L1 error L2 error L1 error

10 3.06E�08 3.77E�08 7.74E�08 2.45E�08 3.02E�08 5.98E�08
25 2.69E�08 3.32E�08 6.78E�08 2.49E�08 3.06E�08 6.09E�08

100 2.44E�08 3.01E�08 5.99E�08 2.49E�08 3.06E�08 6.09E�08
250 2.48E�08 3.05E�08 6.03E�08 2.49E�08 3.06E�08 6.09E�08



Table 5
Example 1, case 1. Error, and order of accuracy of the second order Krylov IIF method with P1 DG spatial discretization. Final time T = 0.6. A large time step
Dt = 0.6 is used, namely, only one step to the final time for this diffusion problem.

Nee N L1 error Order L2 error Order L1 error Order

14 42 2.60E�06 – 3.18E�06 – 6.50E�06 –
56 168 1.20E�06 1.12 1.48E�06 1.11 2.71E�06 1.26

224 672 3.69E�07 1.70 4.54E�07 1.70 8.99E�07 1.59
896 2688 1.11E�07 1.73 1.37E�07 1.73 2.74E�07 1.72

3584 10752 2.69E�08 2.04 3.32E�08 2.04 6.78E�08 2.01
14336 43008 6.64E�09 2.02 8.19E�09 2.02 1.69E�08 2.00
57344 172032 1.70E�09 1.96 2.10E�09 1.96 4.35E�09 1.96

Table 6
Example 1, case 2. CPU time, error, and order of accuracy of the second order Krylov IIF method with P1 DG spatial discretization. Final time T = 2.

Nee N CPU (s) L1 error Order L2 error Order L1 error Order

Dt = hmin

14 42 0.01 2.10E�02 – 2.62E�02 – 9.67E�02 –
56 168 0.10 7.60E�03 1.47 9.56E�03 1.46 3.33E�02 1.54

224 672 0.46 2.24E�03 1.76 2.79E�03 1.78 9.35E�03 1.83
896 2688 2.82 8.25E�04 1.44 1.02E�03 1.46 3.04E�03 1.62

3584 10752 21.95 2.07E�04 1.99 2.56E�04 1.99 7.80E�04 1.96
14336 43008 171.41 5.23E�05 1.99 6.45E�05 1.99 1.99E�04 1.97
57344 172032 1662.97 1.33E�05 1.98 1.64E�05 1.98 5.12E�05 1.96

Dt = 2hmin

14 42 0.00 1.00E�01 – 1.30E�01 – 3.40E�01 –
56 168 0.05 2.33E�02 2.14 2.87E�02 2.15 7.57E�02 2.18

224 672 0.27 9.22E�03 1.34 1.14E�02 1.34 2.70E�02 1.49
896 2688 1.58 2.68E�03 1.78 3.30E�03 1.78 7.63E�03 1.82

3584 10752 11.89 9.44E�04 1.50 1.17E�03 1.50 2.59E�03 1.56
14336 43008 89.35 2.37E�04 2.00 2.92E�04 2.00 6.52E�04 1.99
57344 172032 741.47 5.95E�05 1.99 7.34E�05 1.99 1.65E�04 1.98

Dt = 4hmin

56 168 0.03 1.00E�01 – 1.30E�01 – 2.90E�01 –
224 672 0.16 2.44E�02 2.06 3.01E�02 2.06 6.53E�02 2.14
896 2688 0.95 9.61E�03 1.34 1.19E�02 1.34 2.48E�02 1.40

3584 10752 6.63 2.80E�03 1.78 3.45E�03 1.78 7.17E�03 1.79
14336 43008 48.03 9.74E�04 1.52 1.20E�03 1.52 2.47E�03 1.54
57344 172032 409.27 2.44E�04 2.00 3.01E�04 2.00 6.19E�04 2.00
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triangular elements of the computational meshes, and N = 3 � Nee (P1 case) or N = 6 � Nee (P2 case) is the number of unknown
degrees of freedom in the spatial direction. As in the case 1, the Krylov IIF methods demonstrate excellent efficiency, accu-
racy and stability properties in this case. The stable and accurate computation results by using large time step sizes show
that the methods have quite large linear stability region.

Example 2. Consider a two-dimensional nonlinear reaction–diffusion problem
ut ¼ uxx þ uyy � u2 þ e�2t cos2ðpxÞ cos2ðpyÞ þ ð2p2 � 1Þe�t cosðpxÞ cosðpyÞ; ðx; yÞ 2 ð0;1Þ � ð0;1Þ
uðx; y;0Þ ¼ cosðpxÞ cosðpyÞ;

(
ð30Þ
with no-flux boundary conditions. The exact solution is u(x,y, t) = e�t cos(px)cos(py). The computation is carried up to T = 2.0
with M = 25 at which the L1, L2 and L1 errors are measured. The time step size Dt = hmin. CPU time, errors and order of accu-
racy for the second order Krylov IIF method with P1 DG spatial discretization are reported in Table 8, and for the third order
Krylov IIF method with P2 DG spatial discretization are reported in Table 9. Again we obtained desired accuracy orders for
both cases. In the tables, Nee is the number of triangular elements of the computational meshes, and N = 3 � Nee (P1 case) or
N = 6 � Nee (P2 case) is the number of unknown degrees of freedom in the spatial direction. For this example with a nonlinear
reaction term, we still draw the same conclusion as in the last example, from the numerical convergence study about the
efficiency, accuracy and stability properties of the Krylov IIF methods.
4.2. Application to a morphogenesis system

Many mathematical models in developmental biology take the form of reaction–diffusion Eq. (13). In such systems, both
diffusion and reaction terms are often very stiff. And long time numerical simulations are often needed for these systems.



Table 7
Example 1, case 2. CPU time, error, and order of accuracy of the third order Krylov IIF method with P2 DG spatial discretization. Final time T = 2.

Nee N CPU (s) L1 error Order L2 error Order L1 error Order

Dt = hmin

14 84 0.07 1.49E�02 – 1.84E�02 – 4.54E�02 –
56 336 0.31 5.11E�03 1.55 6.29E�03 1.54 1.31E�02 1.80

224 1344 1.81 9.44E�04 2.44 1.16E�03 2.43 2.36E�03 2.47
896 5376 14.21 1.99E�04 2.25 2.45E�04 2.25 4.92E�04 2.26

3584 21504 115.10 2.71E�05 2.88 3.34E�05 2.88 6.70E�05 2.88
14336 86016 940.71 3.59E�06 2.91 4.43E�06 2.91 8.88E�06 2.91
57344 344064 7898.45 4.76E�07 2.92 5.87E�07 2.92 1.18E�06 2.92

Dt = 2hmin

14 84 0.03 7.87E�02 – 9.73E�02 – 0.21 –
56 336 0.16 1.51E�02 2.38 1.86E�02 2.39 3.78E�02 2.48

224 1344 0.97 5.11E�03 1.56 6.31E�03 1.56 1.27E�02 1.58
896 5376 7.55 9.44E�04 2.44 1.16E�03 2.44 2.33E�03 2.44

3584 21504 58.61 1.99E�04 2.25 2.45E�04 2.25 4.91E�04 2.25
14336 86016 500.34 2.71E�05 2.88 3.34E�05 2.88 6.69E�05 2.88
57344 344064 4288.04 3.59E�06 2.91 4.43E�06 2.91 8.86E�06 2.92

Dt = 4hmin

56 336 0.09 7.89E�02 – 9.73E�02 – 2.00E�01 –
224 1344 0.54 1.51E�02 2.38 1.86E�02 2.38 3.73E�02 2.39
896 5376 4.03 5.12E�03 1.56 6.31E�03 1.56 1.26E�02 1.56

3584 21504 30.85 9.44E�04 2.44 1.16E�03 2.44 2.33E�03 2.44
14336 86016 249.01 1.99E�04 2.25 2.45E�04 2.25 4.91E�04 2.25
57344 344064 1971.68 2.71E�05 2.88 3.34E�05 2.88 6.69E�05 2.88

Table 8
Example 2. CPU time, error, and order of accuracy of the second order Krylov IIF method with P1 DG spatial discretization. Final time T = 2.

Nee N CPU (s) L1 error Order L2 error Order L1 error Order

14 42 0.06 0.59 - 0.59 – 0.72 –
56 168 0.11 1.45E�02 5.34 1.70E�02 5.12 4.87E�02 3.88

224 672 0.52 2.44E�03 2.58 3.02E�03 2.50 9.93E�03 2.29
896 2688 3.19 8.72E�04 1.48 1.08E�03 1.49 3.19E�03 1.64

3584 10752 24.60 2.19E�04 1.99 2.70E�04 1.99 8.18E�04 1.96
14336 43008 197.79 5.52E�05 1.99 6.81E�05 1.99 2.09E�04 1.97
57344 172032 1670.53 1.40E�05 1.98 1.72E�05 1.98 5.36E�05 1.96
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Hence robust and accurate methods which permit large time step sizes are desired. As demonstrated in one-dimensional
systems [48], the IIF methods are quite efficient for such applications. In this section, we apply the second order Krylov
IIF method with P1 DG spatial discretization on a triangular mesh to a model for the study of embryonic patterning. The mod-
el is re-defined on a two dimensional domain which has a realistic shape as part of the embryo during its development.

One of the central problems in developmental biology is how uniform fields of cells are transformed into tissues with
highly specialized cell types at distinct anatomical positions. In this process, diffusible morphogens produced by certain cells
pattern the surrounding tissue through interactions with certain proteins on the cell membrane. Morphogens are signaling
molecules that, when bound to cell receptors, assign different cell fates at different concentrations. This role of morphogens
has been the prevailing thought in tissue patterning for over half a century; but only recently have there been sufficient
experimental data for us to begin to understand how various morphogens interact and patterns emerge. Now, mathematical
modelling, analysis and computations have been very helpful to understand and identify underline biological mechanisms in
morphogenesis systems [39,40].

The example we are considering is a system of reaction–diffusion equations arising from mathematical modeling of a
morphogenesis problem during the dorsal–ventral patterning of zebrafish embryo development [67]. The model predicts
that the dorsal organizer of the zebrafish embryo plays a key role in forming a stable non-homogeneous morphogen gradi-
ent, and the prediction agrees well with the existing biological experiments. First we briefly describe the reaction–diffusion
model in the following.

Consider the zebrafish embryo from the end of blastula period to the middle of gastrula period (approximately 4.5–7.5 h
after fertilization). We are interested in the patterning of the dorsal–ventral tissues. On a two dimensional approximation,
the dorsal–ventral region has a shape as shown in Fig. 1(b), with the dorsal organizer being located at the corner of the dorsal
region. The whole domain X can be represented by
X ¼ ðx; yÞjr2
min 6 x2 þ y2

6 r2
max; cos 170� 6

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 6 cos 10�
( )



Table 9
Example 2. CPU time, error, and order of accuracy of the third order Krylov IIF method with P2 DG spatial discretization. Final time T = 2.

Nee N CPU (s) L1 error order L2 error order L1 error order

14 84 0.08 0.15 – 0.15 – 0.20 –
56 336 0.35 6.57E�03 4.49 7.98E�03 4.23 1.83E�02 3.46

224 1344 2.08 1.01E�03 2.69 1.25E�03 2.67 2.58E�03 2.83
896 5376 16.18 2.10E�04 2.27 2.59E�04 2.27 5.28E�04 2.29

3584 21504 127.09 2.86E�05 2.88 3.53E�05 2.88 7.17E�05 2.88
14336 86016 1139.88 3.77E�06 2.92 4.65E�06 2.92 9.44E�06 2.93
57344 344064 8864.08 4.91E�07 2.94 6.05E�07 2.94 1.22E�06 2.95
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and the dorsal organizer region XO is
XO ¼ ðx; yÞjr2
min 6 x2 þ y2

6 r2
max; cos 30� 6

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 6 cos 10�
( )

;

where rmin and rmax are radii of the inner and outer boundaries.
Let [L] and [LR] denote the concentration of the morphogen BMP and the concentration of BMP-receptor complexes (to

which BMP signaling is assumed to be proportional), respectively. The concentration of the free molecule Chordin (an inhib-
itor of BMP) and the concentration of BMP–Chordin complex are denoted by [C] and [LC], respectively. Let R0 denote the total
receptor concentration and let DL, DC, and DLC represent the three diffusion coefficients for BMP, Chordin, BMP–Chordin com-
plexes, respectively. The values kon, koff, kdeg, jon, joff, and s are the binding and degradation rates for BMP, Chordin, and their
complexes. With this notation, the reaction–diffusion model that is formulated in [67] is as follows:
@½L�
@t ¼ DLr2½L� � kon½L�ðR0 � ½LR�Þ þ koff ½LR� � jon½L�½C� þ ðjoff þ sÞ½LC� þ VL;

@½LR�
@t ¼ kon½L�ðR0 � ½LR�Þ � ðkoff þ kdegÞ½LR�;

@½LC�
@t ¼ DLCr2½LC� þ jon½L�½C� � ðjoff þ sÞ½LC�;

@½C�
@t ¼ DCr2½C� � jon½L�½C� þ joff ½LC� þ VC ;

8>>>>>>>><>>>>>>>>:
ð31Þ
where VC and VL are the production rates of molecules Chordin and BMP, respectively, defined by
VC ¼ VC min þ
VC max � VC min

1þ cC ½LR� þ
VCorge�at ; if ðx; yÞ 2 XO;

0; otherwise:

�
ð32Þ

VL ¼ VL min þ
VL max � VL min

1þ cL½LR��1 þ VLmate�bt : ð33Þ
The terms VCorge�at and VLmate
�bt represent the maternal production rates of Chordin and BMP [67].

The system (31) is subjected to the no-flux boundary conditions
@½L�
@n
¼ @½LC�

@n
¼ @½C�

@n
¼ 0 for ðx; yÞ 2 @X: ð34Þ
Parameters in the model are the following biological reasonable parameters [67]
rmin ¼ 0:028 cm; rmax ¼ 0:088 cm;

DL ¼ DLC ¼ DC ¼ 8:5� 10�7 cm2 s�1; kon ¼ 0:4 lM�1 s�1;

R0 ¼ 3:0 lM; koff ¼ 4� 10�6 s�1;

jon ¼ 10 lM�1 s�1; joff ¼ 1:0� 10�5 s�1;

s ¼ 0:01 s�1; kdeg ¼ 5:0� 10�4 s�1;

VC min ¼ 8:0� 10�4 lM s�1; VC max ¼ 8:0� 10�2 lM s�1;

VCorg ¼ 6:68� 10�1 lM s�1; cC ¼ 10 lM�1;

a ¼ 0:0167 s�1; VL min ¼ 1:0� 10�5 lM s�1;

VL max ¼ 6:0� 10�3 lM s�1; cL ¼ 10 lM;

VLmat ¼ 5:01� 10�2 lM s�1; b ¼ 0:0167 s�1;

ð35Þ
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The system (31) can be non-dimensionalized with the following normalized quantities
T ¼ D
r2

min

t; X ¼ x
rmin

; Y ¼ y
rmin

; ð36Þ

ffL; gL; hL; fS;hS; sSg ¼
r2

min

D
fkoff ; kdeg ; konR0; joff ; jonR0; sg; ð37Þ

fA;B;U; Sg ¼ 1
R0
f½L�; ½LR�; ½LC�; ½C�g; ð38Þ
fWC min;WC max;WCorg ;WL min;WL max;WLmatg ¼
r2

min

DR0
fVC min;VC max;VCorg;VL min;VLmax;VLmatg; ð39Þ
fP;Qg ¼ r2
min

D
fa; bg; ð40Þ

fdL;dLC ;dCg ¼
1
D
fDL;DLC ;DCg; cC ¼ cCR0; cL ¼

cL

R0
; ð41Þ
where D is the maximum of DL, DLC and DC in (35).
In terms of the normalized quantities, the system (31) becomes to the following dimensionless form
@A
@T ¼ dLr2A� hLAð1� BÞ þ fLB� hSASþ ðfS þ sSÞU þWL;
@B
@T ¼ hLAð1� BÞ � ðfL þ gLÞB;

@U
@T ¼ dLCr2U þ hSAS� ðfS þ sSÞU;

@S
@T ¼ dCr2S� hSASþ fSU þWC ;

8>>>><>>>>: ð42Þ
where
WC ¼WC min þ
WC max �WC min

1þ cCB
þ WCorge�PT ; if X P 7

8 ;

0; otherwise:

�
ð43Þ

WL ¼WL min þ
WL max �WL min

1þ cLB�1 þWLmate�QT : ð44Þ
The non-dimensionalized parameters corresponding to those in (35) are:
dL ¼ dLS ¼ dC ¼ 1; hL ¼ 1:1068� 103;

fL ¼ 3:6894� 10�3; hS ¼ 2:7671� 104;

fS ¼ 9:2235� 10�3; sS ¼ 9:2235;

gL ¼ 0:4612; WC min ¼ 0:24596;

WC max ¼ 24:596; WCorg ¼ 2:0538� 102;

cC ¼ 30; P ¼ 15:4032;

WL min ¼ 3:0745� 10�3; WL max ¼ 1:8447;

cL ¼ 3:3333; WLmat ¼ 15:4032; Q ¼ 15:4032:

ð45Þ
We use our new second order Krylov IIF method with P1 DG spatial scheme to simulate the system (42)–(45), to the nor-
malized final time T = 10. The spatial triangular mesh is a much more refined one based on the mesh shown in Fig. 1(b). It has
154,560 triangular elements. The sparse matrix A has the huge size 463680 � 463680. The original IIF methods can not be
applied to such big size problem directly on a regular computer. But our Krylov IIF method designed in this paper can sim-
ulate the system stably and efficiently. The time step size is taken to be Dt = 0.5hmin = 6.416 � 10�4 which is the advantage of
the implicit methods for a parabolic problem. The simulation results of the normalized concentrations of morphogen mol-
ecules are shown in Fig. 2. The Fig. 2(b) shows a morphogen gradient of the BMP-receptor complex which induces the cell
differentiation and tissue patterns. In the zebrafish dorsal–ventral patterning, the high concentration region of the BMP-
receptor complex will develop into the ventral tissue, and the low concentration region of the BMP-receptor complex will
develop into the dorsal tissue as shown in Fig. 2.
5. Discussions and conclusions

In this paper, we contributed two aspects in high order numerical methods. One is the development of a new Krylov sub-
space based implicit integration factor method for solving large ODE systems with both stiff linear and nonlinear terms, aris-
ing from numerical spatial discretization of time-dependent partial differential equations (PDEs) with linear high order



Fig. 2. Simulation results of the normalized concentrations of morphogens for the zebrafish system. Normalized final time T = 10. The spatial triangular
mesh has 154,560 elements. Dt = 0.5hmin = 6.416 � 10�4. (a) A: the normalized concentration of molecule BMP; (b) B: the normalized concentration of BMP-
receptor complexes; (c) U: the normalized concentration of BMP–Chordin complexes; (d) S: the normalized concentration of molecule Chordin.
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terms and stiff lower order nonlinear terms. The method can preserve the nice property of the original IIF scheme [48] that
the exact evaluation of the linear part is decoupled from the implicit treatment of the nonlinear part. Furthermore, it can
efficiently and accurately solve the large ODE systems arising from spatial discretization (e.g. DG methods) on high dimen-
sional unstructured meshes for PDEs defined on complex geometrical domains. At the same time, this method provides an
efficient and robust time discretization technique for DG methods on unstructured meshes for solving PDEs which have high
order spatial derivatives. It is still an active area to develop efficient high-order accurate time-stepping methods for DG
methods to solve PDEs with high order derivatives on multi-dimensional spatial domains. This is the second aspect in which
this paper is trying to contribute.

By using numerical examples of solving reaction–diffusion PDEs with exact solutions and a realistic mathematical model
in morphogenesis, we show the nice efficiency, stability and accuracy of the Krylov IIF-DG method. For this method, we can
use a large time step size which is proportional to the spatial grid size to solve parabolic PDEs such as the reaction–diffusion
equations. Numerical examples also show that the error generated by the Krylov subspace approximation with a quite small
dimension ( the dimension M = 25 for all mesh sizes) does not affect the accuracy orders of the IIF time discretizations ((5) or
(6)) or the DG spatial discretizations (14), hence it is already much smaller than the DG spatial and IIF temporal truncation
errors.

Because the computations of matrix exponential by the scaling and squaring method [30] are only needed for very small
matrices (25 � 25 matrices in this paper), operations required with the original huge matrix are a few matrix-by-vector mul-
tiplications, which makes the algorithm easy to parallelize.

In this paper, we only used the numerical experiments to test the algorithm. The current ongoing work includes the anal-
ysis of the error generated by the Krylov subspace approximation and its effects on the truncation errors of the IIF and DG
discretizations. The error analysis techniques in [26] will be used. In the numerical experiments of this paper, reaction–dif-
fusion PDEs are used as examples. The Krylov IIF methods developed in this paper can be straightforwardly extended to solve
more complex equations such as advection–reaction–diffusion PDEs and also applied to other DG methods such as the LDG
methods [65,63] for solving PDEs involving high order spatial derivatives on multi-dimensional unstructured meshes. These
are our planned research at the next stage.
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