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Abstract. SIR models with directed diffusions are important in describing
the population movement. However, efficient numerical simulations of such

systems of fully nonlinear second order partial differential equations (PDEs)

are challenging. They are often mixed type PDEs with ill-posed or degenerate
components. The solutions may develop singularities along with time evolu-

tion. Stiffness due to nonlinear diffusions in the system gives strict constraints

in time step sizes for numerical methods. In this paper, we design efficient
Krylov implicit integration factor (IIF) Weighted Essentially Non-Oscillatory

(WENO) method to solve SIR models with directed diffusions. Numerical

experiments are performed to show the good accuracy and stability of the
method. Singularities in the solutions are resolved stably and sharply by the

WENO approximations in the scheme. Unlike a usual implicit method for solv-
ing stiff nonlinear PDEs, the Krylov IIF WENO method avoids solving large

coupled nonlinear algebraic systems at every time step. Large time step size

computations are achieved for solving the fully nonlinear second-order PDEs,
namely, the time step size is proportional to the spatial grid size as that for

solving a pure hyperbolic PDE. Two biologically interesting cases are simulated

by the developed scheme to study the finite-time blow-up time and location or
discontinuity locations in the solution of the SIR model.

1. Introduction. There have been a lot of mathematical models studying the dif-
fusion of biological populations since 1970s. These models can roughly be classified
into two groups: One is based on the assumption that dispersal is due to a ran-
dom motion of individuals [27, 24, 1]; the other is based on the assumption that
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dispersal is a response of population pressure, which is often called the directed
spatial diffusion [9, 22, 15, 5, 4, 3, 16, 18]. In the biological world, some species
have been observed migrating to avoid crowding rather than random motion. As
early as recorded in 1971, arctic ground squirrels migrate from densely populated
areas into sparsely populated areas, even when the latter provide a less favorable
habitat [6, 9]. In 1983, MacCamy [15] proposed a model with directed spatial dif-
fusion to avoid crowd in the setting of studying epidemic diseases. In this model, it
is assumed that infectives and removed do not move while susceptibles move away
from concentrations of infectives. Milner et al. [16, 17, 18] extended the model to
a more general case: not only do each individual move away from crowd, but also
susceptibles moves away from concentrations of infectives. Let S(~x, t), I(~x, t), and
R(~x, t) denote the density functions of susceptible, infected, and recovered human
population at location ~x and time t. The model in [18] is formulated as St = k1∇ · (S∇P ) + k2∇ · (S∇I)− αSI,

It = k1∇ · (I∇P ) + αSI − γI,
Rt = k1∇ · (R∇P ) + γI,

(1)

for ~x ∈ Ω ⊂ Rn and t ∈ (0, T ) for some T > 0, where P (~x, t) = S(~x, t) + I(~x, t) +
R(~x, t) is the density function of total population; α > 0 and γ > 0 are epidemio-
logical parameters and k1 ≥ 0 and k2 ≥ 0 are diffusion parameters. The system is
completed with nonnegative initial condition

S(~x, 0) = S0(~x), I(~x, 0) = I0(~x), R(~x, 0) = R0(~x)

and no-flux boundary conditions

∂S

∂~x
(~x, t) =

∂I

∂~x
(~x, t) =

∂R

∂~x
(~x, t) = 0 on ∂Ω.

The density-dependent cross-diffusion term∇·(S∇I) has been used to model disease
avoidence for studying pattern formation [2, 28].

The mathematical models with random diffusion can be classified into diffusion
partial differential equations hence the models are well-posed [27, 1]. However, most
models with cross-diffusion are degenerate, sometimes even ill-posed [3]. For the
model 1, if we write the right-hand side of Eq 1 as a matrix times the column vector
of the higher-order terms plus a term involving derivatives of lower order, then the
three eigenvalues of the matrix are

λ1 = 0, λ2,3 =
k1(S + I +R)±

√
4k1k2SI + k2

1(S + I +R)2

2
.

If k1 > 0 and k2 = 0, then we have two zero eigenvalues and one positive eigenvalue;
If k1 = 0 and k2 > 0, then we have three zero eigenvalues; If k1 > 0 and k2 > 0, then
we have one positive, one negative, and one zero eigenvalue. Li and Yip proved that
the Eq. 1 is ill-posed when k1 > 0 and k2 > 0 in terms of long-term behavior [12].
The well-posedness of Eq. 1 is still an open problem. But we conjecture that the
Eq. 1 has a unique solution for some time T > 0.

There are numerous efficient numerical methods for solving some mathematical
models with spatial cross-diffusions [2, 25, 7]. However, the degeneracy of Eq. 1
poses a challenge in simulating it. Zhao and Milner [18] proposed a split Runge-
Kutta discontinuous Galerkin method to solve Eq. 1. However, the method has
only first-order accuracy. In the special case k1 = 0 and k2 > 0, Eq. 1 might have
a finite-time blow-up solution or there might develop a shock solution [17, 18].
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High order WENO schemes are a class of efficient numerical methods to stably
resolve singularities while maintaining high order accuracy in smooth regions of the
solution [23, 30]. It is natural to apply WENO schemes in solving this challenging
model here. To perform efficient numerical simulations for this time dependent PDE
system, an effective temporal numerical scheme is needed. The difficulty here is due
to the stiffness of the system caused by nonlinear diffusion terms, since traditional
implicit methods for solving stiff systems need to solve a large coupled nonlinear
algebraic system at every time step, and often advanced preconditioning techniques
have to be developed to improve the convergence of nonlinear algebraic solver. To
avoid solving large nonlinear algebraic system at every time step and achieve large
time step sizes, an efficient approach is the implicit integration factor (IIF) meth-
ods. IIF methods are a class of integration factor type time discretization methods,
which perform the time evolution of stiff operators via evaluation of exponential
functions of the corresponding matrices. IIF methods were originally developed in
[19] for solving stiff one dimensional reaction-diffusion systems. A nice property of
the methods is that the implicit terms are free of the exponential operation. The
size of the nonlinear algebraic system resulting from the implicit treatment is inde-
pendent of the number of spatial grid points. It only depends on the number of the
original PDEs in the mathematical model itself, and no large nonlinear algebraic
system needs to be solved at every time step. To overcome the difficulty in ap-
plying integration factor type methods to high dimensional problems, two different
approaches were developed, i.e., the compact IIF methods [20, 26] and the Krylov
IIF methods [8, 13]. In [11], high order Krylov IIF WENO schemes were developed
to efficiently solve fully nonlinear stiff advection-diffusion-reaction equations.

In this paper, we design the Krylov IIF WENO method to solve the SIR model

Eq. 1. We focus on the two spatial dimension case in this paper. Denote ~X =
[S, I,R]T , then Eq. 1 can be written in a matrix form

~Xt + ~H( ~Xx, ~Xy) = A( ~X)( ~Xxx + ~Xyy) + C( ~X), (2)

where

A( ~X) =

 k1S (k1 + k2)S k1S
k1I k1I k1I
k1R k1R k1R

 , C( ~X) =

 −αSI
αSI − γI

γI

 ,

~H[ ~Xx, ~Xy) =

 −k1Sx(Sx + Ix +Rx)− k2SxIx
−k1Ix(Sx + Ix +Rx)
−k1Rx(Sx + Ix +Rx)


+

 −k1Sy(Sy + Iy +Ry)− k2SyIy
−k1Iy(Sy + Iy +Ry)
−k1Ry(Sy + Iy +Ry)

 .

By forming the system Eq. 2 from the original model Eq. 1, the non-diffusion term
~H( ~Xx, ~Xy) is separated from diffusion terms. It has a form of Hamilton-Jacobi
type operators, so high order WENO schemes for Hamilton-Jacobi equations (e.g.,

[21, 29]) can be naturally used to discretize ~H( ~Xx, ~Xy). Then the Krylov IIF
method for fully nonlinear stiff advection-diffusion-reaction equations in [11] can be
smoothly adopted to solve the Hamilton-Jacobi-diffusion-reaction system Eq. 2.

The organization of the paper is as follows. In Section 2 we will introduce the
Krylov IIF WENO numerical scheme for the SIR model Eq. 2; In Section 3, we will
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demonstrate the order of accuracy of the proposed numerical method using extended
systems with known analytic solutions; In Section 4, we will numerically solve the
SIR model Eq. 2 for biologically interesting cases using the proposed numerical
scheme; In Section 5, we will give some remarks and discussions.

2. The Krylov IIF WENO scheme for SIR model. Let Ω = (a, b) × (c, d).
Consider a partition in space a = x0 < x1 < x2 < · · · < xM−1 < xM = b,
c = y0 < y1 < y2 < · · · < yN−1 < yN = d, where xi = a + i∆x, yj = c + j∆y, for
i = 0, 1, 2, . . . ,M , j = 0, 1, 2, . . . , N , and ∆x = (b − a)/M , ∆y = (d − c)/N . Let
ui,j ≈ u(xi, yj , ·), for u = S, I,R, i = 1, 2, . . . ,M − 1, j = 1, 2, . . . , N − 1. At the
meshpoint (xi, yj), i = 1, 2, . . . ,M − 1, j = 1, 2, . . . , N − 1, the diffusion terms are
discretized using the second order central difference, i.e.,

(A ~Xxx)(xi, yj , ·) ≈


k1Si,j (k1 + k2)Si,j k1Si,j

k1Ii,j k1Ii,j k1Ii,j

k1Ri,j k1Ri,j k1Ri,j





Si+1,j − 2Si,j + Si−1,j

∆x2

Ii+1,j − 2Ii,j + Ii−1,j

∆x2

Ri+1,j − 2Ri,j + Ri−1,j

∆x2


,

(A ~Xyy)(xi, yj , ·) ≈


k1Si,j (k1 + k2)Si,j k1Si,j

k1Ii,j k1Ii,j k1Ii,j

k1Ri,j k1Ri,j k1Ri,j





Si,j+1 − 2Si,j + Si,j−1

∆y2

Ii,j+1 − 2Ii,j + Ii,j−1

∆y2

Ri,j+1 − 2Ri,j + Ri,j−1

∆y2


.

For discretizing the Hamilton-Jacobi term, we use the third order WENO scheme
with Lax-Friedrichs flux [21, 31], i.e.,

~H( ~Xx, ~Xy)(xi, yj , ·) ≈ Ĥ(( ~Xx)−i,j , (
~Xx)+

i,j , (
~Xy)−i,j , (

~Xy)+
i,j)

= ~H(
( ~Xx)−i,j + ( ~Xx)+

i,j

2
,

( ~Xy)−i,j + ( ~Xy)+
i,j

2
)

−1

2
αx(( ~Xx)+

i,j − ( ~Xx)−i,j)−
1

2
αy(( ~Xy)+

i,j − ( ~Xy)−i,j),

where

αs = max
1≤i≤M−1
1≤j≤N−1

max

(
ρ

(
∂ ~H

∂ ~Xs

(( ~Xx)+
i,j , (

~Xy)+
i,j)

)
, ρ

(
∂ ~H

∂ ~Xs

(( ~Xx)−i,j , (
~Xy)−i,j)

))
,

(3)
for s = x, y. Here ρ(·) is the spectral radius operator. It is worth pointing out

that ∂ ~H

∂ ~Xx
and ∂ ~H

∂ ~Xy
are 3 by 3 matrices, so the eigenvalues of them can be easily

found analytically and spectral radius ρ can be computed efficiently. ( ~Xx)±i,j =

[(Sx)±i,j , (Ix)±i,j , (Rx)±i,j ]
T and for u = S, I,R, a third order WENO approximation

for ux at the grid point (i, j) when the wind “blows” from the left to the right is

(ux)−i,j = (1− w−)

(
ui+1,j − ui−1,j

2∆x

)
+ w−

(
3ui,j − 4ui−1,j + ui−2,j

2∆x

)
,
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where

w− =
1

1 + 2r2
−
, r− =

ε+ (ui,j − 2ui−1,j + ui−2,j)
2

ε+ (ui+1,j − 2ui,j + ui−1,j)2
;

on the other hand, the third order WENO approximation for ux at the grid point
(i, j) when the wind “blows” from the right to the left is

(ux)+
i,j = (1− w+)

(
ui+1,j − ui−1,j

2∆x

)
+ w+

(
−ui+2,j + 4ui+1,j − 3ui,j

2∆x

)
,

where

w+ =
1

1 + 2r2
+

, r+ =
ε+ (ui+2,j − 2ui+1,j + ui,j)

2

ε+ (ui+1,j − 2ui,j + ui−1,j)2
.

Similarly for approximations of derivatives in y-direction ( ~Xy)±i,j = [(Sy)±i,j , (Iy)±i,j ,

(Ry)±i,j ]
T , third order WENO approximations are computed as following:

(uy)−i,j = (1− w−)

(
ui,j+1 − ui,j−1

2∆y

)
+ w−

(
3ui,j − 4ui,j−1 + ui,j−2

2∆y

)
,

where

w− =
1

1 + 2r2
−
, r− =

ε+ (ui,j − 2ui,j−1 + ui,j−2)2

ε+ (ui,j+1 − 2ui,j + ui,j−1)2
;

(uy)+
i,j = (1− w+)

(
ui,j+1 − ui,j−1

2∆y

)
+ w+

(
−ui,j+2 + 4ui,j+1 − 3ui,j

2∆y

)
,

where

w+ =
1

1 + 2r2
+

, r+ =
ε+ (ui,j+2 − 2ui,j+1 + ui,j)

2

ε+ (ui,j+1 − 2ui,j + ui,j−1)2
,

for u = S, I,R.
After the spatial discretizations, we consider the time discretization. Let the

vector ~U = [S1,1, I1,1, R1,1, . . . , SM−1,1, IM−1,1, RM−1,1, S1,2, I1,2, R1,2, . . . , SM−1,2,
IM−1,2, RM−1,2, . . . , S1,N−1, I1,N−1, R1,N−1, . . . , SM−1,N−1, IM−1,N−1, RM−1,N−1]T

denote the unknowns. For the boundary-point values, Vi,0, V = S, I,R, i =
1, 2, . . . ,M − 1, we construct a cubic interpolation polynomial P3(y) of V at the
grid points (xi, y0), (xi, y1), (xi, y2), and (xi, y3), and impose the no-flux boundary
condition P ′3(y0) = 0, which leads to

Vi,0 =
6

11
(3Vi,1 −

3

2
Vi,2 +

1

3
Vi,3).

To discretize the Hamilton-Jacobi term using the third order WENO scheme, we
need ghost point value Vi,−1. The extrapolation technique is used. Namely, we
construct a cubic interpolation polynomial of V at (xi, y0), (xi, y1), (xi, y2) and
(xi, y3), and evaluate it at (xi, y−1) with Vi,0 be replaced with the above equality,
then we get

Vi,−1 =
1

11
(6Vi,1 + 8Vi,2 − 3Vi,3).

Similarly, we obtain the values of S, I, R at the other boundary points.
Now we apply the second-order IIF (IIF2) temporal discretization. We use the

approach in [11] to deal with the nonlinear diffusion terms in the SIR model. Spatial
discretizations of Eq. 1 leads to the following semi-discretized ordinary differential
equation (ODE) system

d~U

dt
+ ~̃H(~U) = ~Fd(~U) + ~Fr(~U), (4)
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where ~̃H(~U) and ~Fd(~U) result from the spatial discretizations of the Hamilton-

Jacobi term and the nonlinear diffusion terms respectively, and ~Fr(~U) is the non-
linear reaction. Let 0 = t0 < t1 < · · · < tK = T be the partition in time.
~Uk ≈ ~U(tk), and C(~Uk) = ∂ ~Fd

∂~U
(~Uk) denotes the Jacobian matrix. We rewrite

~Fd(~U) for t ∈ [tk, tk+1) as

~Fd(~U) = ~Fd(~Uk) + C(~Uk)(~U − ~Uk) + ~E(~U), (5)

where ~E(~U) is the remainder. The Eq. 4 can be rewritten as

d~U

dt
− C(~Uk)~U = ~Fd(~Uk)− C(~Uk)~Uk + ~E(~U)− ~̃H(~U) + ~Fr(~U). (6)

Multiplying by e−C(~Uk)t and integrating Eq. 6 from t = tk to t = tk+1, we get

~Uk+1 = eCk∆tk ~Uk + eCk∆tk
∫∆tk

0
e−Ckτ (~Fd(~U(tk + τ))− Ck ~U(tk + τ)

− ~̃H(~U(tk + τ)) + ~Fr(~U(tk + τ)))dτ,
(7)

where Ck , C(~Uk) and ∆tk = tk+1 − tk. The IIF schemes are obtained by approx-
imating the integrand in Eq. 7 by Lagrange interpolation polynomials. See [11] for
details. The second-order IIF scheme takes the following form:

~Uk+1 = eCk∆tk ~Uk + ∆tk{αk+1
~Fr(~Uk+1) + αke

Ck∆tk ~Fr(~Uk)

+βk−1e
Ck(∆tk+∆tk−1)(~Fd(~Uk−1)− Ck ~Uk−1 − ~̃H(~Uk−1))

+βke
Ck∆tk(~Fd(~Uk)− Ck ~Uk − ~̃H(~Uk))},

(8)

where αk = 1
2 , αk+1 = 1

2 , βk−1 = − ∆tk
2∆tk−1

, and βk = 1
∆tk−1

(∆tk
2 + ∆tk−1).

Rewrite the second order scheme Eq. 8, we get

~Uk+1 −∆tkαk+1
~Fr(~Uk+1)

= eCk∆tk ~Uk + ∆tk{αkeCk∆tk ~Fr(~Uk) + βke
Ck∆tk(~Fd(~Uk)− Ck ~Uk − ~̃H(~Uk))

+βk−1e
Ck(∆tk+∆tk−1)(~Fd(~Uk−1)− Ck ~Uk−1 − ~̃H(~Uk−1))}.

(9)
Denoting the right hand side terms as RHS, at each grid point (xi, yj) we have the
following 3-equation nonlinear system

Sk+1
i,j −∆tkαk+1 · (−αSk+1

i,j Ik+1
i,j ) = (RHS)i,j,S ,

Ik+1
i,j −∆tkαk+1 · (αSk+1

i,j Ik+1
i,j − γI

k+1
i,j ) = (RHS)i,j,I ,

Rk+1
i,j −∆tkαk+1 · (γIk+1

i,j ) = (RHS)i,j,R.

Here (RHS)i,j,S corresponds to the component for Si,j in the right hand side vector
of the Eq. 9, similarly for (RHS)i,j,I and (RHS)i,j,R. It is worth to note that this

is just a local nonlinear system with 3 equations for Sk+1
i,j , Ik+1

i,j , and Rk+1
i,j , for

each pair of (i, j), 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1. Newton’s method can be
easily employed to solve the small nonlinear system. This shows an advantage of
IIF schemes over many implicit schemes, namely, solving large coupled nonlinear
algebraic system is avoided.

Evaluating of eCk∆tk~v is approximated by the Krylov subspace method for effi-
ciently implementing IIF schemes to solve high spatial dimension problems [8]. The
sparse matrix Ck is projected to the Krylov subspace

Km = span{~v, Ck~v, C2
k~v, . . . , C

m−1
k ~v}.
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The well-known Arnoldi algorithm generates an orthonormal basis Vm = [~v1, ~v2, . . . ,
~vm] of the Krylov subspace Km, and an m×m upper Hessenberg matrix Hm. That
is V TmCkVm = Hm. Thus, we have the approximation

eCk∆tk~v ≈ γ̃VmeHm∆tk~e1,

where γ̃ = ‖~v‖2, and ~e1 denotes the first column of the m×m identity matrix Im.
In the paper, m = 25 is being used.

3. Order of convergence of the Krylov IIF WENO scheme.

3.1. One-dimensional cases. First we apply the proposed Krylov IIF WENO
method to the following problem: St = k1(S(Sx + Ix +Rx))x + k2(SIx)x − αSI + fS(x, t),

It = k1(S(Sx + Ix +Rx))x + αSI − γI + fI(x, t), (x, t) ∈ ΩT ,
Rt = k1(S(Sx + Ix +Rx))x + γI + fR(x, t),

(10)

where Ω = (0, π), ΩT = Ω × (0, T ), fS , fI , and fR are chosen so that the system
has a solution

S(x, t) = e−t(1− cos(2x)), I(x, t) = e−t(1 + cos(x)), R(x, t) = e−t(1− cos(x)).

The initial condition of the system is set by using the true solution with t = 0. The
system is subject to no-flux boundary conditions. Throughout this paper, we take
α = 1 and γ = 5. We set T = 1 for all the simulations in this section. One advantage
of the Krylov IIF WENO scheme for solving the fully nonlinear Hamilton-Jacobi-
diffusion-reaction system is that the time step size ∆tk can be adaptively chosen
as that for a pure hyperbolic PDE. The time step size ∆tk satisfies the following
Courant-Friedrichs-Lewy (CFL) condition for the two-dimensional problem

∆tk(αx
1

∆x
+ αy

1

∆y
) = CFL,

where CFL is a specified number, called the CFL number. αx and αy are defined
in the Eq. 3. At every time step, αx and αy are updated using the Eq. 3, then the
time step size ∆tk is determined by the above CFL condition. ∆tk will be used to
evolve the numerical solution to the next time step. In one-dimensional case, the
above equality is reduced into ∆tkαx

1
∆x = CFL. This indicates the high efficiency

of the Krylov IIF WENO scheme for solving the problems with diffusion terms, i.e.,
large time step size computations (∆t = O(∆x)) are achieved.

3.1.1. Case 1: k1 = 0.1 and k2 = 0.001. As shown in [12], the Eq. 10 is ill-posed
for its long-term behavior. To start the computation by the Krylov IIF2 WENO

scheme, the numerical values at the first and the second time steps, i.e., ~U0 and ~U1

are needed. ~U0 can be directly computed by using the initial condition of the PDE.

Here for simplicity, ~U1 is set by using the exact solution. For the problems with

unknown exact solutions, ~U1 is computed by using a second order Runge-Kutta
method. The numerical solutions are obtained for Eq. 10 at T = 1. The CFL
number is taken to be 0.2. Numerical results are reported in Table 1. From Table 1,
it is clear that the desired second-order accuracy is obtained for the proposed Krylov

IIF2 WENO scheme. It is worthy to note that if ~U1 is computed with a second
order Runge-Kutta method, a similar table with the same order of accuracy can be
acquired.
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N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 3.85e-02 - 7.48e-03 - 1.07e-02 -
20 1.24e-02 1.64 2.28e-03 1.72 3.53e-03 1.60
40 3.29e-03 1.91 5.56e-04 2.03 8.95e-04 1.98
80 8.30e-04 1.99 1.45e-04 1.94 2.26e-04 1.98
160 2.07e-04 2.00 3.68e-05 1.98 5.67e-05 2.00
320 5.12e-05 2.01 9.21e-06 2.00 1.42e-05 2.00

Table 1. Numerical results of the one-dimensional system Eq. 10
for k1 = 0.1 and k2 = 0.001. π/N is the mesh size in the spatial
direction. Here the constant CFL = 0.2.

3.1.2. Case 2: k1 = 0.1 and k2 = 0. In this case, the coefficient matrix of the
second-order terms at the right hand side of Eq. 10 has two zero eigenvalues and
one positive eigenvalue. The nonlinear term of Eq. 10 behaves like a porous media
equation. We expect that for this well-posed case, the CFL number can take larger
values than in the previous case. In addition, Table 2 shows the numerical results
for CFL = 0.2 and Table 3 shows the numerical results for CFL = 0.5. It can
be seen that both tables demonstrate the desired second order accuracy, while a
smaller CFL number results in smaller numerical errors. Again, the time step size
∆t = O(∆x) shows that the Krylov IIF WENO scheme is an efficient numerical
method for this type of problems which involve diffusion terms.

N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 3.86e-02 - 7.51e-03 - 1.07e-02 -
20 1.24e-02 1.63 2.29e-03 1.72 3.54e-03 1.60
40 3.30e-03 1.91 5.59e-04 2.03 9.00e-04 1.98
80 8.31e-04 1.99 1.45e-04 1.95 2.27e-04 1.98
160 2.07e-04 2.00 3.69e-05 1.97 5.70e-05 2.00
320 5.15e-05 2.01 9.29e-06 1.99 1.43e-05 2.00

Table 2. Numerical results of the one-dimensional system Eq. 10
for k1 = 0.1 and k2 = 0. CFL = 0.2. π/N is the mesh size in the
spatial direction.

N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 1.05e-01 - 3.23e-02 - 4.05e-02 -
20 4.17e-02 1.33 8.41e-03 1.94 1.27e-02 1.67
40 1.46e-02 1.51 2.69e-03 1.65 4.04e-03 1.65
80 3.94e-03 1.89 7.25e-04 1.89 1.10e-03 1.88
160 1.05e-03 1.91 1.94e-04 1.91 2.91e-04 1.92
320 2.61e-04 2.00 4.96e-05 1.96 7.35e-05 1.99

Table 3. Numerical results of the one-dimensional system Eq. 10
for k1 = 0.1 and k2 = 0. CFL = 0.5. π/N is the mesh size in the
spatial direction.
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3.1.3. Case 3: k1 = 0, k2 = 0.1. When k1 = 0, and k2 > 0, the last two equations
are reduced into ordinary differential equations. The proposed Krylov IIF2 WENO
scheme can be still directly applied to this degenerate case. Table 4 shows the
numerical results for this special case. The CFL number is taken to be 0.1. Again,
we can see that the Krylov IIF2 WENO scheme has reached the desired second-order
accuracy, with large time step size ∆t = O(∆x).

N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 3.38e-02 - 5.95e-03 - 7.33e-03 -
20 1.05e-02 1.68 1.88e-03 1.66 2.27e-03 1.69
40 2.92e-03 1.85 5.53e-04 1.77 6.64e-04 1.78
80 7.93e-04 1.88 1.53e-04 1.85 1.80e-04 1.88
160 2.08e-04 1.93 4.03e-05 1.92 4.71e-05 1.94
320 5.35e-05 1.96 1.04e-05 1.95 1.21e-05 1.96

Table 4. Numerical results of the one-dimensional system Eq. 10
for k1 = 0 and k2 = 0.1. CFL = 0.1. π/N is the mesh size in the
spatial direction.

3.2. Two-dimensional cases. In this section, we apply the Krylov IIF WENO
method to the following two-dimensional problem:

St = k1(S(Sx + Ix +Rx))x + k2(SIx)x + k1(S(Sy + Iy +Ry))y + k2(SIy)y
−αSI + fS(x, y, t),

It = k1(I(Sx + Ix +Rx))x + k1(I(Sy + Iy +Ry))y + αSI − γI + fI(x, y, t),
Rt = k1(R(Sx + Ix +Rx))x + k1(R(Sy + Iy +Ry))y + γI + fR(x, y, t).

(11)
This system is defined on the spatial domain (0, π) × (0, π). fS , fI , and fR are
chosen so that the system has a solution

S(x, y, t) = e−t(1− cos(2x))(1− cos(2y)), I(x, y, t) = e−t(1 + cos(x))(1 + cos(y)),

R(x, y, t) = e−t(1− cos(x))(1− cos(y)).

The initial condition of the system is set by using the true solution with t = 0. The
system is subject to no-flux boundary conditions. The parameters α = 1 and γ = 5.

Again for simplicity, ~U1 is set by using the exact solution. Of course, a second-order

Runge-Kutta method can also be used to compute ~U1 to start the time evolution.
We run the simulation till time T = 1 by the Krylov IIF2 WENO scheme. Table 5
shows the numerical results for the case where k1 = 0.1 and k2 = 0.001. The
numerical results for the case where k1 = 0.1 and k2 = 0 are reported in Table 6,
and those for the case where k1 = 0 and k2 = 0.1 are given in Table 7. We draw
the same conclusion as that for the one-dimensional system. The proposed Krylov
IIF2 WENO method reaches the desired second-order accuracy for solving the two-
dimensional system Eq 11. Large time step size ∆t = O(∆x) is achieved by using
the efficient Krylov IIF2 WENO scheme to solve this system.

Remark. We have demonstrated that the proposed Krylov IIF2 WENO method
has desired second-order accuracy for solving the model systems Eq. 10 and Eq. 11.
The method works very well for different cases where k1 and k2 take various values.
In our numerical experiments, we also observe that the numerical method may suffer
instability for some strongly ill-posed cases such as k1 = 0.1 and k2 = 0.1. In these
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N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 6.21e-02 - 7.34e-03 - 9.75e-03 -
20 1.73e-02 1.84 1.65e-03 2.15 2.39e-03 2.03
40 2.69e-03 2.69 4.01e-04 2.04 6.37e-04 1.91
80 5.99e-04 2.16 9.09e-05 2.14 1.45e-04 2.13
160 1.39e-04 2.10 2.15e-05 2.08 3.43e-05 2.08
320 3.35e-05 2.05 5.18e-06 2.06 8.25e-06 2.06

Table 5. Numerical results of the two-dimensional system Eq. 11
for k1 = 0.1 and k2 = 0.001. CFL = 0.4. π/N is the mesh size in
each of the spatial directions.

N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 7.30e-02 - 1.02e-02 - 1.32e-02 -
20 2.12e-02 1.78 2.54e-03 2.00 3.76e-03 1.82
40 4.15e-03 2.35 6.54e-04 1.96 1.03e-03 1.88
80 1.03e-03 2.01 1.56e-04 2.07 2.47e-04 2.05
160 2.77e-04 1.90 3.86e-05 2.02 6.05e-05 2.03
320 6.97e-05 1.99 7.92e-06 2.28 1.28e-05 2.25

Table 6. Numerical results of the two-dimensional system Eq. 11
for k1 = 0.1 and k2 = 0. CFL = 0.6. π/N is the mesh size in each
of the spatial directions.

N L∞ error L∞ order L1 error L1 order L2 error L2 order
10 3.08e-02 - 2.91e-03 - 3.72e-03 -
20 7.74e-03 1.99 8.37e-04 1.80 1.17e-03 1.67
40 1.68e-03 2.20 2.37e-04 1.82 3.32e-04 1.82
80 4.18e-04 2.01 6.24e-05 1.93 8.68e-05 1.94
160 1.07e-04 1.97 1.64e-05 1.93 2.24e-05 1.96
320 2.69e-05 1.99 4.13e-06 1.98 5.65e-06 1.99

Table 7. Numerical results of the two-dimensional system Eq. 11
for k1 = 0 and k2 = 0.1. CFL = 0.2. π/N is the mesh size in each
of the spatial directions.

strongly ill-posed cases, the coefficient matrix of the second order term has one
relatively large negative eigenvalue, which gives a strongly backward heat equation
component in the system. This may cause instability for the numerical method,
especially in refined meshes. How to deal with these most difficult cases is one of
our next research topics.

4. Application of the Krylov IIF WENO method to the SIR model. In
this section, we apply the Krylov IIF2 WENO method to the SIR model with
directed diffusion, i.e., the system Eq. 1. Two biologically interesting cases are
studied: (i) k1 = 0, k2 > 0, corresponding to the directed dispersion avoiding infec-
tion; (ii) k1 > 0, k2 = 0, corresponding to the directed dispersion avoiding crowding.
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4.1. Case 1: k1 = 0, k2 > 0 (avoiding infection). First let us consider the same
example as in the Milner and Zhao’s paper [18] for the one-dimensional case where
k2 = 0.1, α = 1, and γ = 5. Let Ω = (0, 1). The initial condition are chosen as
S0(x) = 6, R0(x) = 0, for x ∈ Ω and

I0(x) =

 2− 25x2, 0 ≤ x ≤ 0.1,
25
7 (0.8− x)2, 0.1 < x ≤ 0.8,

0 0.8 < x ≤ 1.
(12)

The solution might break down with a formation of a shock wave, or a finite-time
blow-up solution might exist by rewriting the system as a hyperbolic system [16].
The discontinuity occurs on the boundary of compact support of infected indi-
viduals, x = 0.8. Numerical simulations in [18] suggest that there might exist a
finite-time blow-up solution at t = 0.7. Following the approach in [18], we com-
pute the numerical solutions of S at t = 0.7 and at mesh points x = 0.8 − 1

M ,

M = 1280, 640, . . . , 10. Then, we compute the ratio r = S(0.8− 1
M )/S(0.8− 1

M/2 ). If

r approaches a constant, we can conjecture that S takes the form S(x) =
const

(0.8− x)α

where α = ln(r)/ln(2). Table 8 shows the numerical results using the Krylov IIF
WENO scheme for the system with the above initial condition. We can see that
the value of r still has a little oscillation at t = 0.7 when M approaches 1280. The
convergence of r has a better pattern at t = 0.706, as shown in Table 8. This
indicates that the solution might blow-up at t = 0.706 instead of t = 0.7. Figure 1
shows the density profile of solutions of Eq. 1 at t = 0.706. We can see that the
singularity of the solution has been resolved well by the Krylov IIF WENO scheme.

M 10 20 40 80 160 320 640 1280
S (at T = 0.7) 7.05 9.72 13.39 18.49 25.56 36.15 66.84 80.74
r (at T = 0.7) - 1.37 1.38 1.38 1.38 1.41 1.85 1.21

S (at T = 0.706) 6.97 9.56 13.09 17.88 24.31 33.71 54.05 89.15
r (at T = 0.706) - 1.37 1.37 1.37 1.36 1.39 1.60 1.65

Table 8. Numerical solution of S at t = 0.7 and t = 0.706 and
x = 0.8− 1/M for different M . All values are computed using the
uniform mesh ∆x = 1/1280.

Numerically verifying the finite-time blow-up is challenging. Hirota et al pro-
posed a numerical method to estimate the blow-up time for the problems of partial
differential equations [10]. However, the method was applied to the test problems
where the partial differential equation does have finite-time blow-up solutions. We
conjecture that susceptibles might be finite-time blow-up at x = 0.8, the compact
support boundary of the infective individuals, at time t = 0.706. On the other hand,
if we do not assume that there is a finite-time blow-up solution, we will expect that
a form of shock or discontinuity of solutions occurs. As infected individuals can
not move away from their compact support region, susceptibles will stop moving
further as soon as they reach a safe zone of infection free region. This will result to
a situation where the population accumulation of susceptibles on the boundary of
compact support of infected individuals. Numerical simulation shows the discon-
tinuity of solution, particularly in I. Figure 2 shows the numerical solution of the
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Figure 1. Numerical solution of the one-dimensional case of Eq. 1
for the case of avoiding infection (k1 = 0 and k2 = 0.1) at t = 0.706.
CFL = 0.1.

one-dimensional case of Eq. 1 at t = 1.5. We can see that the discontinuities of the
solution are resolved very well, even with a relatively coarse mesh N = 40. The
WENO approximation plays a key role here in capturing the discontinuities of the
solution sharply and stably.
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Figure 2. Numerical solution of the one-dimensional case of Eq. 1
for the case of avoiding infection (k1 = 0, k2 = 0.1) at t = 1.5. CFL
= 0.1.

In the two-dimensional case, Milner and Zhao [18] also conjectured that a finite-
time blow-up solution might exist. Let Ω = (0, 1)×(0, 1), S0(x, y) = 6, R0(x, y) = 0
on Ω, and I(x, y) is the tensor product of the function in Eq. 12. Again, we take
the parameter values k1 = 0 and k2 = 0.1. Figure 3 shows the numerical solution
of Eq. 1 for the two-dimensional case with the above initial conditions. From the
figure, it is reasonable to believe that the finite-time blow-up solution occurs first
at the intersection of domain boundary and the boundary of compact support of
initial conditions of infected individuals. As that for the one-dimensional case,
the singularities of the solution have been resolved very well by the Krylov IIF
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WENO scheme. In [18], it was observed that the finite-time blow-up might occur
along the boundary of the initial compact of infected individuals. We believe that
the higher-order numerical scheme in this paper can better capture the behavior
of finite-time blow-up of solutions. Similarly as in the one-dimensional case, the
numerical scheme in this paper allows us to run the simulation beyond t = 0.7. We
observe accumulation of susceptibles on the boundary of compact support of initial
infected population as t increases.
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Figure 3. Numerical solution of the two-dimensional case of Eq. 1
for the case of avoiding infection (k1 = 0, k2 = 0.1) at t = 0.7. CFL
= 0.2.

4.2. Case 2: k1 > 0, and k2 = 0 (avoiding crowd). Here we consider the case
corresponding to the directed dispersion avoiding crowding. Besides S, I and R,
we also study the dynamics of total population P = S + I + R. Notice that by
adding three equations of Eq. 1, the total population actually satisfies a porous
media equation

dP

dt
= k1∇(̇P∇P ). (13)

It is clear that the Krylov IIF WENO scheme can be directly applied to the Eq. 13
if we are only interested in the dynamics of total population. Here we still solve the
original system Eq. 1 to find S, I and R by the Krylov IIF WENO method. The
total population P is evaluated by adding S, I and R we obtain.

In the one-dimensional case, we use the same initial condition as that in the
previous section. The parameter values are set as k1 = 0.1 and k2 = 0. At the
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steady-state, the infected individuals will vanish and the total population will ap-
proach a constant. This is verified by our numerical simulation. Figure 4 shows the
density profiles of populations at t = 0 and at t = 20, respectively. At t = 20, the
numerical solution reaches the steady-state. In this case, the CFL number can be
taken as large as 0.6.
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Figure 4. Numerical solution for the one-dimensional case of Eq. 1
for avoiding crowd (k1 = 0.1, k2 = 0). CFL = 0.6.

In the two-dimensional case, we use the tensor product of the initial condition in
the one-dimensional case. We take CFL = 0.2. Figure 5 shows the initial density
of populations. The numerical solutions of Eq. 1 at t = 1, t = 10 and t = 25 are
shown in Figure 6, Figure 7 and Figure 8, respectively. From the figures, we see
that the total population P approaches a constant; the infected individuals vanish;
and the susceptible and recovered individuals converge to their own steady-states.
This observation is consistent with that in the one-dimensional case.

5. Conclusion and discussions. Mathematical models with directed diffusions
are important in describing the population movement. In particular, the population
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Figure 5. Initial density profiles of population at t = 0.

will move away from crowd and also away from infection during epidemics. However,
such models are usually difficult to simulate since the describing system of partial
differential equations is often degenerated or sometimes even not well-posed. For
example, the leading coefficient matrix of Eq. 1 might have one positive eigenvalue,
one negative eigenvalue and one zero eigenvalue when k1 > 0 and k2 > 0. Therefore,
the system might behave as a mixture of heat equation, backward heat equation, and
hyperbolic system. Numerically simulating such models is often very challenging.

In this paper, we design a Krylov implicit integration factor WENO method
to solve the SIR models with directed diffusions. The method is demonstrated to
have second-order accuracy by using test problems with smooth solutions, for the
general case (k1 > 0 and k2 > 0) and two biologically interesting cases: (i) avoid
infection (k1 = 0, k2 > 0) and (ii) avoid crowd (k1 > 0 and k2 = 0). Numerical
simulations show the high efficiency of the Krylov IIF WENO method in solving
the SIR models with directed diffusion. Singularities in the solution are resolved
stably and sharply by the WENO approximations in the scheme. Unlike a usual
implicit method for solving stiff nonlinear PDEs, the Krylov IIF WENO method
avoids solving large coupled nonlinear algebraic systems at every time step. Only
a system of three nonlinear equations need to be solved at every grid point for the
SIR model in this paper. These small nonlinear systems can be solved easily by
the Newton’s method. Large time step size computations are achieved, namely, the
time step size ∆t = O(∆x) for solving the fully nonlinear second-order PDEs in
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Figure 6. Numerical solution of the two-dimensional case of Eq. 1
for avoiding crowd (k1 = 0.1, k2 = 0) at t = 1. CFL = 0.2.

this paper. The time step size ∆t is adaptively determined at every time step by
the CFL condition as that for a pure hyperbolic PDE.

The numerical results of the Krylov IIF WENO method applied to Eq. 1 show
the consistent results as that obtained in [18]. Furthermore, it suggests that the
finite-time blow-up might occur on the special points in the spatial domain rather
than along a curve for the two-dimensional case. High order numerical methods
are important in capturing the details of the system, such as finding the finite-time
blow-up time and location or discontinuity locations in this case.

Mathematical modeling population’s spatial movement is biologically important.
Other cross-diffusion models were studied in the literatures (see the introduction).
High order numerical methods will be efficient to simulate such models. A possi-
ble future work is to apply the Krylov IIF WENO scheme to other cross-diffusion
mathematical models. Human spatial movement typically happens in two dimen-
sions. The proposed Krylov IIF WENO scheme can be easily applied to three
dimensional applications, such as fish movement in the contaminated water system.
The spatial discretizations are based on finite difference schemes, hence dimension-
by-dimension approach can be directly applied to multidimensional problems (e.g.,
three dimensional problems). Although for three dimensional problems or even
higher dimensional problems, we will obtain a ODE system with much larger size
than that for two dimensional problems, the Krylov IIF scheme can still solve the
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Figure 7. Numerical solution of the two-dimensional case of Eq. 1
for avoiding crowd (k1 = 0.1, k2 = 0) at t = 10. CFL = 0.2.

system efficiently, as that shown in [14]. For problems with other boundary con-
ditions, corresponding algebraic equations can be derived for the boundary points
based on that specific boundary condition. Then the derived algebraic equations
will be used to form the ODEs for grid points adjacent to the boundary points.
Hence we will obtain a slightly different ODE system, which can be solved directly
by the proposed Krylov IIF scheme.
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